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Pyrochlore iridates and pyrochlore ices are two families of materials where novel quantum phenomena
are intertwined with strong spin-orbit coupling, substantial electron correlation, and geometrical frustration.
Motivated by the puzzling experiments on two pyrochlore systems Pr2Ir2O7 and Yb2Ti2O7, we study the proximate
Ising orders and the quantum phase transition out of quantum spin ice U(1) quantum spin liquid (QSL). We apply
the electromagnetic duality of the compact quantum electrodynamics to analyze the condensation of the “magnetic
monopoles” in the U(1) QSL. The monopole condensation naturally and necessarily leads to the Ising orders
that generically break the lattice translation symmetry. We demonstrate that the antiferromagnetic Ising order
with the ordering wave vector Q = 2π (001) is proximate to the U(1) QSL while the ferromagnetic Ising state
with Q = (000) is not proximate to the U(1) QSL. This implies that if there exists a direct transition from the
U(1) QSL to the ferromagnetic Ising order, the transition must be strongly first order. We apply the monopole
condensation to explain the magnetic orders and the transitions in Pr2Ir2O7 and Yb2Ti2O7.
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I. INTRODUCTION

Pyrochlore iridates (R2Ir2O7) [1,2] have stimulated a wide
interest in recent years, and many interesting results, including
topological Mott insulator [3], quadratic band touching [4],
Weyl semimetal [5–8], non-Fermi liquid [9], and so on,
have been proposed. Among these materials, Pr2Ir2O7 is of
particular interest. In Pr2Ir2O7, the Ir system remains metallic
at low temperatures [10]. More intriguingly, no magnetic
order was found except a partial spin freezing of the Pr local
moments due to disorder at very low temperatures in the
early experiments [10–12]. A recent experiment on different
Pr2Ir2O7 samples, however, discovered an antiferromagnetic
long-range Ising order for the Pr moments [13]. While most
theoretical works on pyrochlore iridates focused on the Ir
pyrochlores and explored the interplay between the electron
correlation and the strong spin-orbit coupling of the Ir 5d

electrons [3,14], very few works considered the influence and
the physics of the local moments from the rare-earth sites
that also form a pyrochlore lattice [7,15–17]. In this paper,
we address the local moment physics in Pr2Ir2O7 and propose
that the disordered state of the Pr moments is in the quantum
spin ice (QSI) U(1) quantum spin liquid state. We explore
the proximate Ising order and the confinement transition of
the QSI U(1) quantum spin liquid (QSL) for the Pr local
moments.

The QSI U(1) QSL is an exotic quantum phase of matter and
is described by emergent compact quantum electrodynamics
or, equivalently, by the compact U(1) lattice gauge theory
(LGT) with a gapless U(1) gauge photon and deconfined
spinon excitations [18–20]. Recently, several rare-earth py-
rochlores with 4f electron local moments and systems
alike are proposed as candidates for the QSI U(1) QSLs
[21–31]. In these systems, the predominant antiferromagnetic
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exchange interaction between the Ising components of the
local moments favors an extensively degenerate “2-in–2-out”
spin ice manifold on the pyrochlore lattice [19,21,32–36]. The
transverse spin interaction allows the system to tunnel quantum
mechanically within the ice manifold, giving rise to a U(1)
QSL ground state [35–40].

Like Pr2Ir2O7, the experimental results on the QSI U(1)
QSL candidate materials depend sensitively on the stoichiom-
etry and the sample preparation [21]. In particular, for the
pyrochlore ice system Yb2Ti2O7, while some samples remain
disordered down to the lowest temperature and the neutron
scattering shows a diffusive scattering [22], others develop a
ferromagnetic order [24,41–43]. This suggests that both the Yb
moments in Yb2Ti2O7 and the Pr moments in Pr2Ir2O7 could
be located near a phase transition between a disordered state
[which we propose to be a QSI U(1) QSL] and the magnetic
orders.

FIG. 1. The monopole condensation transition from the QSI U(1)
QSL to the proximate antiferromagnetic Ising order. The dashed
(solid) line represents a thermal crossover (transition). “g” is a tuning
parameter that corresponds to the mass of “magnetic monopole” (see
the discussion in the main text). The inset Ising order has an ordering
wave vector Q = 2π (001). The Pr moment of Pr2Ir2O7 is likely to be
close to this quantum critical point (QCP).
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On the theoretical side, the instability of the QSI U(1)
QSL and the proximate magnetic orders have not been
fully explored. The early works based on the gauge mean-
field approach studied the instability by spinon condensation
[7,37–39,44]. The spinon condensation transition, known as
“Anderson-Higgs transition,” generically leads to the trans-
verse spin order that is not in the spin ice manifold [37].
Instead, we here study the proximate Ising order and transition
out of the QSI U(1) QSL by condensing the “magnetic
monopoles” that are topological excitations of the compact
U(1) LGT for the U(1) QSL. The “magnetic monopole” used
here is fundamentally distinct from the magnetic monopole
in Ref. [34].1 The monopole condensation transition is the
confinement transition of the compact U(1) LGT [45,46], and
the resulting proximate magnetic state develops an Ising order
and generically breaks the lattice translation symmetry.

In Pr2Ir2O7, the Pr3+ ion has a 4f 2 electron configuration
and forms a non-Kramers doublet which is represented by a
pseudospin- 1

2 operator τ with τ z (τ x , τ y) odd (even) under
time reversal T :

T : τ z → −τ z, (1)

T : τ x,y → τ x,y . (2)

This peculiar property under time-reversal transformation
immediately indicates that the magnetic ordering of the Pr
local moments must be signaled by the Ising component
τ z. More generally, the magnetic transition out of the QSI
U(1) QSL with any non-Kramers doublet such as the Pr3+

local moments must necessarily be a confinement transition
by the monopole condensation. The proximate Ising order,
that we predict from the monopole condensation and show in
Fig. 1, is precisely the magnetic order that has been observed
by neutron diffraction in the ordered Pr2Ir2O7 samples [13].
The Anderson-Higgs transition would, however, lead to the
orderings in the transverse components. Such a transverse
component order preserves the time-reversal symmetry for
the non-Kramers doublets like the Pr local moments and thus
does not apply to the magnetic ordering in Pr2Ir2O7.

We extend our understanding from the monopole conden-
sation and proximate Ising order to explain the magnetic
transition in Yb2Ti2O7. The magnetic order of Yb2Ti2O7

preserves the lattice translation and is thus not proximate to
the QSI U(1) QSL via a confinement transition. If such a
magnetic state is bordering with the QSI U(1) QSL via a direct
transition, the transition must be strongly first order. Therefore,
we propose this to be the origin for the strongly first-order
magnetic transition in the ordered Yb2Ti2O7 [24,42,43].

The remaining part of the paper is organized as follows.
In Sec. II, we map the low-energy theory of the relevant spin
model on the pyrochlore lattice into the compact quantum elec-
trodynamics. After carrying out an electromagnetic duality, we
obtain a dual description with an explicit “magnetic monopole”

1The latter one refers to the defect tetrahedron that has a “3-in–
1-out” or “3-out–1-in” spin configuration for the classical spin ice.
To distinguish them, we introduce quotation marks on the “magnetic
monopole” in our context.

degree of freedom. In Sec. III, we analyze the monopole
hopping model on the dual diamond lattice and study the
band structure of the monopoles. We show that the monopole
condensate in the confinement phase leads to a Q = 2π (001)
Ising order within the spin ice manifold. In Sec. IV, we explain
the critical properties of the monopole condensation transition
and emphasize the subsidiary nature of the proximate Ising
order. In Sec. V, we elucidate the existing experimental results
on Pr2Ir2O7 and Yb2Ti2O7 and make suggestions for future
experiments. Finally, in the Appendixes, we provide the details
of the theoretical formalism and propose a concrete spin model
for the numerical verification of our prediction.

II. COMPACT QUANTUM ELECTRODYNAMICS AND
ELECTROMAGNETIC DUALITY

Even though more complicated realistic Hamiltonians are
available for effective spin- 1

2 moments on the pyrochlore
lattice [38–40], it is known that the spin- 1

2 XXZ model [18]

H =
∑
〈ij〉

[
Jz τ z

i τ z
j −J⊥(τ+

i τ−
j + τ−

i τ+
j )

]
(3)

in the perturbative regime (|J⊥|/Jz � 1) already captures the
universal properties of the QSI U(1) QSL. Here, Jz > 0, τ±

i ≡
τ x
i ± iτ

y

i , and τ z
i is defined along the local 〈111〉 direction

of each pyrochlore site. In the perturbative regime, the third-
order degenerate perturbation yields a ring exchange model
[18]

Hring = −
∑
�p

K

2
(τ+

1 τ−
2 τ+

3 τ−
4 τ+

5 τ−
6 + H.c.), (4)

where K = 24J 3
⊥/J 2

z and “1,...,6” are six sites on the perime-
ter of the elementary hexagons (“�p”) of the pyrochlore
lattice.

To map the ring exchange model to the compact U(1) LGT,
one introduces the lattice vector gauge fields as [18]

Er r ′ ≡ τ z
i + 1

2 , (5)

e±iAr r′ ≡ τ±
i , (6)

where the pyrochlore site i resides on the center of the
nearest-neighbor diamond link 〈r r ′〉, and r (r ′) is on the I (II)
sublattice of the diamond lattice that is formed by the centers
of the tetrahedra. Moreover, Er r ′ = −Er ′r , Ar r ′ = −Ar ′r ,
and [Er r ′ ,Ar r ′] = i. Here, Er r ′ (Ar r ′) is integer valued (2π

periodic). With this transformation, Hring is transformed into
the compact U(1) LGT on the diamond lattice formed by the
centers of the tetrahedra

HLGT =
∑
〈r r ′〉

U

2

(
Er r ′ − εr

2

)2

−
∑
�d

K cos(curl A), (7)

where we have added the electric field term with the stiffness
U , εr = +1 (−1) for r ∈ I (II) sublattice, and the lattice curl
(curl A ≡ ∑

rr′∈�d
Ar r ′) defines the internal magnetic field B

through the center of the diamond hexagon (�d ). In the large-
U limit, the microscopic τ z = ± 1

2 is recovered. Although the
actual values of U and K in the low-energy description of
the U(1) QSL are renormalized from the perturbative results
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FIG. 2. (a) The Q = (000) ferromagnetic state. (b) The diamond
lattice (in thin black) and the dual diamond lattice (in thick blue). The
link of the diamond lattice goes through the center of the hexagon
of the dual diamond lattice. The monopole loop current (
J) on the
hexagon of the dual diamond lattice gives rise to the electric field ( 
E)
on the link of the diamond lattice via the right hand’s rule.

HLGT, that captures the universal properties of the U(1) QSI
QSL [18] is the starting point of our analysis below.

“Magnetic monopoles” are topological defects of the U(1)
gauge field and carry the magnetic charge. To describe the
magnetic transition from the U(1) QSL via the monopole
condensation, it is not so convenient to work with the field
variables in Eq. (7) because the monopole variable is not
explicit [18]. Instead, we apply the electromagnetic duality
[18,46–50] to reformulate the compact U(1) LGT Hamiltonian
and make the monopole explicit. We first introduce an integer-
valued dual U(1) gauge field arr′ that lives on the link of the
dual diamond lattice (see Fig. 2) such that

curl a ≡
∑

rr′∈�∗
d

arr′ ≡ Er r ′ − E0
r r ′ , (8)

where “�∗
d” refers to the elementary hexagon on the dual

diamond lattice and the electric field vector Er r ′ penetrates
through the center of “�∗

d .” Here, the serif symbols r,r′
label the dual diamond lattice sites. We have introduced a
background electric field distribution E0

r r ′ that takes care of
the background charge distribution due to the “2-in–2-out”
ice rule. Each state in the spin ice manifold corresponds to a
background electric field distribution. For our convenience, we
choose a simple electric field configuration that corresponds
to a uniform “2-in–2-out” spin ice state (see Fig. 2) with

E0
r,r+εr e0

= E0
r,r+εr e1

= εr , (9)

E0
r,r+εr e2

= E0
r,r+εr e3

= 0, (10)

where eμ (μ = 0,1,2,3) are the four vectors that connect the I
sublattice sites of the diamond lattice to their nearest neighbors.
In terms of the dual gauge variables, HLGT is transformed into

Hdual =
∑
�∗

d

U

2
(curl a − Ē)2 −

∑
〈rr′〉

K cos Brr′ , (11)

where we have explicitly replaced curl A with the magnetic
field vector Brr′ that lives on the link 〈rr′〉 of the dual
diamond lattice and is conjugate to the dual gauge field a with
[Brr′ ,arr′ ] = i. In Eq. (11), we have introduced the electric field

Ē that combines both the background electric field distribution
E0 and the offset in Eq. (7) with

Ēr,r+εr eμ
= E0

r,r+εr eμ
− εr

2
. (12)

Since the dual gauge field a is integer valued, the dual
Hamiltonian Hdual is difficult to work with. Moreover, the
“magnetic monopole” is implicit in the dual gauge field
configuration. To make the monopole explicit, we follow the
standard procedure [18,49,50] to first relax the integer-valued
constraint of the dual gauge field by introducing cos 2πa

and then insert the monopole operators. The resulting dual
theory is described by the “magnetic monopoles” minimally
coupled with the dual U(1) gauge field on the dual diamond
lattice

Hdual =
∑
�∗

d

U

2
(curl a − Ē)2 −

∑
r,r′

K cos Brr′

−
∑
〈r,r′〉

t cos(θr − θr′ + 2πarr′), (13)

where the rotor variable e−iθr (eiθr ) creates (annihilates) the
“magnetic monopole” at the dual lattice site r and t > 0.

III. MONOPOLE CONDENSATION AND PROXIMATE
ISING ORDER

In the dual gauge Hamiltonian of Eq. (13), as the monopole
hopping increases, the monopole gap decreases. When the
monopole gap is closed, the monopole is condensed. In the
confinement phase, the E field develops a static distribution,
the B field (the a field) is strongly (weakly) fluctuating.
Therefore, it is legitimate to first ignore the a field fluctuation,
then study the monopole band structure, and condense the
monopoles at the minimum of the monopole band for the
confinement phase [49,50]. In such a dual gauge mean-field-
like treatment, the “U” term in the Hamiltonian enforces
curl ā = Ē, which is solved to fix the gauge for the dual
gauge field. Here, we set the dual gauge field to its static
component ā. The electric field distribution Ē turns into the
dual gauge flux experienced by the “magnetic monopoles” in
the dual formulation. As Ē takes ±εr/2, it leads to π flux
of the dual gauge field through each elementary hexagon on
the dual diamond lattice. As it is shown in Fig. 3, we fix
the gauge by setting2ār,r+eμ

= ξμ(q · r), where r ∈ I sublattice
of the dual diamond lattice, eμ (μ = 0,1,2,3) refer to the
four nearest-neighbor vectors of the dual diamond lattice (see
Appendix A 1), (ξ0,ξ1,ξ2,ξ3) = (0110), and q = 2π (100).

In the presence of the background flux, the monopole
nearest-neighbor hopping model on the dual diamond lattice
is given by

Hm = −
∑
〈r,r′〉

t e−i2πārr′ �
†
r�r′ − μ

∑
r

�
†
r�r, (14)

2The gauge choice here is identical to the one used in Ref. [39] for
a different problem.
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FIG. 3. The dual diamond lattice and the assignment of the gauge
potential e−i2πārr′ on the nearest-neighbor links.

where we have introduced �r ≡ eiθr (with |�r| ≡ 1). The
dispersion of the lowest monopole band is given by

�k = −t[4 + 2(3 + cxcy − cxcz + cycz)1/2]1/2 − μ, (15)

where cμ = cos kμ (μ = x,y,z). The degenerate minima of
the lowest band form several lines of momentum points in the
Brillouin zone. One such degenerate line is along the [001]
direction of the Brillouin zone and the minimum energy is
−2

√
2t − μ. Other degenerate lines are readily obtained by

the symmetry operations. The line degeneracy of the band
minima is a consequence of the background flux that frustrates
the monopole hopping.

In the U(1) QSL phase, the monopole is massive and has a
mass gap −2

√
2t − μ. When −2

√
2t − μ < 0, the monopole

is condensed and the system is in the confinement phase. Since
the lowest monopole dispersion has line degeneracies, we need
to break the degeneracy for the monopole condensation. It
is expected that the further neighbor monopole hoppings or
monopole interactions should lift these degeneracies.

Due to the background flux, the lattice symmetry in Hm

is realized projectively, known as projective symmetry group
(PSG) [51]. We use PSG to generate the further-neighbor
monopole hoppings, but do not find obvious degeneracy
breaking even after including the fifth-neighbor monopole
hoppings in Appendix B 2. It is possible that this degeneracy
may be protected by the PSG. However, the line degeneracy
immediately gets lifted if we impose the unimodular constraint
on the monopole field (|�r| = |eiθr | = 1) after the monopole
mass gap vanishes. Physically, the unimodular constraint
originates from the repulsive interaction between monopoles
that suppresses the density fluctuation of the monopoles.
For the degenerate minima along the [001] direction, the
unimodular requirement selects two equivalent momenta

k1 = (0,0,π ), k2 = (0,0,−π ), (16)

and the corresponding monopole configurations are

r ∈ I, ϕ1(r) = (
1+i

2 + 1−i
2 ei2πx

)
eiπz,

r ∈ II, ϕ1(r) = eiπz,
(17)

r ∈ I, ϕ2(r) = (
1−i

2 + 1+i
2 ei2πx

)
e−iπz,

r ∈ II, ϕ2(r) = e−iπz,
(18)

where ϕa refers to the monopole configuration at the mo-
mentum ka . Here, ϕ1(r) and ϕ2(r) are time-reversal part-

ners. This is demanded by the time-reversal invariance of
the monopole hopping Hamiltonian. From ϕ1(r) and ϕ2(r),
we implement the PSG transformations and generate in
total 12 symmetry-equivalent monopole configurations (see
Appendix C 1).

After the unimodular constraint is enforced, the monopoles
are condensed at only one of the 12 equivalent solutions, the
spinons are confined, and the system develops an Ising order.
Although the Ising order is induced by the monopole conden-
sation, as monopoles are emergent particles and are not gauge
invariant, the physical property of the monopole condensate is
encoded in the gauge-invariant monopole bilinears. We here
use symmetry to establish the relation between the spin density
τ z and the monopole bilinears. The candidate monopole
bilinears are the monopole density and the monopole current.
Although the monopole density (�†�) transforms in the same
way as the spin density (τ z) under the space-group symmetry,
they behave oppositely under the time reversal.

As for the monopole current, from the Maxwell’s equations,
the loop integral of monopole current is the electric flux
through the plaquette enclosed by the loop [see Fig. 2(b)]
[49,50]. We have

τ z
i ∼ Er r ′ ∼

∑
rr′∈�∗

d

Jrr′ ,� (19)

where the pyrochlore site i is the center of the elementary
hexagon �∗

d on the dual diamond lattice, and

Jrr′ ≡ i[〈�†
r〉〈�r′ 〉e−iārr′ − H.c.] (20)

defines the monopole current on the bond rr′. Here, 〈�r〉 is
the expectation value of the monopole field that is taken with
respect to one of the 12 equivalent monopole configurations.
In the inset of Fig. 1, we depict the spin density distribution of
the monopole condensate at k1. The resulting Ising order in the
confinement phase is an antiferromagnetic state with an order-
ing wave vector Q = 2π (001) and is in the “2-in–2-out” ice
manifold. This Ising order breaks the translation symmetry by
doubling the crystal unit cell. Other monopole configurations
give the spin density distributions that are equivalent to the
Q = 2π (001) Ising order under the space-group symmetry.

The translation symmetry breaking of the proximate Ising
order is a generic phenomenon. The background gauge
flux, due to the “2-in–2-out” rule, shifts the monopole
band minimum to finite momenta. Once the monopole is
condensed at the finite momentum, the resulting proximate
Ising order necessarily breaks the translation symmetry. If
the ferromagnetic Ising ordered phase with Q = (000) in
Fig. 2(a), that preserves the translation symmetry, borders
with the QSI U(1) QSL, although this Ising state is still in
the ice manifold, the transition from it to the U(1) QSL must
be strongly first order. In Appendix D, we propose simple
spin models without a sign problem for quantum Monte Carlo
simulation. The models can realize both the ferromagnetic and
antiferromagnetic Ising orders and allow the careful numerical
study of the phase transitions out of the QSI U(1) QSL.
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FIG. 4. The bubble diagram of the “magnetic monopole”.

IV. CRITICAL THEORY OF MONOPOLE CONDENSATION

The monopole interaction in the confinement phase selects
12 equivalent monopole condensates that correspond to 12
symmetry-equivalent Ising orders. In the vicinity of the
monopole condensation transition, the monopole condensate
and the gauge fields fluctuate strongly. We thereby carry out a
Landau-Ginzburg-Wilson expansion of the action in terms of
the monopole condensate and gauge field in the vicinity of the
phase transition. We introduce the slowly varying monopole
fields φa via the expansion

�r =
12∑

a=1

ϕa(r) φa, (21)

where ϕa(r) (a = 1, . . . ,12) are the 12 discrete monopole
modes that span the ground-state manifold of the
monopole condensate. With the monopole PSG, we generate
the symmetry-allowed effective action for the monopole
condensation transition (see Appendix C 2)

L =
∑

a

[|(∂μ − iãμ)φa|2 + m2|φa|2] + Fμν
2

2

+u0

∑
a

|φa|4 + · · · , (22)

where we have restored the gauge field fluctuation by coupling
the φa fields to the fluctuating part of the dual U(1) gauge
field ãμ, 1

2Fμν
2 is the Maxwell term with Fμν ≡ ∂μãν − ∂νãμ,

“· · · ” contains further anisotropic terms that are marginal for
the critical properties, m is the mass of the monopole and
is set by the band gap of the monopole band structure. The
effective action in Eq. (22) is a standard multicomponent
Ginzburg-Landau theory in (3+1) dimensions [(3+1)D] that
is the upper critical dimension of the theory. One expects
the phase transition of this theory to be governed by a
Gaussian fixed point or belong to a weakly first-order transition
driven by fluctuations [49,50,52]. Both possibilities suggest
that the mean-field treatment of the phase transition should
be sufficient for a rather wide range of length scales. In a
mean-field description, the monopole field correlator at the
critical point (with the monopole mass m = 0) is

〈φ†
a(k,iωn)φb(k,iωn)〉 ∼ δab

k2 + ω2
n

. (23)

According to Eq. (19), the spin operator is a bilinear of the
monopole fields. As a result, the spin susceptibility at the
ordering wave vector Q is simply given by the bubble diagram
of monopole fields (see Fig. 4) and is thus logarithmically
divergent at low temperatures with

χ (Q) ∼ ln
1

T
. (24)

Such a weak divergence is a unique property of the monopole
condensation transition that is a non-Landau-Ginzburg-Wilson
transition. For a conventional magnetic transition, one would
instead have a power-law divergence for the corresponding
susceptibility. Here, the Ising order is a consequence of the
monopole condensation. The condensed monopole field is
the primary order, and the induced Ising order is secondary
and is thus a perfect example of the subsidiary order
[53,54].

The monopole mass gap controls the phase transition and is
parametrized as the parameter g with g ≡ −m2 in Fig. 1. In the
QSI U(1) QSL phase, the monopole is massive with m2 > 0.
The low-energy physics is then governed by the Maxwell’s
field theory and the emergent gapless gauge photon. Due to
the gapless photon, the heat capacity of the system behaves as
Cv ∼ T 3 at low temperatures. As the system approaches the
transition from the QSL side, the monopole mass decreases.
The gapless monopole at the criticality gives an extra T 3

contribution to the heat capacity. Therefore, one would observe
an enhancement of the T 3 heat capacity as the system
approaches the criticality. Moreover, if one raises temperatures
in the U(1) QSL side, the generic argument suggests that there
is no thermal phase transition except a crossover due to the
thermal population of the “magnetic monopoles” [55]. The
populated monopoles simply create thermal confinement of
the spinons at finite temperatures. This crossover temperature
is set by the mass gap of the monopoles. When m2 < 0,
the monopole is condensed and the system develops Ising
orders. Since the system breaks time-reversal symmetry on
the ordered side, we should have a finite-temperature phase
transition above which the time-reversal symmetry is restored.
The ordering temperature is set by the mass of the monopoles.

V. DISCUSSION

A. Transition and the Ising order in Pr2Ir2O7

In the disordered sample of Pr2Ir2O7, a metamagnetic
transition is observed only for magnetic fields along the 〈111〉
direction. This is a clear evidence that the disordered state of
the Pr moments is fluctuating within the ice manifold [12,56]
and the metamagnetic transition is a transition from the “2-in–
2-out” ice manifold to the “3-in–1-out” manifold. Since the
local moments in the QSI U(1) QSL are fluctuating quantum
mechanically within the ice manifold, this metamagnetic
transition in Pr2Ir2O7 is consistent with our proposal that
the disordered state of the Pr moments is a QSI U(1) QSL.
In a recent measurement [56], the specific heat was found
to pass the characteristic spin ice maximum and decrease
until reaching a minimum at 0.4 K. At this temperature, the
spin entropy approaches the Pauling value, indicating that the
system enters the spin ice regime. This result again suggests
that Pr local moments in disordered Pr2Ir2O7 are fluctuating
within the ice manifold.

Given the non-Kramers nature of the Pr local moment and
its unique time-reversal-symmetry properties in Eqs. (1) and
(2), the magnetic order of the Pr moment must be the Ising
order with 〈τ z〉 �= 0. If a non-Kramers doublet local moment
system is in a QSI U(1) QSL ground state, the magnetic
transition from this state must be the confinement transition
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of the compact U(1) LGT because a nonzero τ z corresponds
to the static electric field distribution. Remarkably, the Ising
order that is found in the ordered Pr2Ir2O7 samples by neutron
diffraction [13] has an ordering wave vector Q = 2π (001),
and this is precisely the proximate Ising order that we predict
from the confinement transition!

In different samples, different oxygen and Ir contents
shift the Fermi energy of the Ir conduction electrons and
thus modify the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction between the Pr local moments [7,16,57]. This is
likely to be the microscopic origin of the sample dependence.
Usually, the presence of the conduction electron Fermi
surface modifies the critical properties of the local moment
transition. But, Pr2Ir2O7 is very special. Due to the quadratic
band touching of the Ir electrons [4,58], the Fermi energy
is very close to the band touching energy and the Fermi
momentum |kF| is much smaller than the wave vector Q of
the magnetic order. As a result, the particle-hole excitations
of the Fermi surface of the Ir conduction electrons actually
decouple from the spin fluctuations of the Pr local moments
at low energies [59]. Therefore, the critical properties of
the Pr local moments are not modified by the conduction
electrons.

It is beneficial to focus on the disordered Pr2Ir2O7 samples
and carry out the inelastic neutron scattering. Due to the
unique time-reversal-symmetry properties in Eqs. (1) and (2),
only the Ising component of the Pr local moment couples
with the neutron spin. As the τ z is identified as the emergent
electric field, the inelastic neutron scattering directly probes
the gauge photon excitation. Because of the quadratic band
touching, the inelastic neutron scattering also probes the
particle-hole excitations of the Ir electrons and the spectral
weight should concentrate near the � point. Since the energy
scale of the conduction electron is much higher than the
gapless gauge photon, although the spectral intensities of the
low-energy gauge photon modes are peaked near the “pinch
point” momenta [27,38] that are equivalent to the � point,
it is feasible to identify the low-energy gauge photon modes
in the inelastic neutron scattering measurements. It would be
interesting to vary the Ir and/or oxygen contents in a continuous
fashion, to drive the system between disordered and ordered
phases and directly probe the phase transition.

B. Transition and the magnetic order in Yb2Ti2O7

We first give a general discussion about the magnetic transi-
tion for the Kramers doublet. Unlike the Pr3+ local moment, all
pseudospin components of the Kramers doublet are odd under
time reversal, the magnetic transition out of the QSI U(1)
QSL, that breaks the time-reversal symmetry, can be either
an Anderson-Higgs transition via the spinon condensation or
a confinement transition via the monopole condensation. It
is well known that for the U(1) lattice gauge theory without
a background electric charge distribution, the Higgs phase
and the confinement phase are continuously connected [60].
For the U(1) lattice gauge theory with a background electric
charge distribution, referred as “frustrated gauge theory” in
the context of quantum spin ice [18,61–63], the proximate
Higgs phase is actually not continuously connected to the
proximate confinement phase. Depending on the “magnetic”

flux that is experienced by the spinons, the Higgs phase
can have a Q = 0 order and preserves the lattice translation
[38,39]. In contrast, the confinement phase orders at a finite
momentum [Q = 2π (001)] and breaks the lattice translation
due to the background charge distribution. Therefore, if the
Higgs phase preserves the translation symmetry, then there
must be a translational symmetry-breaking transition as one
goes from proximate Higgs phase to proximate confinement
phase.

For Yb2Ti2O7, the ordered sample has a Q = (000)
ferromagnetic order and preserves the translation symmetry
[24,41–43], although the early experiment found a disordered
state [22]. The thermal transition from the high-temperature
paramagnet to the ferromagnetic one is strongly first order
[24,42,43]. Unlike the Pr3+ moment, the Yb3+ moment is a
Kramers doublet with all pseudospin components odd under
time reversal, thus, a direct coupling between τ z and τ x,y is
allowed by symmetry.

In the Higgs transition scenario for Yb2Ti2O7 [24,38,55], a
predominant transverse component is induced at the first-order
transition [55], and a small Ising component is induced
simultaneously via the coupling between τ z and τ x,y . In the
scenario of a confinement transition, however, a predominant
Ising order is expected, and this seems to be case in Yb2Ti2O7

[24,42,43]. Moreover, as we have explained, the Q = (000)
Ising order is not proximate to the QSI U(1) QSL, and the direct
transition between them through monopole condensation
must be strongly first order. The strongly first-order thermal
transition in the ordered Yb2Ti2O7 samples can thus be
naturally regarded as a finite-temperature extension of the
zero-temperature one. Therefore, it seems more natural to
interpret the experiments of Yb2Ti2O7 from the confinement
scenario.

As the Q = (000) Ising order is not proximate to the QSI
U(1) QSL, there is no sharp symmetry distinction between this
state and the Q = (000) transverse component order for the
Kramers doublet. Their connections to the U(1) QSL phase
are a bit different. The direct confinement transition from
the U(1) QSL to the Q = (000) Ising order is strongly first
order even if one ignores the gauge fluctuation. The Higgs
transition to the Q = (000) transverse component ordering is
continuous in the absence of gauge fluctuation and becomes
weakly first order when the gauge fluctuation is included
[39,55]. Despite the absence of sharp distinction between the
Q = (000) Ising order and the transverse component order, it is
of interest to differentiate the Higgs and confinement scenarios
in Yb2Ti2O7. It would be helpful to numerically study the
microscopic model [22] by varying the transverse component
interaction and the Ising component interaction separately and
probe the nature of transition out of the QSI U(1) QSL.

C. Summary

To summarize, we have studied the Ising magnetic orders
out of the QSI U(1) QSL via the “magnetic monopole” con-
densation. We find that such a confinement transition gives rise
to the proximate Ising ordered state that breaks the translation
symmetry. We propose that the puzzling magnetic properties of
Pr2Ir2O7 and Yb2Ti2O7 can be understood from the “magnetic
monopole” condensation. Beyond these two systems, we have
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argued that the magnetic transition out of the QSI U(1) QSL for
a non-Kramers doublet local moments must be a confinement
transition via monopole condensation. Since the Tb3+ local
moment in Tb2Ti2O7 is a non-Kramers doublet, it is likely
that the sample-dependent magnetic order in Tb2Ti2O7 [64]
can be understood as the confinement transition. I recently
became aware that the magnetic field in Pr2Zr2O7 [65] could
drive a magnetic phase transition from the thermal transport
measurements. As the Pr3+ local moment in Pr2Zr2O7 is a
non-Kramers doublet, such a field-driven magnetic transition
should be interpreted as a confinement transition.
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APPENDIX A: LATTICES AND SYMMETRIES

1. Pyrochlore and dual diamond lattices

Pyrochlore lattice is a corner-shared tetrahedral structure
in three dimensions. The centers of the tetrahedra in the
pyrochlore lattice form a diamond lattice. The dual lattice
of the diamond lattice is also a diamond lattice. For the dual
diamond lattice, we choose the sites

d1 = (0,0,0), (A1)

d2 = 1
4 (1,1,1) (A2)

to be the reference points of the I and II sublattices, respec-
tively. The three lattice vectors of the underlying Bravais lattice
are

a1 = 1
2 (0,1,1), (A3)

a2 = 1
2 (1,0,1), (A4)

a3 = 1
2 (1,1,0), (A5)

where we have set the lattice constant to unity.
Each site of the dual diamond lattice is connected by

four nearest neighbors. The four vectors eμ that connect the
neighboring sites are given as

e0 = 1
4 (1,1,1), (A6)

e1 = 1
4 (1,−1,−1), (A7)

e2 = 1
4 (−1,1,−1), (A8)

e3 = 1
4 (−1,−1,1). (A9)

2. Projective symmetry group

Both the pyrochlore lattice and the dual diamond lattice
share the same space-group symmetry Fd3̄m. The Fd3̄m

space group involves three lattice translations

Ti : r → r + ai , (A10)

a threefold rotation

C3 : (x,y,z) → (z,x,y), (A11)

a twofold rotation

C2 : (x,y,z) → (−x,−y,z), (A12)

a mirror reflection

R : (x,y,z) → (y,x,z), (A13)

and an inversion

I:(x,y,z) → (
1
4 − x, 1

4 − y, 1
4 − z

)
. (A14)

The physical spin is defined on the pyrochlore lattice site,
while the “magnetic monopoles” are defined on the dual
diamond lattice sites. Due to the background gauge flux, the
space-group symmetry is realized projectively in the monopole
hopping Hamiltonian Hm. For each symmetry operation, we
need to supplement with a U(1) gauge transformation. Under
the symmetry operation Ô, the monopole is transformed as

Ô : �r → e−i�O(r)�r′ , (A15)

where r′ = O(r) and e−i�O(r) is the associated U(1) gauge
transformation. We have used Ô to label the generator of the
projective symmetry group.

For our convenience, we introduce the unit-cell index n to
label the monopole position and define

η1(n) = �r, (A16)

η2(n) = �r+e0 , (A17)

where r = ∑
j njaj , and η1(n) and η2(n) are monopole

operators on the I and II sublattices, respectively.
Here, we list the projective symmetry transformation of the

monopole operators. Under the three lattice translations, the
monopole operators are transformed as

T̂1 : η1(nx,ny,nz) → e−i�T1 [n]η1(nx + 1,ny,nz), (A18)

T̂1 : η2(nx,ny,nz) → e−i�T1 [n]η2(nx + 1,ny,nz), (A19)

T̂2 : η1(nx,ny,nz) → e−i�T2 [n]η1(nx,ny + 1,nz), (A20)

T̂2 : η2(nx,ny,nz) → e−i�T2 [n]η2(nx,ny + 1,nz), (A21)

T̂3 : η1(nx,ny,nz) → e−i�T3 [n]η1(nx,ny,nz + 1), (A22)
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T̂3 : η2(nx,ny,nz) → e−i�T3 [n]η2(nx,ny,nz + 1), (A23)

where

�Ti
[n] = −(ε · n) vi (A24)

and ε = (1,1,0),v = π (0,1,1).
Under threefold rotation, we have

Ĉ3 : η1(nx,ny,nz) → e−i�C3 [n]η1(nz,nx,ny), (A25)

Ĉ3 : η2(nx,ny,nz) → e−i�C3 [n]η2(nz,nx,ny), (A26)

where

�C3 [n] = n · B · n + δ · n (A27)

with

B = π

2

⎡
⎢⎣

1 0 1

0 1 1

1 1 0

⎤
⎥⎦ (A28)

and δ = π/2(1,1,0).
Under twofold rotation, we have

Ĉ2 : η1(nx,ny,nz) → η1(ny,nx,−nx − ny − nz), (A29)

Ĉ2 : η2(nx,ny,nz) → η2(ny,nx,−1 − nx − ny − nz),

(A30)

where �C2 [n] = 0.
Under the reflection, we have

R̂ : η1(nx,ny,nz) → e−i�R[n]η1(ny,nx,nz), (A31)

R̂ : η2(nx,ny,nz) → e−i�R[n]η2(ny,nx,nz), (A32)

where

�R[n] = n · B′ · n + δ′ · n (A33)

with

B′ = π

2

⎡
⎣1 1 0

1 1 0
0 0 0

⎤
⎦ (A34)

and δ′ = π/2(1,1,0).
Finally, for the inversion symmetry, we have

Î : η1(nx,ny,nz) → e−i�I[n]η2(−nx,−ny,−nz), (A35)

Î : η2(nx,ny,nz) → e−i�I[n]η1(−nx,−ny,−nz), (A36)

where

�I[n] = λ · n (A37)

and λ = π (0,1,0).

APPENDIX B: MONOPOLE HOPPINGS

1. Nearest-neighbor monopole hoppings

Here, we consider the nearest-neighbor monopole hopping
model. Due to the background flux and the gauge choice,
the unit cell is fictitiously doubled. In Fig. 3, we specify the
signs of the hopping parameters on the dual diamond lattice.
The nearest-neighboring monopole hopping Hamiltonian in
the momentum space is given as

Hm = −t
∑

k

[�†
1,1(k),�†

2,1(k),�†
1,2(k),�†

2,2(k)]

×

⎡
⎢⎢⎢⎣

0 eik·e0 + eik·e1 0 eik·e2 + eik·e3

e−ik·e0 + e−ik·e1 0 e−ik·e3 − e−ik·e2 0

0 eik·e3 − eik·e2 0 eik·e0 − eik·e1

e−ik·e2 + e−ik·e3 0 e−ik·e0 − e−ik·e1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

�1,1(k)
�2,1(k)
�1,2(k)
�2,2(k)

⎤
⎥⎥⎦ − μ

∑
μ,ν

�†
μ,ν(k)�μ,ν(k), (B1)

where the subindex refers to the four sublattices. The reference
points of the four sublattices are

d1,1 = (0,0,0), d1,2 = (
1
2 , 1

2 ,0
)
, (B2)

d2,1 = (
1
4 , 1

4 , 1
4

)
, d2,2 = (

3
4 , 3

4 , 1
4

)
. (B3)

Here, we define the Fourier transformation in the site basis,
i.e.,

for r ∈ (i,j ) sublattice, �(r) =
∑

k

�i,j (k)eik·r. (B4)

The four dispersions of Hm are given as

ω1,±(k) = +t
[
4 ± 2(3 + cos kx cos ky − cos kx cos kz

+ cos ky cos kz)
1
2
] 1

2 − μ, (B5)

ω2,±(k) = −t
[
4 ± 2(3 + cos kx cos ky − cos kx cos kz

+ cos ky cos kz)
1
2
] 1

2 − μ, (B6)

where ω2,+(k) is the lowest dispersion and is referred as �k in
the main text.

The lowest dispersion ω2,+(k) has line degeneracies in
the momentum space. For instance, the minimum of ω2,+(k)
occurs at any momentum point along the [001] direction in the
momentum space. For k = (0,0,kz), we have the following
monopole eigenstates in real space:

r ∈ I, �(r) = 1√
2

(ei kz
4 + e−i kz

4 ei2πx)eikzz, (B7)

r ∈ II, �(r) = eikzz. (B8)
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2. Further-neighbor monopole hoppings

The general monopole hopping model should be invariant
under the PSG transformation. We here give an example
for the second-neighbor monopole hopping to illustrate the
procedure to determine the hopping parameters. The second
neighbor connects the lattice sites within the same sublattice.
Each site has 12 second-neighbor sites. For the second nearest
neighbors, we consider the monopole hopping Hamiltonian

Hm,2 =
∑

n

[d1[n] η
†
1(nx,ny,nz)η1(nx + 1,ny,nz)

+ d2[n] η
†
1(nx,ny,nz)η1(nx,ny + 1,nz)

+ d3[n] η
†
1(nx,ny,nz)η1(nx,ny,nz + 1)

+ d4[n] η
†
1(nx,ny,nz)η1(nx,ny − 1,nz + 1)

+ d5[n] η
†
1(nx,ny,nz)η1(nx − 1,ny,nz + 1)

+ d6[n] η
†
1(nx,ny,nz)η1(nx,ny − 1,nz + 1) + H.c.]

+ [f1[n] η
†
2(nx,ny,nz)η2(nx + 1,ny,nz)

+ f2[n] η
†
2(nx,ny,nz)η2(nx,ny + 1,nz)

+ f3[n] η
†
2(nx,ny,nz)η2(nx,ny,nz + 1)

+ f4[n] η
†
2(nx,ny,nz)η2(nx,ny − 1,nz + 1)

+ f5[n] η
†
2(nx,ny,nz)η2(nx − 1,ny,nz + 1)

+ f6[n] η
†
2(nx,ny,nz)η2(nx − 1,ny + 1,nz) + H.c.],

(B9)

where {di[n]} and {fi[n]} are the hopping parameters on the
I and II sublattices, respectively. Applying the T̂1 translation,
we compare the transformed Hamiltonian with the original
Hamiltonian and obtain

di[nx,ny,nz] = di[nx − 1,ny,nz]. (B10)

Similarly, for the T̂2 and T̂3 translations, we have

d1[nx,ny,nz] = −d1[nx,ny − 1,nz], (B11)

d2[nx,ny,nz] = −d2[nx,ny − 1,nz], (B12)

d3[nx,ny,nz] = +d3[nx,ny − 1,nz], (B13)

d4[nx,ny,nz] = −d4[nx,ny − 1,nz], (B14)

d5[nx,ny,nz] = −d5[nx,ny − 1,nz], (B15)

d6[nx,ny,nz] = +d6[nx,ny − 1,nz] (B16)

and

d1[nx,ny,nz] = −d1[nx,ny,nz − 1], (B17)

d2[nx,ny,nz] = −d2[nx,ny,nz − 1], (B18)

d3[nx,ny,nz] = +d3[nx,ny,nz − 1], (B19)

d4[nx,ny,nz] = −d4[nx,ny,nz − 1], (B20)

d5[nx,ny,nz] = −d5[nx,ny,nz − 1], (B21)

d6[nx,ny,nz] = +d6[nx,ny,nz − 1], (B22)

respectively. Applying the remaining symmetries, we obtain
the following hopping parameters for the second neighbors:

d1[nx,ny,nz] = −(−)ny+nz t2, (B23)

d2[nx,ny,nz] = (−)ny+nz t2, (B24)

d3[nx,ny,nz] = −t2, (B25)

d4[nx,ny,nz] = −(−)ny+nz t2, (B26)

d5[nx,ny,nz] = −(−)ny+nz t2, (B27)

d6[nx,ny,nz] = t2. (B28)

Here, t2 > 0. The sign of t2 is simply obtained by examining
whether the triangular loop formed by two first-neighbor
monopole hoppings and one second-neighbor monopole hop-
ping in Fig. 3 traps an electric field line or not. For monopole
hoppings on the II sublattice, the same procedure gives

f1[nx,ny,nz] = −(−)ny+nz t ′2, (B29)

f2[nx,ny,nz] = (−)ny+nz t ′2, (B30)

f3[nx,ny,nz] = −t ′2, (B31)

f4[nx,ny,nz] = (−)ny+nz t ′2, (B32)

f5[nx,ny,nz] = (−)ny+nz t ′2, (B33)

f6[nx,ny,nz] = −t ′2. (B34)

Finally, we apply the inversion symmetry that switches two
sublattices and establish t ′2 = t2.

Carrying out the above procedures, we proceed to generate
the further-neighbor monopole hoppings up to the fifth
neighbors. Both the third- and the fourth-neighbor monopole
hoppings are zero. The fifth-neighbor monopole hoppings are
given as

Hm,5 =
∑

n

[h1[n]η†
1(nx,ny,nz)η2(nx − 2,ny,nz)

+h2[n]η†
1(nx,ny,nz)η2(nx − 2,ny,nz + 1)

+h3[n]η†
1(nx,ny,nz)η2(nx − 2,ny + 1,nz)

+h4[n]η†
1(nx,ny,nz)η2(nx,ny − 2,nz)

+h5[n]η†
1(nx,ny,nz)η2(nx,ny − 2,nz + 1)

+h6[n]η†
1(nx,ny,nz)η2(nx,ny,nz − 2)

+h7[n]η†
1(nx,ny,nz)η2(nx,ny,nz + 1)

+h8[n]η†
1(nx,ny,nz)η2(nx,ny + 1,nz − 2)

+h9[n]η†
1(nx,ny,nz)η2(nx,ny + 1,nz)

+h10[n]η†
1(nx,ny,nz)η2(nx + 1,ny − 2,nz + 1)

+h11[n]η†
1(nx,ny,nz)η2(nx + 1,ny,nz − 2)

+h12[n]η†
1(nx,ny,nz)η2(nx + 1,ny,nz) + H.c.],

(B35)
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where

h1[nx,ny,nz] = −t5, (B36)

h2[nx,ny,nz] = t5, (B37)

h3[nx,ny,nz] = −t5(−)ny+nz , (B38)

h4[nx,ny,nz] = t5, (B39)

h5[nx,ny,nz] = −t5, (B40)

h6[nx,ny,nz] = −t5, (B41)

h7[nx,ny,nz] = −t5, (B42)

h8[nx,ny,nz] = −t5(−)ny+nz , (B43)

h9[nx,ny,nz] = t5(−)ny+nz , (B44)

h10[nx,ny,nz] = −t5(−)ny+nz , (B45)

h11[nx,ny,nz] = t5(−)ny+nz , (B46)

h12[nx,ny,nz] = −t5(−)ny+nz , (B47)

and t5 > 0. Remarkably, the presence of second and fifth
monopole hoppings does not lift the line degeneracy of
ω2,+(k). The lowest energy of the full monopole hopping
Hamiltonian Hm + Hm,2 + Hm,5 still occurs along the same
momentum lines as the one for Hm. For example, along the
[001] direction, the lowest energy is shifted to ω′(0,0,kz) =
−2

√
2(t + t5) − 4t2 − μ for an arbitrary kz, while the corre-

sponding eigenstate stays the same as the one for Hm.

APPENDIX C: MONOPOLE CONDENSATES AND
MAGNETIC ORDERS

1. Equivalent monopole condensates

When the monopole mass gap closes, the monopoles
are condensed. As we have explained in the main text,
the unimodular condition |�(r)| = 1 requires the monopole
fields to be condensed at (0,0, ± π ), and the monopole
configurations are given as ϕ1(r) and ϕ2(r). We here use the
PSG in Appendix A 2 to generate other equivalent monopole
configurations. The results are listed as follows:

r ∈ I, ϕ3(r) = e−iπx

2
(1 + ei2πx + ei2πy − ei2πz),

r ∈ II, ϕ3(r) = e−iπx

2
(1 + ei2πx + ei2πy + iei2πz), (C1)

r ∈ I, ϕ5(r) = 1 + i

2
e−iπ(x+y+z)(−iei2πx + ei2πy),

r ∈ II, ϕ5(r) = 1

2
e−iπ(x+y+z)(−i + ei2πx + iei2πy

+ iei2πz), (C2)

r ∈ I, ϕ7(r) = 1

2
(i + ei2πy)(−i + ei2πz),

r ∈ II, ϕ7(r) = 1√
2

(1 + ei2πz), (C3)

r ∈ I, ϕ9(r) = 1

2
e−iπ(y+z)(ei2πx + ei2πy + iei2πz − i),

r ∈ II, ϕ9(r) = 1 + i

2
√

2
e−iπ(y+z)(e2iπx + e2iπy + e2iπz − i),

(C4)

r ∈ I, ϕ11(r) = eiπ(x−y−2z),

r ∈ II, ϕ11(r) = i√
2

(−1 + e2iπx)e−iπ(x+y+2z). (C5)

Finally, using time-reversal symmetry, we generate the
time-reversal partners of the above monopole con-
figurations

ϕ2n(r) = ϕ∗
2n−1(r), (C6)

for n = 1,2,3,4,5,6. Therefore, we have 12 equivalent
monopole configurations.

2. Slowly varying monopole fields: Projective symmetry
transformation

In Eq. (21), we expand the monopole fields �r in terms of
the slowly varying fields φa’s. From the symmetry properties
of �r, we obtain the projective symmetry transformation for
the φa fields in the following. We have

T̂1 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1 → iφ1, φ2 → −iφ2,

φ3 → φ4, φ4 → φ3,

φ5 → −iφ6, φ6 → iφ5,

φ7 → φ8, φ8 → φ7,

φ9 → −iφ10, φ10 → iφ9,

φ11 → iφ11, φ12 → −iφ12,

(C7)

T̂2 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1 → −φ2, φ2 → −φ1,

φ3 → iφ4, φ4 → −iφ3,

φ5 → −iφ5, φ6 → iφ6,

φ7 → −iφ7, φ8 → iφ8,

φ9 → −φ10, φ10 → −φ9,

φ11 → iφ12, φ12 → −iφ11,

(C8)

T̂3 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1 → −iφ2, φ2 → iφ1,

φ3 → iφ3, φ4 → −iφ4,

φ5 → φ6, φ6 → φ5,

φ7 → −iφ8, φ8 → iφ7,

φ9 → iφ9, φ10 → −iφ10,

φ11 → φ12, φ12 → φ11,

(C9)

Ĉ3 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1 → φ5, φ2 → φ6,

φ3 → φ1, φ4 → φ2,

φ5 → φ3, φ6 → φ4,

φ7 → φ9, φ8 → φ10,

φ9 → φ11, φ10 → φ12,

φ11 → φ7, φ12 → φ8,

(C10)

Ĉ2 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1 → φ1, φ2 → φ2,

φ3 → φ4, φ4 → φ3,

φ5 → φ6, φ6 → φ5,

φ7 → φ7, φ8 → φ8,

φ9 → φ10, φ10 → φ9,

φ11 → φ12, φ12 → φ11,

(C11)
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R̂ :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1 → φ7, φ2 → φ8,

φ3 → φ9, φ4 → φ10,

φ5 → φ11 φ6 → φ12,

φ7 → φ1, φ8 → φ2,

φ9 → φ3, φ10 → φ4,

φ11 → φ5, φ12 → φ6,

(C12)

Î :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1 → φ12, φ2 → iφ11,

φ3 → φ10, φ4 → iφ9,

φ5 → φ8, φ6 → iφ7,

φ7 → φ6, φ8 → iφ5,

φ9 → φ4, φ10 → iφ3,

φ11 → φ2, φ12 → iφ1.

(C13)

Finally, under the time-reversal symmetery T , we
have

T :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ1 → φ∗
1 , φ2 → φ∗

2 ,

φ3 → φ∗
3 , φ4 → φ∗

4 ,

φ5 → φ∗
5 , φ6 → φ∗

6 ,

φ7 → φ∗
7 , φ8 → φ∗

8 ,

φ9 → φ∗
9 , φ10 → φ∗

10,

φ11 → φ∗
11, φ12 → φ∗

12.

(C14)

The quartic terms in Eq. (22), that are invariant under the
PSG, are given as

L4 = u1[|φ5φ7|2 + |φ6φ7|2 + |φ5φ8|2 + |φ6φ8|2 + |φ3φ9|2 + |φ4φ9|2 + |φ3φ10|2 + |φ4φ10|2 + |φ1φ11|2 + |φ2φ11|2
+ |φ1φ12|2 + |φ2φ12|2] + u2[|φ1φ3|2 + |φ2φ3|2 + |φ1φ4|2 + |φ2φ4|2 + |φ1φ5|2 + |φ2φ5|2 + |φ3φ5|2 + |φ4φ5|2
+ |φ1φ6|2 + |φ2φ6|2 + |φ3φ6|2 + |φ4φ6|2 + |φ7φ9|2 + |φ8φ9|2 + |φ7φ10|2 + |φ8φ10|2 + |φ7φ11|2 + |φ8φ11|2 + |φ9φ11|2
+ |φ10φ11|2 + |φ7φ12|2 + |φ8φ12|2 + |φ9φ12|2 + |φ10φ12|2] + u3[|φ1φ7|2 + |φ2φ7|2 + |φ3φ7|2 + |φ4φ7|2 + |φ1φ8|2
+ |φ2φ8|2 + |φ3φ8|2 + |φ4φ8|2 + |φ1φ9|2 + |φ2φ9|2 + |φ5φ9|2 + |φ6φ9|2 + |φ1φ10|2 + |φ2φ10|2 + |φ5φ10|2 + |φ6φ10|2
+ |φ3φ11|2 + |φ4φ11|2 + |φ5φ11|2 + |φ6φ11|2 + |φ3φ12|2 + |φ4φ12|2 + |φ5φ12|2 + |φ6φ12|2] + u4[|φ1φ2|2 + |φ3φ4|2
+ |φ5φ6|2 + |φ7φ8|2 + |φ9φ10|2 + |φ11φ12|2] + u5[φ∗

2φ∗
8φ1φ7 − φ∗

1φ∗
8φ2φ7 − φ∗

4φ∗
8φ3φ7 − φ∗

3φ∗
8φ4φ7 − φ∗

2φ∗
7φ1φ8

+φ∗
1φ∗

7φ2φ8 − φ∗
4φ∗

7φ3φ8 − φ∗
3φ∗

7φ4φ8 − φ∗
2φ∗

10φ1φ9 − φ∗
1φ∗

10φ2φ9 + φ∗
6φ∗

10φ5φ9 − φ∗
5φ∗

10φ6φ9 − φ∗
2φ∗

9φ1φ10

−φ∗
1φ∗

9φ2φ10 − φ∗
6φ∗

9φ5φ10 + φ∗
5φ∗

9φ6φ10 + φ∗
4φ∗

12φ3φ11 − φ∗
3φ∗

12φ4φ11 − φ∗
6φ∗

12φ5φ11 − φ∗
5φ∗

12φ6φ11 − φ∗
4φ∗

11φ3φ12

+φ∗
3φ∗

11φ4φ12 − φ∗
6φ∗

11φ5φ12 − φ∗
5φ∗

11φ6φ12] + u6[φ∗
11φ

∗
12φ1φ2 + φ∗

9φ∗
10φ3φ4 + φ∗

7φ∗
8φ5φ6 + φ∗

5φ∗
6φ7φ8 + φ∗

3φ∗
4φ9φ10

+φ∗
1φ∗

2φ11φ12] + u7[φ∗
7φ∗

8φ1φ2 + φ∗
9φ∗

10φ1φ2 + φ∗
7φ∗

8φ3φ4 + φ∗
11φ

∗
12φ3φ4 + φ∗

9φ∗
10φ5φ6 + φ∗

11φ
∗
12φ5φ6 + φ∗

1φ∗
2φ7φ8

+φ∗
3φ∗

4φ7φ8 + φ∗
1φ∗

2φ9φ10 + φ∗
5φ∗

6φ9φ10 + φ∗
3φ∗

4φ11φ12 + φ∗
5φ∗

6φ11φ12] + u8[φ∗
3φ∗

4φ1φ2 + φ∗
5φ∗

6φ1φ2 + φ∗
1φ∗

2φ3φ4

+φ∗
5φ∗

6φ3φ4 + φ∗
1φ∗

2φ5φ6 + φ∗
3φ∗

4φ5φ6 + φ∗
9φ∗

10φ7φ8 + φ∗
11φ

∗
12φ7φ8 + φ∗

7φ∗
8φ9φ10 + φ∗

11φ
∗
12φ9φ10 + φ∗

7φ∗
8φ11φ12

+φ∗
9φ∗

10φ11φ12] + u9[φ2
1(φ∗

7 )2 − φ2
1(φ∗

8 )2 + φ2
1(φ∗

9 )2 + φ2
1(φ∗

10)2 − φ2
2(φ∗

7 )2 + φ2
2(φ∗

8 )2 + φ2
2(φ∗

9 )2 + φ2
2(φ∗

10)2 + φ2
3(φ∗

7 )2

+φ2
3(φ∗

8 )2 + φ2
3(φ∗

11)2 − φ2
3(φ∗

12)2 + φ2
4(φ∗

7 )2 + φ2
4(φ∗

8 )2 − φ2
4(φ∗

11)2 + φ2
4(φ∗

12)2 + φ2
5(φ∗

9 )2 − φ2
5(φ∗

10)2 + φ2
5(φ∗

11)2

+φ2
5(φ∗

12)2 − φ2
6(φ∗

9 )2 + φ2
6(φ∗

10)2 + φ2
6(φ∗

11)2 + φ2
6(φ∗

12)2 + φ2
7(φ∗

1 )2 − φ2
7(φ∗

2 )2 + φ2
7(φ∗

3 )2 + φ2
7(φ∗

4 )2 − φ2
8(φ∗

1 )2

+φ2
8(φ∗

2 )2 + φ2
8(φ∗

3 )2 + φ2
8(φ∗

4 )2 + φ2
9(φ∗

1 )2 + φ2
9(φ∗

2 )2 + φ2
9(φ∗

5 )2 − φ2
9(φ∗

6 )2 + φ2
10(φ∗

1 )2 + φ2
10(φ∗

2 )2 − φ2
10(φ∗

5 )2

+φ2
10(φ∗

6 )2 + φ2
11(φ∗

3 )2 − φ2
11(φ∗

4 )2 + φ2
11(φ∗

5 )2 + φ2
11(φ∗

6 )2 − φ2
12(φ∗

3 )2 + φ2
12(φ∗

4 )2 + φ2
12(φ∗

5 )2 + φ2
12(φ∗

6 )2] + u0

∑
a

|φa|4.

(C15)

APPENDIX D: A SIGN-PROBLEM-FREE MODEL FOR
QUANTUM MONTE CARLO SIMULATION

Here, we propose a simple exchange model that does
not have a sign problem for quantum Monte Carlo (QMC)
simulation. This model can realize both the Q = 2π (001) order
and the Q = (000) order. Although both Ising orders belong
to the spin ice manifold, the former is proximate to the QSI
U(1) QSL via a confinement transition and the latter is not
(see the main text for the detailed discussion). The model is
given as

H1 =
∑
〈ij〉

Jz τ z
i τ z

j − J⊥(τ+
i τ−

j + H.c.) +
∑

〈〈〈ij〉〉〉
J3zτ

z
i τ z

j ,

(D1)

where J3z is the third-neighbor Ising exchange. The XXZ part
of the model (J3z = 0) has been studied in the previous works
[66–68].

We focus our discussion on the case when J⊥ > 0. This
is precisely the parameter regime where the sign problem for
QMC is absent. To be in the spin ice regime, we keep Jz > 0.
When J± � Jz and J3z � Jz, the ground state is a QSI U(1)
QSL. If we fix J±/Jz to make the system in the QSI U(1) QSL
phase, as we gradually increase |J3z/Jz| from 0, the system
will eventually become ordered. Since J3z is the interaction
between spins from the same sublattice, a ferromagnetic J3z

would simply favor Q = (000), even though the four spins
on each tetrahedron of the pyrochlore lattice obey the “2-in–
2-out” ice rule [see Fig. 2(a) of the main text]. Since this
Q = (000) is not proximate to the U(1) QSL phase, we expect
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a strongly first-order transition as we increase |J3z/Jz| for a
ferromagnetic J3z.

For an antiferromagnetic J3z, although the Luttinger-Tisza
method gives a continuous line degeneracy for the ordering
wave vector, the Ising constraint immediately select the
collinear order with an ordering wave vector Q = 2π (001).
As we show in the main text, this Ising order is proximate
to the U(1) QSL via a monopole condensation transition.
Therefore, we expect either a continuous transition or an
extremely weakly first-order transition driven by fluctuations
as we increase |J3z/Jz| for an antiferromagnetic J3z.

In the future, it would be interesting to implement a
large-scale QMC simulation of the model in Eq. (D1) to
confirm the monopole condensation transition out the QSI U(1)
QSL.

Finally, we propose a perturbative version of the model in
Eq. (D1). The new model includes the ring exchange on the
pyrochlore hexagons and the third-neighbor Ising exchange

and is given as

H2 = −
∑
�p

K

2
(τ+

1 τ−
2 τ+

3 τ−
4 τ+

5 τ−
6 + H.c.) +

∑
〈〈〈ij〉〉〉

J3zτ
z
i τ z

j ,

(D2)

and we further restrict the Hilbert space to be the “2-in–2-out”
ice manifold. Therefore, this new Hamiltonian will only act
on the states in the ice manifold. This perturbative model was
already proposed in one perturbative limit of the realistic spin
model for Yb2Ti2O7 in Ref. [38]. When |J3z| � K , the ground
state of H2 is the QSI U(1) QSL phase. When |J3z| � K , the
system develops Q = 2π (001) antiferromagnetic order for a
positive J3z, and Q = (000) ferromagnetic order for a negative
J3z. Again, we expect the transition from the QSI U(1) QSL
to the ferromagnetic state is strongly first order, while the
transition to the antiferromagnetic state is either continuous or
extremely weakly first order.
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