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The semimetal-superconductor quantum phase transition on the two-dimensional (2D) surface of a 3D
topological insulator is conjectured to exhibit an emergent N = 2 supersymmetry, based on a one-loop
renormalization group (RG) analysis in the ε expansion. We provide additional support for this conjecture
by performing a three-loop RG analysis and showing that the supersymmetric fixed point found at this order
survives the extrapolation to 2D. We compute critical exponents to order ε3, obtaining the more accurate value
ν ≈ 0.985 for the correlation length exponent and confirming that the fermion and boson anomalous dimensions
remain unchanged beyond one loop, as expected from non-renormalization theorems in supersymmetric
theories. We further couple the system to a dynamical U(1) gauge field, and argue that the transition becomes
fluctuation-induced first order in an appropriate type-I regime. We discuss implications of this result for quantum
phase transitions between certain symmetry-preserving correlated surface states of 3D topological insulators.
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I. INTRODUCTION

Supersymmetry (SUSY), a spacetime symmetry that ex-
changes fermions and bosons, plays an important role in
modern theories of elementary particles such as superstring
theory and the minimal supersymmetric standard model [1].
In these theories SUSY is either an exact symmetry or it
is broken, spontaneously or explicitly. A third possibility
is that SUSY could be a symmetry that emerges at long
wavelengths and low energies in theories that are not man-
ifestly supersymmetric [2,3], much like Lorentz symmetry
emerges at long wavelengths at the critical point of the familiar
two-dimensional (2D) Ising model, whose Hamiltonian is
defined on a lattice and is thus not manifestly Lorentz
invariant [4]. Recent developments suggest that SUSY can
emerge naturally at certain quantum critical points (QCPs) in
a variety of quantum many-body systems, including spinless
fermions on the honeycomb lattice with f -wave pairing
instabilities [5], interacting ultracold atomic Fermi gases
on certain optical lattices [6], the surfaces of topological
insulators and superconductors/superfluids [7–9], Dirac and
Weyl semimetals with pair-density-wave instabilities [10], and
chains of Majorana zero modes [11].

Here we will focus on emergent N = 2 SUSY in 2+1
spacetime dimensions, which was conjectured to occur at the
semimetal-superconductor QCP of 2D Dirac fermions on the
surface of a 3D topological insulator [7–9]. According to this
conjecture, the fermionic charge-e Dirac quasiparticles and
bosonic charge-2e Cooper pairs become superpartners at the
QCP, at asymptotically low energies and long wavelengths;
the critical theory is the superconformal fixed point of the
Wess-Zumino model in (2+1)D with one chiral multiplet and
cubic superpotential [12]. The basis for this conjecture is a
one-loop perturbative renormalization group (RG) analysis of
the Landau-Ginzburg action for interacting Dirac fermions and
Cooper pairs near criticality, carried out in D = 4 − ε space-
time dimensions using the ε expansion [2,5] and extrapolated
to the physical case of D = 3, which corresponds to ε = 1. In

this analysis, the SUSY QCP corresponds to a fixed point of the
one-loop RG beta function with a single relevant direction in
the infrared corresponding to the coupling constant that tunes
the transition, e.g., the strength of the attractive interaction
between Dirac fermions.

In this paper we expand upon these previous studies in
two directions: (a) we go beyond leading order in the ε

expansion, and (b) we investigate the effect of coupling
the Dirac fermions and Cooper pairs to a dynamical U(1)
gauge field. The motivation for (a) is twofold. First, while
there is no reason to doubt the existence of the SUSY
fixed point found at one-loop order for infinitesimal ε [5],
the physical case of two spatial dimensions corresponds to
ε = 1. As ε increases from zero to one, higher-order terms
in the RG beta function, which correspond to higher loops,
become increasingly important and may qualitatively change
the fixed-point structure of the theory. For example, the full
beta function, if computed to all orders, could have a lower
critical spacetime dimension Dc below which the SUSY fixed
point disappears. This would correspond to a finite upper
critical value εc, and the disappearance of the fixed point would
not be apparent at the lowest orders in perturbation theory. In
fact, even if one starts with the manifestly supersymmetric
action for the N = 2 Wess-Zumino model in (2+1)D, it is
strictly speaking not known whether the superconformal fixed
point exists in this theory—only that if there exists a value
of the coupling constant for which the fermion and boson
anomalous dimensions are equal to 1

3 , this value corresponds
to a fixed point of the RG [13]. In general, when the beta
function is a function of some external parameter, such as here
ε, an infrared stable fixed point can disappear at a critical value
of this parameter by either merging with the trivial (Gaussian)
fixed point, running off to infinite coupling, or merging with
an ultraviolet stable fixed point [14]. An example of the
latter phenomenon with current relevance to condensed matter
physics is the disappearance of the Luttinger-Abrikosov-
Beneslavskii non-Fermi-liquid fixed point [15] below a critical
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spatial dimension dc ≈ 3.26 due to its merging with a QCP
towards the formation of a topological Mott insulator [16].
While only knowing the full nonperturbative beta function of
the Landau-Ginzburg theory considered here would establish
the existence of the SUSY fixed point in 2+1 dimensions
beyond any doubt, such an analysis is likely to be practically
impossible, and we limit ourselves to exploring the fixed-point
structure of the theory up to three-loop order.

If the SUSY fixed point is found to remain stable at this
order all the way down to 2+1 dimensions, our second moti-
vation is to provide more accurate values of universal critical
properties. While certain such properties can be determined
exactly from SUSY, such as the fermion and boson anomalous
dimensions [12] and the universal zero-temperature critical
conductivity [17], the correlation length exponent ν—and
other critical exponents that depend on it via scaling laws—are
not fixed exactly by SUSY and have been determined only to
leading order in the ε expansion. Our three-loop RG analysis
allows us to calculate ν to order ε3 [Eq. (35)], giving ν ≈ 0.985
in 2+1 dimensions. This is a 7% difference with the conformal
bootstrap result ν ≈ 0.917 [18], compared with 18% for the
order-ε result ν ≈ 0.75 [2,5]. While the computation of ν

typically requires renormalizing a massive theory, as in the
case of the O(N) Wilson-Fisher fixed point [4], here we give
the explicit proof of an exact relation [2] arising from SUSY
between ν and the stability critical exponent ω of the massless
Wess-Zumino model that allows us to calculate ν in the
massless theory, i.e., the Landau-Ginzburg theory restricted
to its critical hypersurface.

Finally, the motivation for studying the effect on the
QCP of coupling the system to a dynamical U(1) gauge
field is also twofold. First, an interesting result was reported
in Ref. [19], namely that in the ε expansion below four
dimensions the transition remains continuous in the presence
of such a coupling. This would be in stark contrast with
the purely bosonic case where the superconducting transition
becomes fluctuation-induced first order [20,21] in the ε

expansion. Second, the problem of a single species of Dirac
fermions coupled to a dynamical U(1) gauge field in (2+1)D,
i.e., three-dimensional quantum electrodynamics (QED3), has
received much attention lately as a possible dual description
of the topological surface states [22–28]. The superconducting
transition of Dirac fermions in the dual QED3 corresponds
in the original theory to a transition from the dual Dirac
liquid to the T-Pfaffian state [22], two possible strongly
correlated surface states of the 3D topological insulator.
Under this conjectured duality the time-reversal (T ) symmetry
of the original topological insulator is mapped to particle-
hole/charge-conjugation symmetry in the dual theory. The dual
Dirac fermions undergoing a pairing transition must therefore
be at zero chemical potential, as we consider here, rather than
in the generic situation of being paired on a finite helical Fermi
surface [29]. Studying the effect of a dynamical U(1) gauge
field on the SUSY QCP of superconducting Dirac fermions
should thus shed light on the nature of the transition between
the dual Dirac liquid and the T-Pfaffian state. We revisit this
problem and find, in disagreement with Ref. [19], that the
QCP disappears in the presence of the gauge field; we interpret
this as meaning that the superconducting transition becomes
first order, as in the bosonic problem. At the level of the ε

expansion, the transition between the dual Dirac liquid and
the T-Pfaffian state is thus fluctuation-induced first order; we
conjecture this result to hold in (2+1)D in an appropriate type-I
regime for the transition, as in the bosonic case [30]. Of course,
the bosonic transition is known to become continuous in the
type-II regime [30,31], and an analogous regime could exist
for the correlated topological surface states as well.

The rest of the paper is organized as follows. In Sec. II, we
review one-loop RG results for the semimetal-superconductor
QCP on the surface of a 3D topological insulator. We then
show that at three-loop order the critical spacetime dimension
below which the SUSY QCP disappears is Dc ≈ 1.62. Thus,
at three-loop order the SUSY fixed point remains stable all
the way down to 2+1 spacetime dimensions. In Sec. III, we
compute various critical exponents. In Sec. IV, we consider
the critical theory coupled to a U(1) gauge field. We argue by a
combination of mean-field and RG arguments that in this case,
the phase transition becomes fluctuation-induced first order.
Finally, we conclude in Sec. V. Technical details can be found
in Appendices A–E.

II. RENORMALIZATION GROUP ANALYSIS

While N = 2 SUSY has been proposed to emerge in a
variety of physical systems, for definiteness we focus here
on its potential realization on the 2D surface of a 3D T -
invariant topological insulator [32,33] with a single gapless
two-component Dirac fermion ψ = (ψ↑,ψ↓) on the surface.
For weak electron-electron interactions, the gaplessness of
the Dirac surface state is protected by T symmetry and U(1)
particle-number conservation symmetry. We assume that the
chemical potential is at the Dirac point, and consider the
scenario in which interactions are sufficiently strong and
attractive to spontaneously break the U(1) symmetry and
induce superconductivity on the surface [19,34]. The super-
conducting phase is characterized by a nonzero expectation
value of the Cooper pair bosonic order parameter φ. The
imaginary-time Landau-Ginzburg Lagrangian governing the
semimetal-superconductor quantum phase transition is

L = iψ̄ /∂ψ + |∂μφ|2 + m2|φ|2 + λ2|φ|4
+h(φ∗ψT iσ2ψ + H.c.), (1)

where ψ̄ = −iψ†γ0 and /∂ = γμ∂μ, and we define γ0 =
σ3,γ1 = σ1, and γ2 = σ2 the Pauli matrices. Note that a
fermion mass term ∝ ψ̄ψ is forbidden by T symmetry.
The semimetal with 〈φ〉 = 0 is found for m2 > 0 and the
superconductor with 〈φ〉 	= 0 is found for m2 < 0; the QCP
is obtained by tuning m2 to zero where both fermionic and
bosonic fields are gapless (here m stands for the renormalized
mass). The Lagrangian is invariant under global U(1) transfor-
mations ψ → eiθψ,φ → e2iθφ, implying that φ carries twice
the charge of ψ . The Lagrangian is also Lorentz invariant;
while this is not an exact symmetry in general, a one-loop
RG analysis of a Lorentz-breaking version of theory (1) with
different fermion and boson velocities shows that these two
velocities flow to the same value in the low-energy limit [5,35].
In other words, Lorentz invariance emerges in that limit. This
is independent of the couplings h (assuming it is nonzero),
m2, and λ2, and of the value of ε. We thus expect it to be a
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robust feature of the semimetal-superconductor transition for
Dirac fermions regardless of the nature of the QCP [35], and
we assume Lorentz invariance from the outset.

A. Review of the one-loop results

The critical properties of the Landau-Ginzburg theory (1)
have been investigated previously using one-loop RG in D =
4 − ε spacetime dimensions on the critical hypersurface m =
0. The physical case of (2+1)D Dirac fermions corresponds
to ε = 1. The (ultraviolet) one-loop beta functions βh2 =
dh2/d ln μ and βλ2 = dλ2/d ln μ for the rescaled couplings

h2

(4π)2 → h2 and λ2

(4π)2 → λ2 are [2,5]

βh2 = −εh2 + 12h4, (2)

βλ2 = −ελ2 + 20λ4 + 8h2λ2 − 16h4. (3)

Here μ is the energy scale parametrizing the flow of couplings.
To leading order in the ε expansion, there are two unstable fixed
points, the Gaussian fixed point (h2

∗,λ
2
∗) = (0,0) and the O(2)

Wilson-Fisher fixed point (h2
∗,λ

2
∗) = (0, ε

20 ), and one stable
fixed point (h2

∗,λ
2
∗) = ( ε

12 , ε
12 ). To this order in perturbation

theory, the latter fixed point remains stable as one extrapolates
ε → 1. As this fixed point has only one relevant direction
corresponding to the tuning parameter m2, it is identified
with the semimetal-superconductor QCP. h2

∗ = λ2
∗ implies

that the critical theory is invariant under the N = 2 SUSY
transformations [5]

δηφ = −ψ̄η, δηφ
∗ = η̄ψ,

δηψ = i /∂φ∗η − h

2
φ2iσ2η̄

T , δηψ̄ = iη̄/∂φ − h

2
φ∗2ηT iσ2,

(4)

where η is a two-component Grassmann spinor that
parametrizes the transformation. The QCP thus has emergent
N = 2 SUSY at the one-loop level.

B. Three-loop analysis

As argued in Sec. I, an important question is the stability
of the SUSY fixed point against higher-order terms in the
RG beta function. We attack this problem by performing a
three-loop RG analysis in D = 4 − ε spacetime dimensions on
the quantum critical hypersurface m = 0. We first introduce
some notations. For the RG procedure, we interpret Eq. (1)
as a bare Lagrangian with bare fields and bare couplings
that we denote ψ0,φ0 and λ0,h0, respectively. We denote the
corresponding renormalized fields and couplings by ψ,φ,λ,
and h. The renormalized Lagrangian is

L = iZψψ̄ /∂ψ + Zφ|∂μφ|2 + Z2
λλ

2με |φ|4
+Zhhμε/2(φ∗ψT iσ2ψ + H.c.), (5)

where we define wave function renormalization constants Zψ

and Zφ and vertex renormalization constants Zλ and Zh. The
renormalized Lagrangian can be obtained from the bare one
by rescaling the fields,

ψ0 = √
Zψψ, φ0 = √

Zφφ, (6)

which implies the two relations

h2 = h2
0μ

−εZ2
ψZφZ−2

h , (7)

λ2 = λ2
0μ

−εZ2
φZ−2

λ . (8)

Because the bare couplings are independent of μ, the re-
lations (7) and (8) describe the scale dependence of the
renormalized couplings. We compute the wave function
renormalization constants Zψ and Zφ from the self-energy
diagrams of the fermionic and bosonic fields at three-loop
order using dimensional regularization and the modified
minimal subtraction scheme (MS). The vertex renormalization
constants Zλ and Zh are computed from the |φ|4 and fermion-
boson vertex diagrams to the same order. Specifically, we
expand all renormalization constants Zx with x ∈ {ψ,φ,λ,h}
in the form

Zx(h2,λ2) = 1 +
Nloops∑
L=1

δZx,L(h2,λ2), (9)

where 1 is the tree-level term and the loop correction
δZx,L(h2,λ2) is decomposed into products of coupling con-
stants

δZx,L(h2,λ2) =
∑

i+j=L

(h2)i(λ2)j δZx,L(i,j ). (10)

Here L denotes the order of the expansion and the coefficients
δZx,L(i,j ) contain poles of maximum order L at ε = 0. The
renormalization constants at three-loop order (Nloops = 3) are
listed in Appendix A.

Having obtained these renormalization constants, the beta
functions for the coupling constants h2 and λ2 can be computed
from Eqs. (7) and (8) by taking a derivative with respect to
ln μ on both sides of the equations, remembering that the bare
couplings h2

0,λ
2
0 are independent of μ:

βh2 = (−ε + 2γψ + γφ − 2γh)h2, (11)

βλ2 = (−ε + 2γφ − 2γλ

)
λ2, (12)

where we define

γx = d ln Zx

d ln μ
= βh2

∂ ln Zx

∂h2
+ βλ2

∂ ln Zx

∂λ2
, (13)

for x ∈ {ψ,φ,λ,h}, since the renormalization constants are
functions of the (renormalized) coupling constants. Equa-
tions (11)–(13) thus form a linear system of equations for
the beta functions that can be solved as(

βh2

βλ2

)
= εM−1

(
h2

λ2

)
, (14)

where

M11 = −1 − h2

(
2
∂ ln Zψ

∂h2
+ ∂ ln Zφ

∂h2
− 2

∂ ln Zh

∂h2

)
,

(15)

M12 = −h2

(
2
∂ ln Zψ

∂λ2
+ ∂ ln Zφ

∂λ2
− 2

∂ ln Zh

∂λ2

)
, (16)
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M21 = −λ2

(
2
∂ ln Zφ

∂h2
− 2

∂ ln Zλ

∂h2

)
, (17)

M22 = −1 − λ2

(
2
∂ ln Zφ

∂λ2
− 2

∂ ln Zλ

∂λ2

)
. (18)

So far the beta functions are exact in terms of renormal-
ization constants. In practice, we can only compute these
renormalization constants to finite order in perturbation theory
and we obtain the beta functions at the same order as
the renormalization constants. Specifically, by inserting the
renormalization constants Zψ,Zφ,Zh, and Zλ in the matrix M

and expanding in powers of the coupling constants, we obtain
the beta functions to the desired order in the coupling constants
h2 and λ2. Using the three-loop renormalization constants (see
Appendix A), we obtain the three-loop beta functions:

βh2 = −εh2 + 12h4 + 8h2λ4 − 64h4λ2 + 8h6 − 40h2λ6

+ 300h4λ4 + 1632h6λ2 − [1652 − 576ζ (3)]h8,

(19)

βλ2 = −ελ2 + 20λ4 + 8h2λ2 − 16h4 − 80h2λ4 + 16h4λ2

+ 256h6 − 240λ6 + 904h2λ6

+ [3832 + 3264ζ (3)]h4λ4 − [8664 + 2688ζ (3)]h6λ2

− [768 + 3072ζ (3)]h8 + [4936 + 3072ζ (3)]λ8,

(20)

where ζ (3) = 1.2020569 . . . is Apéry’s constant, with ζ (z)
the Riemann zeta function. Two limiting cases previously
considered in the literature can be recovered. Setting h = 0, the
free Dirac fermion ψ and the complex scalar φ decouple, and
Eq. (20) reproduces the three-loop beta function for the bosonic
O(2) vector model [36]. If one sets h = λ, the bare theory has
exact (rather than emergent) N = 2 SUSY; Eqs. (19) and (20)
become equal and reproduce the three-loop beta function for
the Wess-Zumino model [37].

FIG. 1. Three-loop RG flow of the Landau-Ginzburg
Lagrangian (1) on the quantum critical hypersurface, with the
Gaussian (G), O(2) Wilson-Fisher (W-F), and SUSY fixed points.

1 2 3 4
D

�0.8

�0.6

�0.4

�0.2

h�
2� �

2

FIG. 2. Couplings at the SUSY fixed point as a function of
spacetime dimension D from the three-loop RG beta function. At
this order, the critical dimension Dc ≈ 1.62 is still well below the
physical dimension D = 3.

The fixed points of the RG flow can be solved for order by
order in ε (Fig. 1). We find two infrared unstable fixed points:
the Gaussian and O(2) Wilson-Fisher fixed points,

(h2
∗,λ

2
∗) = (0,0), (21)

(h2
∗,λ

2
∗) =

(
0,

ε

20
+ 3ε2

100
− 384ζ (3) − 103

20000
ε3

)
, (22)

and the infrared stable fixed point with

h2
∗ = λ2

∗ = ε

12
+ ε2

36
− 4ζ (3) − 1

144
ε3. (23)

At this fixed point, the theory exhibits emergent N = 2 SUSY
as in the one-loop case (Sec. II A). The critical spacetime
dimension below which the fixed point couplings (23) become
negative is Dc ≈ 1.62. Thus, at three-loop order the SUSY
fixed point in (2+1)D is still in a physical range of coupling
constants (Fig. 2).

III. CRITICAL EXPONENTS

In this section, we compute anomalous dimensions γφ,γψ

for the bosonic and fermionic fields and the correlation length
exponent ν. All other critical exponents can then be obtained
from γφ,γψ,ν by scaling relations.

A. Anomalous dimensions

The anomalous dimensions γ ∗
φ and γ ∗

ψ for the bosonic field
φ and the fermionic field ψ are obtained by evaluating the
logarithmic derivatives of the renormalization constants (13)
at a given fixed point,

γ ∗
φ = γφ(h2

∗,λ
2
∗), γ ∗

ψ = γψ (h2
∗,λ

2
∗). (24)

Using the renormalization constants Zφ,Zψ from Appendix A,
we obtain

γφ = 4h2 − 24h4 + 8λ4 − 40λ6 − 60h2λ4

+ 160h4λ2 + [20 + 192ζ (3)]h6, (25)

γψ = 4h2 − 16h4 − 44h2λ4 + 128h4λ2 + [192ζ (3) − 4]h6.

(26)
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To obtain the anomalous dimensions at the SUSY fixed point,
we insert Eq. (23) into the above equations and find that
the bosonic field φ and the fermionic field ψ have the same
anomalous dimension at three-loop order,

γ ∗
φ = γ ∗

ψ = ε

3
+ O(ε4), (27)

as expected for a fixed point with emergent SUSY, since all
fields within the same supermultiplet should have the same
scaling dimensions. Furthermore, the three-loop result (27)
is the same as the one-loop result [2,5], as expected from
SUSY non-renormalization theorems [13]. The anomalous
dimensions have no quantum corrections beyond one loop; that
is, the one-loop expansion is exact. The perfect cancellation of
terms of order ε2 and ε3 in Eq. (27) is thus a strong check on
the validity of our three-loop calculation.

B. Correlation length exponent

To define the correlation length exponent ν, one typically
keeps a bare mass term m2

0|φ0|2 in the theory (1). The
renormalized theory (5) then contains a renormalized mass
term Zm2m2μ2|φ|2, with a renormalization constant Zm2 and
dimensionless renormalized mass m2. Setting the bare and
renormalized mass terms equal to each other, we obtain the
relation m2 = m2

0μ
−2ZφZ−1

m2 between bare and renormalized
masses, from which the RG beta function for the mass can be
obtained as

βm2 = (−2 + γφ − γm2 )m2, (28)

where γφ = d ln Zφ/d ln μ and γm2 = d ln Zm2/d ln μ [see
Eq. (13)]. The correlation length exponent ν is then defined
as minus the inverse of the coefficient of m2 in the beta
function (28), evaluated at the fixed point of interest [36],

ν−1 = 2 − γ ∗
φ + γ ∗

m2 . (29)

Using this method [19,34], ν for the SUSY QCP considered
here can be evaluated at one-loop order,

ν = 1

2
+ ε

4
+ O(ε2), (30)

which gives ν ≈ 0.75 in (2+1)D, corresponding to an 18%
difference with the conformal bootstrap result ν ≈ 0.917 [18].
To calculate ν at three-loop order and thus obtain a better
estimate of its value in (2+1)D, we would in principle have to
renormalize the massive theory (1) at three-loop order, which is
technically difficult. However, the one-loop result (30) was in
fact obtained originally [2,5] not by renormalizing the massive
theory but by exploiting a nontrivial consequence of N = 2
SUSY, namely, the exact relation [2]

ω = γ ∗
φ − γ ∗

m2 , (31)

where

ω ≡ dβh2 (h2
∗)

dh2
(32)

is the slope of the beta function in the massless theory (i.e., on
the critical hypersurface), evaluated at the SUSY fixed point.
We define βh2 (h2) ≡ βh2 (h2,λ2)|λ2=h2 as the beta function
along a SUSY-preserving trajectory. The exponent ω, some-
times known as the stability critical exponent, characterizes

the approach to the fixed point (ω > 0 means the fixed point
is infrared stable with respect to the coupling h2, while ω < 0
means it is unstable) as well as leading corrections to scaling
behavior in the critical region [36]. Putting Eqs. (31) and (29)
together, we obtain [2]

ν−1 = 2 − ω. (33)

Knowing the three-loop beta functions (19) and (20) in the
massless theory, we can thus use Eqs. (32) and (33) to calculate
ν at three-loop order without having to renormalize the massive
theory.

Let us evaluate the correlation length exponent for our
theory (1) at the SUSY fixed point by using the exact
relation (33). The stability critical exponent at the SUSY
fixed point can be computed from Eqs. (19), (23), and (32)
at three-loop order:

ω = ε − ε2

3
+

(
1

18
+ 2ζ (3)

3

)
ε3 + O(ε4). (34)

Thus, the correlation length exponent ν can be obtained from
Eq. (33) at the same order:

ν = 1

2
+ ε

4
+ ε2

24
+

(
ζ (3)

6
− 1

144

)
ε3 + O(ε4). (35)

In 2+1 dimensions (i.e., ε = 1), Eq. (35) gives ν ≈ 0.985.
This is a 7% difference with the conformal bootstrap result ν ≈
0.917 [18], compared with 18% for the one-loop result (30).

The derivation of Eq. (31) was briefly sketched in Ref. [2];
for completeness we here provide an explicit, detailed deriva-
tion. The basic idea is to use the superspace formalism
of SUSY [1] to show that the mass term m2|φ|2 in the
Lagrangian (1) can be absorbed by a Grassmann-valued
rescaling of the chiral superfield � (which contains both
bosonic φ and fermionic ψ components), allowing one to
relate properties of the massive, SUSY-breaking theory to
those of the massless, SUSY-preserving Wess-Zumino model.
In the context of particle physics, the scalar mass term m2|φ|2
is referred to as a soft breaking of SUSY, and the approach
described above allows one to calculate the RG beta function
βm2 of the mass in a softly broken SUSY theory [38]. This
is precisely what we need, given that the correlation length
exponent ν is related to βm2 [see Eqs. (28) and (29)].

Our starting point is the (bare) Lagrangian (1) on a
SUSY-preserving trajectory λ2 = h2,m2 = 0 and written in
the superspace notation (see Appendix B),

Lrigid =
∫

d2θd2θ̄ �
†
0�0 +

(∫
d2θ

h0

3
�3

0 + H.c.

)
, (36)

where �0 is the chiral superfield. We use the subscript
0 to denote bare quantities. Following the particle physics
terminology we will call Eq. (36) the rigid SUSY theory, by
contrast with the softly broken SUSY theory with λ2

0 = h2
0 but

m2
0 	= 0. When we expand �0 into its components ψ0,φ0, and

the auxiliary field F0, integrate over the Grassmann coordinates
θ,θ̄ , and integrate out F0, the first term of Eq. (36) yields
the kinetic terms for ψ0 and φ0, and the superpotential ∝ �3

0
gives the fermion-boson interaction and boson self-interaction
terms. In order to derive Eq. (31), we add to the rigid theory
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the boson mass term,

Lsoft-breaking = m2
0|φ0|2. (37)

Remarkably, in the superspace formalism the full Lagrangian
Lsoft = Lrigid + Lsoft-breaking for the softly broken theory can be
written as

Lsoft =
∫

d2θd2θ̄ �
†
0

(
1 + m2

0θ
2θ̄2

)
�0

+
(∫

d2θ
h0

3
�3

0 + H.c.

)
; (38)

i.e., the soft SUSY-breaking mass term enters as a Grassmann-
valued multiplicative correction to the kinetic term �

†
0�0 of

the rigid theory.
We can rewrite Lrigid in terms of a renormalized superfield

�, wave function renormalization constant Z, and dimension-
less renormalized coupling h,

Lrigid =
∫

d2θd2θ̄Z�†� +
(∫

d2θ
hμε/2

3
�3 + H.c.

)
.

(39)

Non-renormalization theorems ensure there is no renormaliza-
tion of the superpotential [39,40], such that the corresponding
renormalization constant Zh is equal to one at all orders
in perturbation theory: we have checked this explicitly at
three-loop order (see Appendix A). By contrast with the rigid
theory, for the softly broken theory Lsoft the wave function
renormalization constant is promoted to a nondynamical
superfield Z̃,

Lsoft =
∫

d2θd2θ̄ Z̃�†(1 + m2μ2θ2θ̄2)�

+
(∫

d2θ
hμε/2

3
�3 + H.c.

)
, (40)

where we have introduced a dimensionless renormalized mass
m. To proceed with the renormalization of the softly broken
theory, we use the fact that the renormalization superfield Z̃

of the softly broken theory and the renormalization constant
Z of the rigid theory are related by the equality [38]

Z̃(h) = Z(h̃), (41)

with

h̃ = h − 3

2
m2μ2hθ2θ̄2. (42)

Then, by expanding the right-hand side of Eq. (41) in powers of
the Grassmann coordinates θ,θ̄ , we obtain the desired relation
between Z̃ and Z:

Z̃(h) = Z(h)

(
1 − 3

2
m2μ2h

d ln Z(h)

dh
θ2θ̄2

)
. (43)

One way to derive Eq. (41) is to rescale the superfield � →
(1 − 1

2m2μ2θ2θ̄2)� in Eq. (40) and rewrite the latter as

Lsoft =
∫

d2θd2θ̄ Z̃�†� +
(∫

d2θ
h̃με/2

3
�3 + H.c.

)
.

(44)

Now Lsoft in Eq. (44) looks exactly like Lrigid in Eq. (39) with
the replacement Z → Z̃ and h → h̃. Accordingly, we deduce
the equality (41).

With Eq. (41) at hand, we follow the same procedure
as in Sec. II to compute the RG beta functions. The wave
function renormalization constant Z(h) relates the bare and
renormalized superfields,

�0 =
√

Z(h)�. (45)

Inserting this relation in Eq. (38) and comparing with Eq. (40),
we can read out the two relations

m2 = m2
0μ

−2

(
1 − 3

2
h

d ln Z(h)

dh

)−1

, (46)

h2 = h2
0μ

−εZ(h)3. (47)

Next, we take a derivative with respect to ln μ on both sides of
the equations and obtain the beta functions,

βm2 =
(

−2 + 3h2 dγ (h)

dh2

)
m2, (48)

βh2 = [−ε + 3γ (h)]h2, (49)

where we define

γ (h) = d ln Z(h)

d ln μ
. (50)

We can now derive the relation (31) at the SUSY fixed point
h = h∗ where we have m = 0 and γ (h∗) = ε/3. On the one
hand, by comparing Eq. (48) and Eq. (28), we can identify

γ ∗
φ − γ ∗

m2 = 3h2
∗
dγ (h∗)

dh2
. (51)

On the other hand, ω can be computed from Eq. (49),

ω ≡ dβh2 (h2
∗)

dh2
= 3h2

∗
dγ (h∗)

dh2
. (52)

The two expressions are identical. Thus, we conclude that

ω = γ ∗
φ − γ ∗

m2 . (53)

Finally, we comment on the relation between Eq. (46) in
the superspace formalism and the equation m2 = m2

0μ
2ZφZ−1

m2

mentioned previously for a massive theory. To see the relation
between the two, we can rewrite Eq. (40) in component fields
and compare it with the Lagrangian for a massive complex
scalar

Lsoft = Z|∂μφ|2 + Z(m2 − �m2)|φ|2 + · · ·
= Zφ|∂μφ|2 + Zm2m2|φ|2 + · · · . (54)

In the first line of Eq. (54) we have inserted the superfield Z̃

into Eq. (40) and defined �m2 ≡ 3
2m2μ2h[d ln Z(h)/dh]. In

the second line, we have written the massive theory in the usual
way in terms of a renormalized field φ and renormalization
constants Zφ and Zm2 . We can thus identify

Zφ = Z, (55)

Zm2

Zφ

= 1 − �m2

m2
. (56)
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The advantage of working in the superspace formalism is that
we are able to compute the right-hand side of Eq. (56) via
the relation (41) without referring to the mass renormalization
constant Zm2 in the massive theory. With these relations, we
can easily see that the beta functions (48) and (28) are identical.

IV. COUPLING TO A U(1) GAUGE FIELD

In this section, we couple the system to a U(1) gauge field.
The Lagrangian we consider is

L = iψ̄ /Dψ + |Dμφ|2 + m2|φ|2 + h(φ∗ψT iσ2ψ + H.c.)

+ λ2|φ|4 + 1

4
F 2

μν + 1

2ξ
(∂μAμ)2, (57)

where Fμν = ∂μAν − ∂νAμ is the field strength tensor, ξ is
a gauge-fixing parameter, and we define the gauge-covariant
derivatives

/Dψ = (/∂ + ie /A)ψ, Dμφ = (∂μ + 2ieAμ)φ. (58)

We consider a manifestly Lorentz-invariant Lagrangian, in
which the velocities of the fermion (vF ), boson (vB), and gauge
field (c) are all equal and set to 1. Even if the bare values
of these velocities are different, it was shown in Ref. [35]
that under RG both vF and vB flow towards c, such that
in the deep infrared one ultimately has vF = vB = c = 1.
Applying the Halperin-Lubensky-Ma analysis [20] to the
semimetal-superconductor transition of Dirac fermions, we
argue that the coupling to the gauge field destabilizes the SUSY
critical point and makes the transition fluctuation-induced first
order.

A. Mean-field analysis

We first use mean-field arguments to show that the coupling
to a dynamical U(1) gauge field destroys the continuous
character of the semimetal-superconductor and makes it first
order, as in the purely bosonic case. At the mean-field level, we
consider that the Cooper pair field φ is constant and uniform,
such that Eq. (57) becomes

L = iψ̄ /Dψ + m2|φ|2 + h

2
(φ∗ψT iσ2ψ + H.c.)

+ λ2|φ|4 + 1

4
F 2

μν + 1

2ξ
(∂μAμ)2, (59)

where we have rescaled h → h/2 in this section only for con-
venience. We rewrite the fermionic part of the Lagrangian (59)
in terms of the Nambu spinor � = (ψ,Cψ̄T ), where C = iσ2 is
a charge-conjugation matrix. Using the property CγμC = γ T

μ ,
we can write [41]

iψ̄ /Dψ + h

2
(φ∗ψT iσ2ψ + H.c.) = 1

2
�T CG−1�, (60)

where C = C ⊕ C and the inverse fermionic propagator is
given by G−1 = G−1

0 + X where

G−1
0 =

(
hφ∗ i /∂

i /∂ −hφ

)
, X =

(
0 e /A

−e /A 0

)
. (61)

Integrating out � and ignoring a constant contribution arising
from the matrix C in Eq. (60), we obtain the bosonic action

S[φ,Aμ] = S0[φ] + SA[Aμ] + S2[φ,Aμ] where

S0[φ] =
∫

d3x(m2|φ|2 + λ2|φ|4) − 1

2
Tr lnG−1

0 (62)

is the bosonic Landau-Ginzburg action in the absence of the
gauge field,

SA[Aμ] = 1

2

∫
d3q

(2π )3
Aμ(q)[q2δμν−(1 − ξ−1)qμqν]Aν(−q)

(63)

is the action for the gauge field, and

S2[φ,Aμ] = 1
4 TrG0XG0X + · · · (64)

is the one-loop correction to the gauge field action, to quadratic
order in the gauge field. In the long-wavelength limit we
can evaluate (64) in the gradient expansion. Regulating the
ultraviolet divergences in (64) with a momentum cutoff � and
considering that the order parameter is small h|φ| � �, we
find to leading order

S2[φ,Aμ] = e2h|φ|
4π

∫
d3q

(2π )3
Aμ(q)Aμ(−q); (65)

i.e., the gauge field acquires a mass via the Anderson-Higgs
mechanism. We note that by contrast with the purely bosonic
problem [20], the gauge field mass is proportional to |φ| rather
than |φ|2 due to the coupling between φ and the massless
Dirac fermions ψ . We now combine Eq. (65) with Eq. (63)
and integrate out the gauge field in the Feynman gauge ξ =
1. We find the effective Landau free energy f (φ) = f0(φ) +
f2(φ) where f0(φ) = m2|φ|2 + λ2|φ|4 is the free energy in the
absence of the gauge field, and f2(φ) is the contribution due
to gauge field fluctuations, given by

f2(φ) = 1

2
ln det �−1(q; φ)

= 3

4π2

∫ �

0
dq q2 ln

(
q2 + e2h|φ|

2π

)

= α|φ| − β|φ|3/2 + γ |φ|2 + O(|φ|3), (66)

where �−1
μν (q; φ) = (q2 + e2h|φ|/2π )δμν − (1 − ξ−1)qμqν is

the inverse propagator of the gauge field in the presence
of the order parameter φ. In Eq. (66) we have assumed
h|φ| � �, and the constants α,β,γ are positive. In addition to
the analytic terms |φ|2,|φ|4, . . . already found in the original
Lagrangian (59), we find that nonanalytic terms such as |φ| and
|φ|3/2 are generated by gauge field fluctuations. For generic
values of α,β,γ , these make the transition first order (Fig. 3).

B. Renormalization group analysis

The mean-field analysis we have just presented neglects the
fluctuations of the order parameter φ. To take these fluctuations
into account as well as those of the Dirac fermion ψ and gauge
field Aμ, we perform a perturbative RG analysis of the gauged
Landau-Ginzburg theory (57) on the critical hypersurface m =
0 in D = 4 − ε spacetime dimensions.

Following the same procedure as in Sec. II B, we interpret
Eq. (57) as a bare Lagrangian with bare fields and bare
couplings denoted by ψ0,φ0,A

0
μ and λ0,h0,e0, respectively. We
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f( )

FIG. 3. Typical form of the effective Landau free energy f (φ)
obtained by integrating out U(1) gauge fluctuations, where m̃2 =
m2 + γ [see Eq. (66)]. The cusp at the origin is due to a nonanalytic
term ∝ |φ| which makes the semimetal-superconductor transition first
order [see Eq. (66)].

denote the corresponding renormalized quantities by ψ,φ,Aμ

and λ,h,e. We also denote the bare and renormalized gauge-
fixing parameters by ξ0 and ξ , respectively. The renormalized
Lagrangian is

L = iZψψ̄ /Dψ + Zφ|Dμφ|2 + Zhhμε/2(φ∗ψT iσ2ψ + H.c.)

+Z2
λλ

2με |φ|4 + 1

4
ZAF 2

μν + 1

2ξ
(∂μAμ)2, (67)

where ZA is a wave function renormalization constant for the
gauge field, and the covariant derivatives are given by

/ψ = (/∂ + ieμε/2 /A)ψ, Dμφ = (∂μ + 2ieμε/2Aμ)φ. (68)

Gauge invariance (i.e., the Ward identity) implies that there
is no separate renormalization constant for the charge e or
for the gauge-fixing parameter ξ . However, because Zψ,Zφ

depend on the chosen gauge, we have to take into account the
μ dependence of the gauge-fixing parameter ξ .

The renormalized Lagrangian can be obtained from the bare
one by rescaling the gauge field

A0
μ =

√
ZAAμ, (69)

and the matter fields as in Eq. (6), which implies the
relations (7) and (8) as well as the new relations

e2 = μ−εZAe2
0, (70)

ξ = Z−1
A ξ0. (71)

Equation (71) is necessary to compute the anomalous dimen-
sions of fields in the gauged theory,

γx = βh2
∂ ln Zx

∂h2
+ βλ2

∂ ln Zx

∂λ2
+ βξ

∂ ln Zx

∂ξ
, (72)

where βξ = dξ/d ln μ. From the relations (7), (8), and (70),
we can compute the RG beta functions βh2 ,βλ2 , and βe2

at the desired order in perturbation theory by inserting the
renormalization constants at the same order.

FIG. 4. One-loop RG flow for the gauged Landau-Ginzburg
theory in the absence of the fermion-boson coupling (h2 = 0). The
Gaussian and Wilson-Fisher fixed points become unstable when
e2 	= 0, giving runaway trajectories towards negative values of the
four-boson coupling λ2.

At one-loop order, the RG beta functions for the rescaled
couplings h2

(4π)2 → h2, λ2

(4π)2 → λ2, and e2

(4π)2 → e2 are

βh2 = −εh2 − 12e2h2 + 12h4, (73)

βλ2 = −ελ2 + 20λ4 + 8h2λ2 − 16h4 − 48e2λ2 + 96e4,

(74)

βe2 = −εe2 + 4e4, (75)

where we used the one-loop renormalization constants given
in Appendix A. On the e2 = 0 hypersurface, the above beta
functions reproduce Eqs. (2) and (3) and the three fixed
points found in Sec. II A. For e2 	= 0, all fixed points become
imaginary. There is a pair of complex conjugate fixed points
with h∗ = 0,

(h2
∗,λ

2
∗,e

2
∗) =

(
0,

13 ± i
√

311

40
,
1

4

)
ε, (76)

and another pair with h∗ 	= 0,

(h2
∗,λ

2
∗,e

2
∗) =

(
1

3
,
31 ± 3i

√
231

120
,
1

4

)
ε. (77)

These imaginary fixed points correspond to runaway trajec-
tories (Figs. 4 and 5). In particular, Fig. 4 reproduces the
known runaway flows in the purely bosonic Abelian Higgs
model [42]. As can be seen in Fig. 5, the SUSY fixed point
h2

∗ = λ2
∗ = ε

12 disappears once the gauge coupling e2 is turned
on. Results are qualitatively the same at three-loop order
(see Appendix C for the three-loop RG beta functions of the
gauged theory): the Gaussian, Wilson-Fisher, and SUSY fixed
points disappear when e2 	= 0 and there are no new real fixed
points. As in Ref. [20], we interpret this as the signature of a
fluctuation-induced first-order transition.

Of course, one may call into question the validity of both
the mean-field theory and the ε expansion. As is well known,
the superconducting transition in the (2+1)D bosonic Abelian
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FIG. 5. One-loop RG flow for the gauged Landau-Ginzburg
theory with finite fermion-boson coupling h2 set equal to the four-
boson coupling λ2. The SUSY fixed point becomes unstable when
e2 	= 0.

Higgs model remains continuous in the strongly type-II regime
corresponding to κ � 1 where κ ∝ λ/e is the Ginzburg
parameter [30]. In this regime, the superconducting transition
is dual to the classical 3D XY transition [31]. The first-order
behavior predicted by the ε expansion corresponds to the
type-I limit κ � 1. The strongly type-II regime corresponds
to the London limit, in which the superconducting coherence
length is much shorter than the London penetration depth.
Superconducting vortices, which play a key role in duality
arguments, contribute significantly to the partition function in
this limit, whereas they are suppressed in the opposite (type-I)
limit. We thus expect that the conclusion of a fluctuation-
induced first-order transition for the gauged Landau-Ginzburg
theory (57) with massless Dirac fermions should hold in an
appropriate type-I regime for the transition.

Finally, we note that our results disagree with those of
Ref. [19] where a stable, real fixed point with e2

∗ 	= 0,h2
∗ 	= 0,

and λ2
∗ 	= 0 was found at one-loop order [43]. In further

support of our claims, in Appendix D we provide an alternative
derivation of the one-loop beta functions (73)–(75) using
momentum-shell RG.

C. Transition between dual Dirac liquid and T-Pfaffian state

The results of Secs. IV A and IV B are directly relevant to
a subject of much recent interest: correlated surface states of
3D topological insulators and the phase transitions between
them. Recently, Refs. [22–28] proposed a dual description of
the 3D topological insulator surface, building on concurrent
developments in the theory of the composite Fermi liquid in the
half-filled Landau level [44,45]. The dual theory is expressed in
terms of a single flavor (Nf = 1) of two-component massless
Dirac fermions ψd coupled to a noncompact U(1) gauge field
aμ, i.e., QED3,

Ldual[ψd,aμ] = ψ̄d (i /∂ + /a)ψd − 1

4
(∂μaν − ∂νaμ)2

− 1

4π
εμνλAem

μ ∂νaλ, (78)

in Minkowski spacetime, where Aem
μ is the external (nondy-

namical) electromagnetic gauge field, ψ̄d = ψ
†
dγ

0, and γ μ are
2 × 2 Dirac matrices with μ = 0,1,2. Here the dual fermion
ψd can be viewed as a composite fermion with 4π flux of the
Aem

μ gauge field bound to the original electron while a 4π -flux
instanton in the dual gauge field aμ carries one unit of electron
charge e and corresponds to the electron creation operator ψ†.
Time-reversal symmetry for the original topological insulator
is mapped under the duality to charge-conjugation symmetry,
such that the dual fermions must be at zero chemical potential.
Following Ref. [22], we will refer to the ground state of the
dual theory (78) as the dual Dirac liquid. While the exact nature
of the dual Dirac liquid is unknown, it is worth mentioning two
possibilities: (1) as in the large-Nf limit [46–49], it could be
a stable interacting conformal field theory in the infrared [50],
i.e., a non-Fermi liquid; (2) it could in fact be dual to the
free massless Dirac fermion describing the noninteracting
topological insulator surface.

Several known correlated surface states of 3D topological
insulators can be accessed from the dual Dirac liquid (78)
by adding various interaction terms. In particular, if we
add a pairing interaction to condense pairs of ψd fermions
such that 〈ψT

d iσ2ψd〉 	= 0, the resulting surface state in terms
of the original electrons is a topologically ordered state
called the T-Pfaffian state. This is a gapped phase with non-
Abelian topological order that preserves the symmetries of the
topological insulator, i.e., U(1) particle-number conservation
symmetry and time-reversal symmetry [51,52]. The Landau-
Ginzburg theory for the transition between dual Dirac liquid
and T-Pfaffian should thus be identical to Eq. (57), but with
ψ replaced by the dual fermion ψd and Aμ replaced by
the dual gauge field aμ. The bosonic order parameter φ ∼
〈ψT

d iσ2ψd〉 should now be interpreted as the pair amplitude
for dual fermions. From our analysis in Sec. IV A and IV B,
we conclude that the transition between dual Dirac liquid
and T-Pfaffian is fluctuation-induced first order, at least in
an analog of the type-I regime for the transition. In this
regime the T-Pfaffian would be understood as a type-I Mott
insulator [53] or, more precisely, a T -invariant version of the
type-I Pfaffian [54] studied in the context of fractional quantum
Hall liquids.

V. CONCLUSION

In this work we have expanded upon previous studies
of the semimetal-superconductor quantum critical point on
the surface of a 3D topological insulator in two directions.
First, we have established that at three-loop order, the critical
dimension below which the SUSY fixed point disappears
is Dc ≈ 1.62, such that at this order in perturbation theory
the quantum critical point is indeed endowed with emergent
N = 2 SUSY. We then derived an exact relation stemming
from SUSY between the correlation length and stability critical
exponents, which allowed us to obtain the correlation length
exponent ν to order ε3, giving ν ≈ 0.985 in 2+1 dimensions.
This reduces the difference between the ε-expansion result
and the conformal bootstrap result ν ≈ 0.917 by more than
half, compared to the order-ε result ν ≈ 0.75. Second, we
studied the coupling of the critical Dirac fermion and Cooper
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pair degrees of freedom to a dynamical U(1) gauge field.
By a combination of mean-field and RG arguments, we
found that the quantum critical point was destroyed by the
gauge fluctuations, most likely replacing it with a fluctuation-
induced first-order transition. According to a recent duality
conjecture, this gauged Landau-Ginzburg theory was found to
also describe the transition between two symmetry-preserving,
correlated surface states of 3D topological insulators: the
dual Dirac liquid and the T-Pfaffian. Our analysis thus led
us to conjecture that the latter transition should also be
fluctuation-induced first order, at least in an appropriate type-I
regime for the transition.
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APPENDIX A: RENORMALIZATION CONSTANTS

We present here the renormalization constants
Zψ,Zφ,Zh,Z

2
λ in the absence of the U(1) gauge field

at three-loop order, and the renormalization constants
Zψ,Zφ,Zh,Z

2
λ,ZA in the presence of the U(1) gauge field at

one-loop order only due to the length of the expressions. The
full set of renormalization constants at three-loop order for
the gauged theory can be made available in electronic format
upon request.

In the absence of a gauge field, the renormalization constants at three-loop order are given by

Zψ = 1 − 4h2

ε
− 16h4

ε2
+ 8h4

ε
− 320h6

3ε3
+ 64h6

3ε2
−

(
ζ (3)

2
− 1

96

)
128h6

ε
+ 256h4λ2

3ε2
− 128h4λ2

3ε
− 32h2λ4

3ε2
+ 44h2λ4

3ε
,

(A1)

Zφ = 1 − 4h2

ε
− 16h4

ε2
+ 12h4

ε
− 4λ4

ε
− 320h6

3ε3
+ 112h6

3ε2
−

(
ζ (3)

2
+ 5

96

)
128h6

ε
+ 128h4λ2

ε2
− 160h4λ2

3ε
− 16h2λ4

ε2

+ 20h2λ4

ε
− 160λ6

3ε2
+ 40λ6

3ε
, (A2)

Zh = 1 + 16h4

ε
− 16h2λ2

ε
+ 640h6

3ε2
− 832h6

3ε
− 320h4λ2

3ε2
+ 608h4λ2

3ε
− 320h2λ4

3ε2
+ 224h2λ4

3ε
, (A3)

Z2
λ = 1 − 16h4

ελ2
+ 20λ2

ε
− 320h4

ε2
+ 32h4

ε
− 128h6

ε2λ2
+ 128h6

ελ2
+ 80h2λ2

ε2
− 40h2λ2

ε
+ 400λ4

ε2
− 128λ4

ε
− 10240h6

3ε3

+ 14336h6

3ε2
−

(
68

3
+ 8ζ (3)

)
128h6

ε
+ 512h8

ε3λ2
+ 2048h8

3ε2λ2
− [1 + 4ζ (3)]

256h8

ελ2
− 8000h4λ2

ε3
+ 2528h4λ2

ε2

+
(

439

48
+ 17ζ (3)

2

)
128h4λ2

ε
+ 3200h2λ4

ε3
− 6848h2λ4

3ε2
+ 1024h2λ4

3ε
+ 8000λ6

ε3
− 17600λ6

3ε2
+

(
209

16
+ 8ζ (3)

)
128λ6

ε
.

(A4)

Our results can be checked against known results in the limit
λ = h where SUSY is manifest at the bare level, rather than
emergent. In that limit, we find that Zh = 1, which is a
consequence of the non-renormalization of the superpotential
in SUSY theories: see Eq. (39) and the discussion surrounding
it. For λ = h we also find Zψ = Zφ = Z, in accordance with
SUSY. Finally, in this limit our result for Z agrees with Eq. (3)
in Ref. [37] at three-loop order, upon substituting ε → 2ε and
h → √

h/2 in our result.
In the presence of the gauge field, the renormalization

constants at one-loop order are given by

Zψ = 1 − 4h2

ε
− 2e2ξ

ε
, (A5)

Zφ = 1 − 4h2

ε
+ 2e2(12 − 4ξ )

ε
, (A6)

ZA = 1 − 4e2

ε
, (A7)

Zh = 1 + 6e2(1 − ξ )

ε
, (A8)

Z2
λ = 1 − 16h4

ελ2
+ 20λ2

ε
− 16e2ξ

ε
+ 96e4

ελ2
. (A9)

As a sanity check, if we turn off the gauge coupling by setting
e2 = 0; the two sets of renormalization constants above are the
same at one-loop order.

APPENDIX B: SUPERSPACE

In supersymmetric field theories, various fields are orga-
nized into distinct representations of the SUSY algebra called
supermultiplets. One can associate with each supermultiplet a
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superfield which contains all the components of the supermul-
tiplet. In the superspace formalism, the superfield is a function
of not only the usual (commuting) spacetime coordinates but
also of anticommuting coordinates. In this paper, we consider
the theory of a chiral supermultiplet which consists of a
complex scalar field φ, a two-component fermionic spinor field
ψ , and a complex auxiliary scalar field F . We can assemble
these component fields into a chiral superfield �,

�(y) = φ(y) +
√

2θψ(y) + θ2F (y), (B1)

where the fields are a function of the superspace coordinate

yμ ≡ xμ − iθγ μθ̄ . (B2)

Here θ and θ̄ are two-component Grassmann spinors and γ μ

are gamma matrices. For convenience, we define

d2θ ≡ − 1
4dθαdθβεαβ, (B3)

d2θ̄ ≡ − 1
4dθ̄αdθ̄βεαβ, (B4)

θ2 ≡ θαθα = θαεαβθβ, (B5)

where εαβ = (−iσ2)αβ . We then have the Grassmann integrals∫
d2θ θ2 = 1,

∫
d2θ̄ θ̄2 = 1. (B6)

For λ = h and m2 = 0, the Lagrangian L in Eq. (1) is
supersymmetric and can be written in the superspace language.
First, using the explicit form of the chiral superfield (B1) one

can show that∫
d2θd2θ̄ �†� = iψ̄ /∂ψ + |∂μφ|2 + |F |2, (B7)

modulo a total derivative. To this free theory we add the
superpotential W , which is a holomorphic function of the chiral
superfield,

W (�) = h

3
�3. (B8)

By Taylor expanding in θ and using Eq. (B6), we obtain∫
d2θ W (�) = hφ2F + hφψT iσ2ψ, (B9)

modulo a total derivative. Integrating out the auxiliary field
F,F ∗, which is equivalent to using its equation of motion
F = −hφ∗2,F ∗ = −hφ2, we obtain∫

d2θd2θ̄ �†� +
(∫

d2θ W (�) + H.c.

)
= L|m2=0,λ=h,

(B10)
apart from a trivial change of variables φ ↔ φ∗.

APPENDIX C: THREE-LOOP BETA FUNCTIONS FOR THE
GAUGED THEORY

In this Appendix, we present the three-loop RG beta
functions for the gauged Landau-Ginzburg theory (57). The
beta functions are given by

βe2 = −εe2 + 4e4 + 132e6 − 8e4h2 + 1404e8 − 716e6h2 + 124e4h4 + 256e6λ2 − 32e4λ4, (C1)

βh2 = −εh2 − 12e2h2 + 12h4 − 234e4h2 + 372e2h4 + 8h6 − 64h4λ2 + 8h2λ4 + 21014

3
e6h2 − 937e4h4 − 2104e2h6

− 1652h8 − 864ζ (3)e6h2 − 528ζ (3)e4h4 + 576ζ (3)h8 − 448e4h2λ2 − 1984e2h4λ2 + 1632h6λ2 + 320e2h2λ4

+ 300h4λ4 − 40h2λ6, (C2)

βλ2 = −ελ2 + 96e4 − 16h4 − 48e2λ2 + 8h2λ2 + 20λ4 − 4608e6 + 256e4h2 + 64e2h4 + 256h6 + 1712e4λ2 + 40e2h2λ2

+ 16h4λ2 + 448e2λ4 − 80h2λ4 − 240λ6 − 74528e8 + 20192e6h2 + 7304e4h4 + 12992e2h6 − 768h8 + 76800ζ (3)e8

+ 7680ζ (3)e6h2 − 19968ζ (3)e4h4 − 6144ζ (3)e2h6 − 3072ζ (3)h8 + 539336

3
e6λ2 − 17894e4h2λ2 − 16696e2h4λ2

− 8664h6λ2 + 18048ζ (3)e6λ2 − 1632ζ (3)e4h2λ2 + 18048ζ (3)e2h4λ2 − 2688ζ (3)h6λ2 − 64264e4λ4 + 1988e2h2λ4

+ 3832h4λ4 − 36864ζ (3)e4λ4 − 3264ζ (3)e2h2λ4 + 3264ζ (3)h4λ4 − 3456e2λ6 + 904h2λ6 + 4936λ8 + 3072ζ (3)λ8.

(C3)

APPENDIX D: ONE-LOOP MOMENTUM-SHELL
RENORMALIZATION OF THE GAUGED THEORY

In this Appendix we provide an alternative derivation of
the one-loop beta functions (73)–(75) for the gauged Landau-
Ginzburg theory (57) using the momentum-shell or Wilsonian
RG. In this approach, we first integrate out the high-energy
modes ψ>,φ>,A>

μ with momentum within the shell �/b <

|k| < � where � is the ultraviolet cutoff of the original theory
and b = 1 + d� is a positive flow parameter. The contribution
δS< to the action for the low-energy modes that is generated

by integrating out the high-energy modes is

δS< =
∫

dDx

(
δZψiψ̄</∂ψ< + δZφ|∂μφ<|2 + δZ2

λλ
2|φ<|4

+ δZhh(φ∗
<ψT

<Cψ< + H.c.) + 1

4
δZA(F<

μν)2

− δZeeA
<
μψ̄<γμψ< + · · ·

)
, (D1)
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+
FIG. 6. Renormalization of the fermion propagator.

where D = 4 − ε,C = iσ2, and · · · denotes boson-gauge field
interactions. We do not write these terms here explicitly as they
are not necessary to derive the RG beta functions (73)–(75).
The free-field propagators are

Gαβ(p) ≡ 〈ψα(p)ψ̄β(p)〉 = /pαβ

p2
, (D2)

D(p) ≡ 〈φ(p)φ∗(p)〉 = 1

p2
, (D3)

�μν(p) ≡ 〈Aμ(p)Aν(−p)〉 = 1

p2

[
δμν + (ξ − 1)

pμpν

p2

]
.

(D4)

In Ref. [19] calculations were performed in the Landau
gauge ξ = 0; here we perform the calculation in a general
gauge ξ and show explicitly the gauge invariance of the
RG beta functions. In the figures of this section, we draw
a single representative diagram to illustrate an entire class of
topologically equivalent diagrams. We denote fermion, boson,
and gauge field propagators by solid, dashed, and wiggly lines,
respectively.

We first renormalize the two-point functions, i.e., the
fermion, boson, and gauge field propagators. Two diagrams
contribute to the fermion two-point function (Fig. 6). The first
diagram is given by

δZ
(1)
ψ

/k = 4h2
∫

>

dDp

(2π )D
D(p)CG(p + k)T C

= 4h2

(
D − 2

D

)
/kSD�−εd�, (D5)

where SD = 2/[(4π )D/2�(D/2)], we have used the identity
Cγ T

μ C = γμ, and only terms linear in k are kept. The integral
is over the momentum shell �/b < |p| < �. Thus we obtain

δZ
(1)
ψ = 2h2S4d�, (D6)

to leading order in ε. The second diagram in Fig. 6 gives

δZ
(2)
ψ

/k = −e2
∫

>

dDp

(2π )D
�μν(p)γμG(p + k)γν

= −e2

(
5 − D − 4

D
− ξ

)
/kSD�−εd�, (D7)

where we used the identity γμ/pγμ = (2 − D)/p. This yields

δZ
(2)
ψ = ξe2S4d�. (D8)

Four diagrams contribute to the boson two-point function
(Fig. 7). The first and fourth (tadpole) diagrams in Fig. 7 only
contribute to the boson mass m2, which we neglect here as we
are interested in the critical theory. The second diagram gives

δZ
(2)
φ k2 = 2h2

∫
>

dDp

(2π )D
Tr G(p)CG(−p + k)T C

= 4h2

(
D − 2

D

)
k2SD�−εd�, (D9)

+ +

+

FIG. 7. Renormalization of the boson propagator.

hence

δZ
(2)
φ = 2h2S4d�. (D10)

The third diagram gives

δZ
(3)
φ k2 = −4e2

∫
>

dDp

(2π )D
D(p − k)�μν(p)

× [pμpν − 2(pμkν + pνkμ) + 4kμkν]

= −4e2

(
4 − 4

D
− ξ

)
k2SD�−εd�, (D11)

and we obtain

δZ
(3)
φ = −4e2(3 − ξ )S4d�. (D12)

Finally, the renormalization of the gauge field propagator
is given by the diagrams in Fig. 8. The first diagram gives

δZ
(1)
A (q2δμν − qμqν)

= e2
∫

>

dDp

(2π )D
Tr γμG(p)γνG(p + q)

= 2

(
D − 2

D + 2

)(
q2δμν − 4

D
qμqν

)
SD�−εd�, (D13)

where only terms quadratic in q are kept. In Eq. (D13),
quadratically divergent integrals ∼�2 were evaluated in D =
2, in the sense that∫

dDp

(2π )D
pμpν

(p2)2
= 1

2
δμν

∫
dDp

(2π )D
1

p2
, (D14)

where the right-hand side contains δμν/2 rather than δμν/D

with D → 4. This was shown to be a consistent procedure for
restoring gauge invariance in theories with a hard momentum
cutoff � [55]. Alternatively, one can simply discard the
non-gauge-invariant mass term ∼�2A2

μ that is generated
by momentum-shell integration [20,56]. Setting D = 4 in

+

+

FIG. 8. Renormalization of the gauge field propagator.
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+

FIG. 9. Renormalization of the fermion-boson vertex.

Eq. (D13), the correction to the gauge field propagator is purely
transverse, giving

δZ
(1)
A = 2e2

3
S4d�. (D15)

There is no renormalization δξ of the gauge-fixing parameter,
as in field-theoretic RG [36]. The second diagram in Fig. 8 is
given by

δZ
(2)
A (q2δμν − qμqν)

= −8e2
∫

>

dDp

(2π )D
D(p)D(p + q)pμ(2p + q)ν

= 4e2S4d�

[
−�2δμν + 1

3
(q2δμν − qμqν)

]
, (D16)

in D = 4. The gauge field mass term ∼�2δμν explicitly
violates gauge invariance. The third diagram in Fig. 8 is given
by

δZ
(3)
A (q2δμν − qμqν) = 4e2S4d��2δμν, (D17)

which also violates gauge invariance. However, adding the two
diagrams restores gauge invariance,

δZ
(2)
A + δZ

(3)
A = 4e2

3
S4d�. (D18)

We now turn to the renormalization of the three-point
functions: the fermion-boson vertex (Fig. 9) and the fermion-
gauge field vertex (Fig. 10). There is no renormalization of
the fermion-boson vertex at one loop in the ungauged theory:
the analog of the first diagram in Fig. 9 with the gauge field
propagator replaced by a boson propagator is incompatible
with the Feynman rules of the theory, i.e., the direction of
the fermionic flow at the bare fermion-boson vertex. The first

+

+

FIG. 10. Renormalization of the fermion–gauge field vertex.

diagram in Fig. 9 is given by

δZ
(1)
h hI = he2

∫
>

dDp

(2π )D
�μν(p)γμG(p)G(−p)γν

= −(D + ξ − 1)he2ISD�−εd�, (D19)

where I denotes the unit 2 × 2 matrix appearing in the Clifford
algebra {γμ,γν} = 2δμνI. This yields

δZ
(1)
h = −(3 + ξ )e2S4d�. (D20)

The second diagram in Fig. 9 gives

δZ
(2)
h hI = 4he2

∫
>

dDp

(2π )D
D(p)�μν(p)pνG(p)γμ

= 4ξhe2ISD�−εd�, (D21)

hence we obtain

δZ
(2)
h = 4ξe2S4d�. (D22)

The renormalization of the fermion-gauge field vertex
(Fig. 10) will allow us to verify the Ward identity δZe =
δZψ [57], which is a consequence of the U(1) gauge invariance
of the theory. The first diagram in Fig. 10 is given by

δZ(1)
e eγμ = e3

∫
>

dDp

(2π )D
�νλ(p)γνG(p)γμG(p)γλ

= −e3

(
5 − D − 4

D
− ξ

)
γμSD�−εd�, (D23)

where we used the identity /qγμ/q = 2qμ/q − q2γμ. Thus,

δZ(1)
e = ξe2S4d�. (D24)

Comparing with Eq. (D8), we see that δZ(1)
e = δZ

(2)
ψ , which is

the well-known Ward identity in QED at one-loop order [57]
in the absence of a fermion-boson coupling. However, the
Ward identity is expected to hold even in the presence of
the fermion-boson coupling, as the latter preserves the gauge
invariance of the theory. We thus expect that the first diagram
in Fig. 6 should be equal to the sum of the last two diagrams
in Fig. 10. The second diagram in Fig. 10 is given by

δZ(2)
e eγμ = 4eh2

∫
>

dDp

(2π )D
D(p)CGT (p)γ T

μ GT (p)C

= 4eh2

(
2 − D

D

)
γμSD�−εd�. (D25)

As a result,

δZ(2)
e = −2h2S4d�. (D26)

The third diagram in Fig. 10 is given by

δZ(3)
e eγμ = 16eh2

∫
>

dDp

(2π )D
D(p)2pμCGT (p)C

= 16

D
eh2γμSD�−εd�, (D27)

thus

δZ(3)
e = 4h2S4d�. (D28)
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+ +

+

+ +

FIG. 11. Renormalization of the four-boson vertex.

Comparing with Eq. (D6), we find δZ(2)
e + δZ(3)

e = δZ
(1)
ψ , as

expected.
We finally turn to the renormalization of the boson four-

point function (Fig. 11). The first diagram is standard from the
O(2) vector model [4], and we have

δZ
2(1)
λ λ2 = −10λ4

∫
>

dDp

(2π )D
D(p)2

= −10λ4SD�−εd�; (D29)

thus we obtain

δZ
2(1)
λ = −10λ2S4d�. (D30)

The second diagram in Fig. 11 is

δZ
2(2)
λ λ2

= 4h4
∫

>

dDp

(2π )D
Tr G(p)CG(−p)T CG(p)CG(−p)T C

= 8h4SD�−εd�, (D31)

giving

δZ
2(2)
λ = 8h4λ−2S4d�, (D32)

where the negative power of λ2 simply indicates that a four-
boson coupling can be generated by a fermion loop, at zeroth
order in λ2. The third diagram in Fig. 11 is given by

δZ
2(3)
λ λ2 = −16e4

∫
>

dDp

(2π )D
�μν(p)�μν(p)

= −16e4(D − 1 + ξ 2)SD�−εd�, (D33)

hence

δZ
2(3)
λ = −16e4λ−2(3 + ξ 2)S4d�. (D34)

Likewise, here the negative power of λ2 indicates that a four-
boson coupling can be generated by a gauge field loop. The
fourth diagram in Fig. 11 is given by

δZ
2(4)
λ λ2 = 8e2λ2

∫
>

dDp

(2π )D
D(p)2pμpν�μν(p)

= 8e2λ2ξSD�−εd�, (D35)

which implies

δZ
2(4)
λ = 8ξe2S4d�. (D36)

The fifth diagram in Fig. 11 is given by

δZ
2(5)
λ λ2 = 32e4

∫
>

dDp

(2π )D
D(p)pνpλ�μν(p)�μλ(p)

= 32e4ξ 2SD�−εd�, (D37)

thus

δZ
2(5)
λ = 32ξ 2e4λ−2S4d�. (D38)

Finally, the sixth diagram in Fig. 11 is given by

δZ
2(6)
λ λ2 = −16e4

∫
>

dDp

(2π )D
D(p)2pμpνpλpρ�μν(p)�λρ(p)

= −16e4ξ 2SD�−εd�, (D39)

and we obtain

δZ
2(6)
λ = −16ξ 2e4λ−2S4d�. (D40)

Adding the contributions from all diagrams, the renormal-
ization constants are given by

δZψ = (2h2 + ξe2)S4d�, (D41)

δZφ = (2h2 − 12e2 + 4ξe2)S4d�, (D42)

δZA = 2e2S4d�, (D43)

δZh = (−3e2 + 3ξe2)S4d�, (D44)

δZe = (2h2 + ξe2)S4d�, (D45)

δZ2
λ = (−10λ2 + 8h4λ−2 − 48e4λ−2 + 8ξe2)S4d�. (D46)

As observed before, the Ward identity δZψ = δZe is satisfied.
The non-gauge-invariant terms ∝ ξ 2 disappear from δZ2

λ, as a
result of cancellations between the three diagrams in Fig. 11
with two internal gauge field propagators. The infrared RG beta
functions are given in terms of the renormalization constants
by [4]

dh2

d�
= εh2 + h2

(
2
δZh

d�
− 2

δZψ

d�
− δZφ

d�

)
, (D47)

dλ2

d�
= ελ2 + λ2

(
δZ2

λ

d�
− 2

δZφ

d�

)
, (D48)

de2

d�
= εe2 + e2

(
2
δZe

d�
− 2

δZψ

d�
− δZA

d�

)
. (D49)
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Substituting in the renormalization constants (D41)–(D46)
and defining the rescaled couplings h2 → h2/(4π )2,λ →
λ/(4π )2, and e2 → e2/(4π )2, we obtain

dh2

d�
= εh2 + 12e2h2 − 12h4, (D50)

dλ2

d�
= ελ2 − 20λ4 − 8h2λ2 + 16h4 + 48e2λ2 − 96e4,

(D51)
de2

d�
= εe2 − 4e4, (D52)

where we used S4 = 2/(4π )2. All the non-gauge-invariant ξ -
dependent terms drop out of the beta functions. Using d� =
−d ln μ, one precisely recovers the beta functions in Eqs. (73)–
(75). Equations (D51) and (D52) agree with Eqs. (13) and (15)
in Ref. [19], but Eq. (D50) disagrees with the corresponding
Eq. (14) in that paper.

APPENDIX E: CALCULATION OF THE
RENORMALIZATION CONSTANTS AT THREE-LOOP

ORDER: TECHNICAL ASPECTS

In this appendix we provide some technical details con-
cerning the calculation of the renormalization constants of
the theory (57) at three-loop order. In Table I we show the
various n-point functions which need to be evaluated in order
to obtain the required renormalization constants. Further we
list the number of Feynman diagrams in dependence with the
number of loops. From the table it becomes clear that starting at
two-loop level the large number of Feynman diagrams cannot
be calculated by hand, even if one is only interested in the UV
divergent parts of the diagrams. That is why we rely on a full
automated calculation.

In order to generate the complete set of Feynman diagrams
we use the program QGRAF [58]. The output of QGRAF
is further processed by the programs Q2E and EXP [59,60]
which map all diagrams onto massive tadpole integrals
expanding naively in (if required) small external momenta.
Using projectors to obtain the coefficients of the relevant
Lorentz structures we are left with the calculation of traces over
Dirac matrices and fully contracted Lorentz tensors. This task
is performed by FORM [61,62]. In a last step the reduction to
master integrals is performed via integration-by-parts relations
by the FORM package MATAD [63]. The latter can deal with
one-scale massive tadpole integrals up to and including three
loops.

In order to prevent dimensional regularization (DREG)
from generating infrared poles in ε, we use a common regulator
mass m in all propagator denominators. Because the UV
structure of the theory does not depend on this mass and we
are allowed to choose the external momenta in a convenient
way, we can extract the proper UV pole structure in ε just
by calculating single-scale massive tadpole integrals after
expanding in at most one external momentum. At one-loop
order this procedure is trivial, because one can just discard all
terms artificially depending on m (m terms). At higher-loop
orders one has to impose a proper local subtraction of the
artificial m terms, because an m term in a subdiagram or
subintegral can lead to unwanted m-free terms in the full

TABLE I. List of all relevant n-point functions and the associated
number of Feynman diagrams in dependence with the number of loops
(γ : gauge field, φ: Cooper pair field, e: Dirac fermion).

Loops 1 2 3

3 27 502

4 27 455

2 17 301

5 107 3084

3 69 1996

3 64 1814

20 683 26961

diagram or full integral. The method of subtracting such terms
order-by-order in perturbation theory is known as infrared
rearrangement; it was suggested in Ref. [64] and further
developed in Ref. [65] (for a short introduction see, for
example, Ref. [66]). In order for infrared rearrangement to
be successful one has to subtract all sub-divergences of a
given diagram. Besides the mass subtraction terms already
mentioned, which only enter through the scalar and photon
propagators [67], one also has to insert the usual counterterms
contained in the renormalization constants of the theory.

The counterterms include the field (wave function) renor-
malization counterterms stemming from propagators and all
vertex counterterms. The latter are related to coupling renor-
malization and field renormalization constants. In practice
one determines the field renormalization constants from the
divergent structure of the corresponding two-point function
and vertex renormalization constants from the divergent
structure of the corresponding vertex functions. This is done
iteratively starting at one-loop order. Here the divergent pieces
of the n-point function define the corresponding one-loop
renormalization constant. At loop order L, one has to insert the
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expressions already obtained for all counterterms at lower loop
orders 0 < LC < L in all contributing lower loop order (0 <

LCd
< L) counterterm diagrams (with L = LC + LCd

) and
add their contribution to the genuine L-loop amplitude in order
to obtain the remaining L-loop divergence which then defines
the corresponding L-loop counterterm. The large number of
diagrams again requires that the generation of all possible
counterterm insertion diagrams is performed automatically.
From a technical point of view this can be easily dealt with
by introducing additional vertex labels and the insertion of
an explicit counter- and subtraction-term expansion for every
propagator.

From the perspective of the automated software packages
mentioned previously, one necessary modification arising from
the theory (57) is the ability to deal with indefinite fermion
flow directions. The Feynman rules for the theory contain
two vertices allowing the annihilation of two identical Dirac
fermions into a bosonic Cooper pair or the creation of two
identical Dirac fermions as decay of the Cooper pair. This
leads to Feynman diagrams where the fermion flow arrows in
a single fermion chain can point in opposite directions and
thus do not form a unique fermion flow direction; in this
case we speak of a fermion flow conflict. However, in all
diagrams (including projectors) there is always an even number
of fermion flow conflicts. As a result, one can anticommute the
iσ2 coupling (rewritten as the two-dimensional Levi-Civita or
ε-tensor) appearing in the mentioned vertices through the chain
to another iσ2 coupling, where they annihilate. This forms
chains with a unique, well-defined fermion flow not involving
any transposed Dirac structures. In our FORM implementation
we use a naively anticommuting γ5 in order to emulate
this SU(2)-algebra-specific behavior of the two-dimensional
ε-tensor with generic Dirac matrices. By naively anticom-
muting, we mean here that all γ5 matrices are anticommuted
through all other Dirac matrices to one side of the fermion
trace in order to give unity when we have two of them next to
each other.

However, before one can deal with any expression within
FORM one needs to generate the Feynman diagrams including
the identical fermion vertices. Although QGRAF provides the

correct absolute value for the symmetry factor of all diagrams
using identical fermions at one vertex, it does not allow in
our setup for an unambiguous definition of the sign of the
Wick contraction, stemming from the anticommuting property
of the fermionic field operators. This is so because the sign
stemming from the Wick contraction is correlated with the
order of the indices used in the two-dimensional εαβ , but since
QGRAF in our setup only works with generic expressions for
the vertex involving only the identical names of the connected
fields (and thus without explicit dependence on α and β)
we run into a sign ambiguity when working with identical
fermions.

To circumvent this problem we first run QGRAF in the
identical-particle setup. Then we simply choose a direction
in all fermion chains to be the proper fermion flow direction
or Denner current [68] and replace all fermions creating a
propagator with opposite directions by the transposed fermion.
The latter are now effectively a distinct type of fermion,
and their propagator direction is opposite to that of normal
fermions. Since we have now two distinguishable fermions
at every vertex, we can recalculate the sign of the diagram
prefactor stemming from the Wick contraction and thus fix it
unambiguously.

Due to the large number of diagrams we need to perform
the modification steps above in a fully automated way. For
the reordering of the fermion flow we use the PERL script
majoranas.pl written by R. Harlander in order to resolve
the indefinite fermion flow direction problem appearing
in supersymmetric theories with Majorana fermions [69].
The recalculation of the signs of the diagram prefactors in
the distinguishable fermion setup is done by an in-house
MATHEMATICA program.

In order to test our setup including the renormalization
routines we reproduced the QED beta function up to three
loops. We explicitly checked our QED result against the
Abelian limit of the QCD result presented in the four-
loop calculation of Ref. [70] (see also Refs. [71–73]). The
three/four-loop QED beta functions were presented before in
Refs. [74,75]/[76]. For the respective five-loop results, see
Refs. [77–80].
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