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We present a method to microscopically derive a small-size k · p Hamiltonian in a Hilbert space spanned by
physically chosen ab initio spinor wave functions. Without imposing any complementary symmetry constraints,
our formalism equally treats three- and two-dimensional systems and simultaneously yields the Hamiltonian
parameters and the true Z2 topological invariant. We consider bulk crystals and thin films of Bi2Se3, Bi2Te3, and
Sb2Te3. It turns out that the effective continuous k · p models with open boundary conditions often incorrectly
predict the topological character of thin films.
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The electronic structure of topological insulators (TIs)
has been the focus of theoretical research regarding linear
response, transport properties, Hall conductance, and the
motion of Dirac fermions in external fields [1,2]. These
problems call for a physically justified model Hamiltonian
of small dimension. As in semiconductors, it is thought to
be sufficient that the model accurately reproduces the TI
band structure near the inverted band gap [3]. The desired
Hamiltonian is derived either from the theory of invariants
[4] or within the k · p perturbation theory using the symmetry
properties of the basis states [5].

In Ref. [3], along with the pioneering prediction of the
topological nature of Bi2Se3, Bi2Te3, and Sb2Te3, a four-band
Hamiltonian was first constructed from the theory of invariants,
which is presently widely used to analyze the properties of
bulk TIs as well as their surfaces and thin films [6–14].
The Hamiltonian parameters in Ref. [3] were obtained by
fitting ab initio band dispersion curves. Later, an attempt was
made [15] to recover the Hamiltonian of Ref. [3] by a k · p
perturbation theory with symmetry arguments and to derive
its parameters from the ab initio wave functions of the bulk
crystals. Furthermore, in Ref. [15] the effective Landé g factors
for the Zeeman splitting [4,5] were introduced within the k · p
theory of TIs.

To analyze how the properties of thin films are inherited
from the bulk TI features, effective continuous models have
been developed: They are based on the substitution kz →
−i∂z (originally introduced for slowly varying perturbations
[16]) in the Hamiltonian of Ref. [3] and on the imposition
of the open boundary conditions [15,17–19]. These models
predict a variety of intriguing phenomena at the surfaces,
interfaces, and thin films of TIs [20–23]. A fundamental issue
here is the topological phase transition between an ordinary
two-dimensional (2D) insulator and a quantum spin Hall
insulator (QSHI). Apart from the theoretical prediction, the
model parameters are fitted to the measured band dispersion
to deduce the topological phase from the experiment [24,25].
By analyzing the signs and relative values of the parameters of

the empirically obtained effective model, a judgment is made
on whether the edge states would exist in a given TI film,
the logic being similar to that of Ref. [26]: The valence band
should have a positive and conduction band a negative effective
mass.

In order to avoid any ambiguity in deriving the model
Hamiltonian and to treat three-dimensional (3D) and 2D
systems within the same formalism, one needs an ab initio
and internally consistent scheme that realizes the k · p theory
with the full inclusion of the microscopic structure of the
system and generates a compact and physically transparent
form of the Hamiltonian of a given size. A few attempts
have been recently undertaken to predictably construct model
Hamiltonians for classical bulk semiconductors [27] and
graphene-based systems [28].

In this Rapid Communication, we report a method to
microscopically derive the relativistic Hamiltonian Hkp ac-
curate up to the second order in k from the spinor wave
functions obtained with the all-electron full-potential extended
linearized augmented plane wave method (ELAPW). The
size of Hkp is determined by the dimension of the subspace
spanned by the physically chosen basis states. The form of the
Hamiltonian is dictated by the symmetry of the wave functions
unitary transformed to diagonalize the z component of the total
angular momentum and by a universal prescription to choose
their phases. Here, we apply this approach to centrosymmetric
bulk crystals as well as to thin films of Bi2Se3, Bi2Te3,
and Sb2Te3 up to six quintuple layers (QLs). For each film,
we calculate the topological invariant, indicating whether it
is a QSHI. We conclude on the validity of the topological
analysis based on the effective models (including the ab
initio derived ones) by comparing the predictions made by
the k · p Hamiltonian with the actual properties of the film.
Furthermore, within our approach, we derive the k · p Zeeman
term for the films.

We construct the model Hamiltonian as a second-order k · p
expansion around the point k = 0. To avoid any ambiguity,
we obtain the expansion coefficients directly from ab initio

2469-9950/2016/94(20)/201410(6) 201410-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.201410


RAPID COMMUNICATIONS

I. A. NECHAEV AND E. E. KRASOVSKII PHYSICAL REVIEW B 94, 201410(R) (2016)

eigenfunctions at �. For systems with inversion symmetry, the
energy bands En are doubly degenerate with two orthogonal
wave functions �n1 and �n2 that are parity eigenfunctions
at the time reversal invariant momenta (TRIM). The k · p
Hamiltonian is represented in the basis of these functions
in terms of the matrix elements 〈�ni |π |�mj 〉 of the velocity
operator π = −i�∇ + �[σ × ∇V ]/4m0c

2 [29]. Here, σ is the
vector of Pauli matrices and V (r) is the crystal potential. In
the k · p expansion, Hkp = H (0) + H (1) + H (2), the zero-order
term is just the band energy, H (0)

nimj = Enδmnδij , the linear term

is H
(1)
nimj = (�/m0)k · πnimj , and the second-order term is

H
(2)
nimj = �

2k2

2m0
δmnδij + �

2

m2
0

∑
αβ

kαD
αβ

nimj kβ,

where α,β = x,y,z, and

D
αβ

nimj = 1

2

∑
n′i ′

πα
nin′i ′π

β

n′i ′mj

(
1

En − En′
+ 1

Em − En′

)

(see Refs. [4,5]). Here, m and n number the degenerate
Kramers pairs, and i and j number the members of a pair. The
index n′ runs over all the bands excluding those forming the
k · p basis (Löwdin’s partitioning). Thus, when the dimension
of Hkp equals the dimension of the original full Hamiltonian,
the second-order term H (2) vanishes [30] (hereafter, we refer
to this case as the full-size k · p calculation).

The ab initio band structure was obtained with the ELAPW
method [31] using the full potential scheme of Ref. [32]
within the local density approximation (LDA). The spin-orbit
interaction is treated by a second variation method [33]
including the scalar-relativistic bands up to at least 300 eV.
This ensures a good convergence of the inverse effective mass,
with a deviation from the second derivative of the E(k) curves
within 3%. The experimental crystal lattice parameters were
taken from Ref. [35] with the LDA relaxed atomic positions of
Refs. [36–38]. Figure 1 compares the ab initio bands with those
obtained by diagonalizing our k · p Hamiltonians of small size
(four- and eight-band) and of full size. Note that the full-size
k · p calculation highly accurately reproduces the true bands:
The error grows as k2 [39], and at the Brillouin zone (BZ)
boundary it is within 150 meV.

For each Kramers-degenerate level n, the spinor wave func-
tions �ni form a two-dimensional basis. Numerically obtained
functions are arbitrarily ordered and have unphysical phases,
which, however, affect the structure of Hkp nondiagonal terms.
In order to keep the same physically motivated ordering and
to align the phases in different calculations, we first transfer to
the basis that diagonalizes the z component of the total angular
momentum J = L + S in the atomic sphere that has the largest
weight in the nth band (see Figs. S5– S7 in the Supplemental
Material (SM) [34]). This establishes the numeration of the
wave functions �n1(2) → �n↑(↓). Next, we choose the phases
of the new basis functions such that they become explicitly
Kramers conjugate, �n↓ = T̂ �n↑, where T̂ = Kiσy is the time
reversal operator and K is the complex conjugation operator.
Finally, for two pairs of different parity, nth and mth, we turn
the phases such that iπ

x(z)
n↑m↓ be real.

For the bulk TIs we choose the basis of four states
�v↑,�v↓,�c↑,�c↓, where v and c stand for the valence and

FIG. 1. Band structure (black lines) of (a)–(c) the bulk crystals
and (d)–(f) 2QL films of Bi2Se3, Bi2Te3, and Sb2Te3 compared with
the four-band (red lines with solid circles) and eight-band (blue
lines with open rhombuses) k · p model. Results by the full-size
Hamiltonian are shown by green lines for Bi2Se3. See also Figs. S1–
S4 in the SM [34].

conduction band, respectively. This leads to the Hamiltonian
[40]

Hkp = Cτ0σ0 + Mτzσ0

−V‖τx(σxky − σykx) − Vzτyσ0kz, (1)

with C = C0 + Czk
2
z + C‖k2

‖ , M = M0 + Mzk
2
z + M‖k2

‖ , and
k2
‖ = k2

x + k2
y . The 3D TI Hamiltonian (1) is the same (to within

a unitary transformation) as in Refs. [3,15,17–19] (the explicit
matrix form is presented by Eq. (S1) in the SM [34]). The Pauli
matrix τ operates in valence-conduction band space, whereas
σ refers to the total angular momentum J. In Eq. (1) a direct
product of these matrices is implied.

For the bulk crystals, the parameters in Eq. (1) are listed
in Table I, and the eigenvalues E(k) of the resulting four-
band Hamiltonian are shown in Figs. 1(a)–1(c) by red lines
with solid circles. Note that already this minimal dimension
of Hkp produces an absolute gap in the spectrum, and for
Bi2Se3 and Sb2Te3 its width is very close to that obtained
with the much more accurate eight-band Hamiltonian [see
Eq. (S3) in the SM and blue lines with open rhombuses in

TABLE I. Parameters of the four-band k · p Hamiltonian (1) for
the bulk TIs. We use Rydberg atomic units: � = 2m0 = e2/2 = 1.

Bi2Se3 Bi2Te3 Sb2Te3

V‖ (a.u.) 0.349 0.556 0.513
Vz (a.u.) 0.255 0.125 0.163
C0 (eV) 0.048 − 0.123 0.023
Cz (a.u.) 0.37 0.70 − 3.73
C‖ (a.u.) 3.65 40.54 − 1.83
M0 (eV) − 0.169 − 0.296 − 0.182
Mz (a.u.) 0.88 2.43 5.81
M‖ (a.u.) 7.71 46.55 13.47
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Figs. 1(a)–1(c)]. An important point about the parameters of
the Hamiltonian (1) is that they are very sensitive to details of
the crystal geometry, as is the ab initio band structure [36–38]:
Even a small variation in atomic positions leads to considerable
changes of the parameters (see Table S1 in the SM [34]).
Furthermore, in all the 3D systems considered (see Table I),
the parameters of Hkp turned out to meet the conditions of the
existence of the topological surface states [18]: The diagonal
dispersion term Mz(‖) is positive and is larger than the electron-
hole asymmetry, Mz(‖) > |Cz(‖)|, although Cz and C‖ are not
negligible contrary to the assumption in Ref. [12]. Thus, our
ab initio k · p Hamiltonian correctly predicts the topological
character of these crystals in accord with the Z2 topological
invariant ν3D obtained from the parities of the wave functions
at the TRIM points [41].

We now use our second-order perturbation theory to
calculate the effective g factors entering the Zeeman term (see
Eq. (S2) in the SM [34]) that appears in the presence of a static
magnetic field [4,5],

gv(c)
z = 2

im0

(
D

xy

v(c)↑v(c)↑ − D
yx

v(c)↑v(c)↑
)
,

g
v(c)
‖ = 2

im0

(
D

yz

v(c)↑v(c)↓ − D
zy

v(c)↑v(c)↓
)
.

The most important is that the calculated values are one or
even two orders of magnitude larger than the free-electron
g factor, g0 ≈ 2. (The values obtained with the four-band
k · p method are listed in Table S1 of the SM [34] for all
the 3D TIs studied.) This result accords with the recent
spin resonance measurements of the effective g factor in
Bi2Se3 [42]: For the magnetic field parallel to the c axis,
the experimental gz factors are 27.30 ± 0.15 for electrons and
29.90 ± 0.09 for holes, while for the field perpendicular to
the c axis the g‖ factors are 19.48 ± 0.07 and 18.96 ± 0.04
for electrons and holes, respectively. In order to compare our
theoretical effective-mass contributions to the g factors with
the experiment, we should restrict to a two-band Hamiltonian
in the basis �v(c)↑,�v(c)↓. For Bi2Se3, the two-band results
are in good qualitative agreement with the experiment: Our
gz values are 11.6 (17.7) for electrons and 19.3 (42.4) for
holes. For g‖ we get 10.4 (16.1) and 12.1 (16.5) for electrons
and holes, respectively. Here, the values obtained with the
LDA-relaxed atomic positions are followed (in brackets) by
those with experimental atomic positions.

In contrast to the bulk TIs, for finite-thickness TI films
an ambiguous behavior is observed. For a 2D system, in the
basis �slab

v↑ ,�slab
c↓ ,�slab

c↑ ,�slab
v↓ , our k · p Hamiltonian reads (cf.

Refs. [26,43])

H slab
kp = Cτ0σ0 + Mτzσz − V‖τ0(σxky − σykx), (2)

where C = C0 + C‖k2
‖ , M = M0 + M‖k2

‖ , and the operator τ

refers now to two decoupled sets of massive Dirac fermions.
The last term in Eq. (2) ensures the characteristic spin-orbital
texture of the TI surface states [44,45].

Figure 2 shows the film-thickness dependence of the
parameters of the Hamiltonian (2) for the TIs considered (the
plotted values are listed in Tables S2–S4 of the SM [34]). In
contrast to the bulk TIs, for all thicknesses the four-band k · p
spectrum does not have an absolute gap [see the red lines with

FIG. 2. The parameters of the Hamiltonian (2) for film thick-
nesses from one QL to six QLs. Here, � = 2M0(−1)1+ν2D is the band
gap at �̄, with ν2D being the Z2 topological invariant. The horizontal
dashed lines in the V‖ panel show the prediction by the 2D continuous
model in the large thickness limit.

solid circles in Figs. 1(d)–1(f) for two-QL films and Figs. S2–
S4 of the SM [34] for other thicknesses]. Note that only for
two QLs and only for Bi2Te3 does the eight-band Hamiltonian
(blue lines with open rhombuses) provide a quality close to that
achieved in the 3D case.

Velocity V‖ and electron-hole asymmetry C‖ converge quite
fast with the film thickness [Figs. 2(b) and 2(d)], changing only
slightly after three QLs. The six-QL value of V‖ can thus be
compared with the Fermi velocity from the effective models
(see, e.g., Ref. [17]) in the large-thickness limit. In this limit the
velocity is expressed in terms of the bulk parameters (Table I)
as V‖

√
1 − C2

z /M
2
z [shown by the horizontal dashed line in

Fig. 2(d)], obviously overestimating the calculated values. The
parameter C‖ is positive everywhere, and it is notably larger
than the absolute value of the diagonal dispersion term M‖.

FIG. 3. The parameters of the Hamiltonian (2) for the two-QL
film as a function of the van der Waals spacing. The expansion for
Bi2Te3 and compression for Bi2Se3 are given in percents of the bulk
values. The dashed blue line in (a) shows the smooth behavior of
|M‖|.
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FIG. 4. The effective Landé g factors gz(‖) and �gz(‖) entering the
Zeeman term (3) as functions of the film thickness.

For the same thickness, the parameter M‖ may have
different signs for different TIs, whereas for a given material
M‖ is found to “oscillate” with the number of QLs. It turns out
that these oscillations do not correlate with the Z2 topological
invariant ν2D obtained from the parities of the original wave
functions at the TRIMs of the 2D BZ. This becomes evident
from a comparison with the behavior of the gap parameter
�, whose absolute value |�| = −2M0 yields the gap width at
�̄ and the sign depends on ν2D, with � being negative for a
topologically nontrivial film.

The Sb2Te3 film becomes a 2D TI at three QLs and
preserves this property up to six QLs [Fig. 2(c)]. For Bi2Te3,
the two-QL film is nontrivial, then three and four QLs are
trivial, and five and six QLs are again nontrivial. The films of
Bi2Se3 are, on the contrary, trivial for all the thicknesses, while
the effective model of Ref. [17] predicts them to be a QSHI
at some of the thicknesses. It should also be noted that for the
same film the true invariant may depend on details of the crystal
geometry and even on the band structure method, including the
choice of exchange-correlation potential (see Refs. [46–52]).
We emphasize that here the topological invariant and the k · p
parameters are fully consistent because they are derived from
the same band structure.

According to the effective continuous models [17,26],
the relation between C‖, M0, and M‖, one finds in Fig. 2
clearly predicts the absence of edge states. This means that
a few-band k · p Hamiltonian does not provide a general and
certain criterion of the topological character of 2D systems.
Because the electron-hole asymmetry term is neglected in
the topological analysis [1], it is instructive to consider in
more detail the two-QL films of Bi2Se3 and Bi2Te3—the two
thinnest films for which the sign of M‖ correlates with the
actual ν2D. In Fig. 3, we see that with varying the van der

Waals spacing (expansion for Bi2Te3 and compression for
Bi2Se3) the parameters V‖, C‖, and � change steadily, and in
Bi2Te3 a transition from QSHI to the trivial state occurs (at
18% � becomes positive), and at the same time M‖ becomes
negative, again following the true indicator ν2D.

Finally, let us consider the effective-mass contribution to
the g factor for the films. In our approach, the static magnetic
field B leads to the following Zeeman term,

H slab
kp,Z = μB

2
[gzτ0σzBz + g‖τx(σxBx + σyBy)]

+μB

2
[�gzτzσ0Bz + �g‖τy(σxBy − σyBx)], (3)

where gα = (gv
α + gc

α)/2 and �gα = (gv
α − gc

α)/2.
An interesting feature in Eq. (3) is the second term that

contains the z component of the cross product [σ × B]. It
is instructive to compare Eq. (3) with the Zeeman term
for inversion-asymmetric quantum wells, where the “spin-
momentum locking” is also present [4]. As follows from
Figs. 4(b) and 4(d), the parameters �gz and �g‖ may
“oscillate” with the thickness, and for Bi2Se3 and Bi2Te3 they
tend to zero with increasing thickness. As a result, the leading
contribution comes from the “conventional term” with gz and
g‖, which at six QLs is already well converged [Figs. 4(a) and
4(c)]. For Sb2Te3, �gz and especially �g‖ are rather big at
six QLs, so the relevant term in H slab

kp,Z should be taken into
account at least up to this thickness. Note that, in moving
from one to six QLs, �gz becomes negative for the first
time when the film becomes a 2D TI, thus demonstrating a
correlation with the topological invariant (see also the effect
of expansion/compression for the two-QL films in Fig. S8 of
the SM [34]).

To summarize, we have developed a fully ab initio k · p
perturbation approach to generate model Hamiltonians of a
desired size. This ensures a physically meaningful behavior
of the model Hamiltonian parameters with the continuously
varying geometry (van der Waals spacing) and for different
numbers of the building layers. By applying our approach to
Bi2Se3, Bi2Te3, and Sb2Te3 films, we have demonstrated that
the widely used effective continuous models are not able to
systematically predict the values and often even the relative
sign of the model parameters. The failure to infer the general
and certain criterion from Hkp stems from its fundamental
limitation: The topological properties of a crystal cannot be
unambiguously determined from the behavior of a few bands
in the vicinity of k = 0, even though the band inversion occurs
just at that point.

This work was supported by the Spanish Ministry of Econ-
omy and Competitiveness MINECO (Project No. FIS2013-
48286-C2-1-P) and Saint Petersburg State University (Grant
No. 15.61.202.2015).
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