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The electromagnetic response of a two-dimensional metal embedded in a periodic array of a dielectric host
can give rise to a plasmonic Dirac point that emulates epsilon-near-zero (ENZ) behavior. This theoretical result is
extremely sensitive to structural features like periodicity of the dielectric medium and thickness imperfections. We
propose that such a device can actually be realized by using graphene as the two-dimensional metal and materials
like the layered semiconducting transition-metal dichalcogenides or hexagonal boron nitride as the dielectric
host. We propose a systematic approach, in terms of design characteristics, for constructing metamaterials with
linear, elliptical, and hyperbolic dispersion relations which produce ENZ behavior, normal or negative diffraction.
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The confinement of metallic (“free”) electrons in two-
dimensional interfaces can produce powerful effects used to
drive electromagnetic (EM) devices like nanoantennas with
extremely short wavelength resonance [1,2], metalenses and
optical holography [3–5], active plasmonic systems [6–8], and
sub-wavelength Bloch oscillations [9,10]. The key feature
for such applications is the creation of waves propagating
along a metal-dielectric interface with wavelength shorter
than that of the incident radiation, while the waves decay
exponentially in the perpendicular direction. This surface
effect involves electronic motion (plasmons) coupled with
electromagnetic waves (polariton) and is referred to as surface
plasmon polariton (SPP). By combining the properties of
different materials, it is even possible to produce behavior
not found under normal circumstances like negative refraction
[11–16], epsilon-near-zero (ENZ) [17–19], discrete solitons
[20,21], and quantum control of light [22,23].

The bottleneck in creating SPP devices with any de-
sirable characteristic has been the limitations of typical
three-dimensional solids in producing perfect interfaces for
the confinement of electrons and the features of dielectric
host. This may no longer be a critical issue. The advent of
truly two-dimensional (2D) materials like graphene (a metal),
transition-metal dichalcogenides (TMDC’s, semiconductors),
and hexagonal boron nitride (hBN, an insulator) make it possi-
ble to produce structures with atomic-level control of features
in the direction perpendicular to the stacked layers [24–27].
This is ushering a new era in manipulating the properties of
plasmons and designing devices with extraordinary behavior.
In particular, 2D structures support plasmons (collective
excitations) which fundamentally differ from SPPs, since
the charge carriers are restricted in two dimensions [28,29].
Nevertheless, 2D plasmons and SPPs share similarities in
field profiles and in dispersion behavior and could be used
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interchangeably for the purposes of the present discussion.
Plasmons in 2D materials exhibit ultra-sub-wavelength behav-
ior [28–31]. Graphene is quite special, possessing exceptional
optical properties due to its high quantum efficiency for
light-matter interaction [29,32]. Doped graphene has been
used as an effective plasmonic platform, since it supports both
high- and low-energy plasmons due to inter- and intraband
transitions [33].

ENZ metamaterials exhibit interesting properties like EM
wave propagation with no phase delay [17]. As a consequence,
the pattern of the transmitted/reflected waves can be tailored
at will. Moreover, in a waveguide filled with ENZ medium,
all the modes propagate irrespective of how small or thin
the structure is, exhibiting supercoupling effects [18]. Much
effort has been devoted toward the design of ENZ media [34].
Here, we propose a systematic method for constructing ENZ
metamaterials by appropriate combination on 2D materials.
We show analytically that multilayers of a plasmonic 2D
material embedded in a dielectric host exhibit a plasmonic
Dirac point (PDP), namely a point in wave-number space
where two linear coexisting dispersion curves cross each
other, which, in turn, leads to an effective ENZ behavior
[35]. Specifically, EM wave propagation through layered
heterostructures can be tuned dynamically by controlling the
operating frequency and the doping level of the 2D metallic
layers [13]. The presence of the PDP is extremely sensitive
to structural features and can only be realized by truly 2D
materials, due to the flatness on the atomic scale that 2D
materials provide. To prove the feasibility of this design,
we investigate numerically EM wave propagation in periodic
plasmonic structures. They consist of 2D metallic layers lying
on yz plane in the form of graphene arranged periodically
along the x axis and possessing surface conductivity σs . The
layers are embedded in a uniaxial dielectric host in the form of
TMDC or hBN multilayers of thickness d and with nonlocal
relative permittivity tensor [εd ] with diagonal components
εx �= εy = εz. We explore the resulting linear, elliptical, and
hyperbolic EM dispersion relations which produce the ENZ
effect, ordinary diffraction and negative diffraction, depending
on the design features.
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We solve the analytical problem under transverse magnetic
(TM) polarization, with the magnetic field parallel to the
y direction, which implies that there is no interaction of
the electric field with εy . We consider a lossless host,
namely εx,εz ∈ R, which is also magnetically inert (relative
permeability μ = 1). For monochromatic harmonic waves in
time with TM polarization, E = (Ex,0,Ez) and H = (0,Hy,0),
Maxwell equations lead to the three equations connecting
the components of the E and H fields. For the longitudinal
component [11,20], Ez = (iη0/k0εz)(∂Hy/∂x) where k0 =
ω/c is the vacuum wave number at frequency ω and η0 =√

μ0/ε0 is the free space impedance. Defining the vector of
the transversal field components as � = (Ex,Hy)T gives [20]
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For EM waves propagating along the z axis, namely
�(x,z) = �(x)eikzz, we obtain the eigenvalue problem for the
wave number kz of the SPPs along z [11,20]. The metallic
2D planes carry a surface current Js = σsEz, which acts as a
boundary condition in the eigenvalue problem. The magnetic
field must be H−

y (x)eikzz for −d < x < 0 and H+
y (x)eikzz

for 0 < x < d on either side of the metallic plane at
x = 0, with boundary conditions H+

y (0) − H−
y (0) = σsEz(0)

and ∂xH
+
y (0) = ∂xH

−
y (0). Using the Bloch character along x,

due to the periodicity of the system, with Bloch wave number
kx : H+

y (x) = H−
y (x − d)eikxd , we arrive at the dispersion

relation [11]:

F (kx,kz) = cos(kxd) − cosh(κd) + ξκ

2
sinh(κd) = 0, (2)

where κ2 = (εz/εx)(k2
z − k2

0εx) expresses the anisotropy of the
host medium and ξ = −(iσsη0/k0εz) is the “plasmonic thick-
ness” which determines the SPP decay length [11,31]. For loss-
less 2D metallic planes, σs is purely imaginary and ξ is purely
real (from the assumption of εz ∈ R). At the center of the first
Brillouin zone kx = 0, the equation has a trivial solution [11]
for κ = 0 ⇒ kz = k0

√
εx which corresponds to propagation

of x-polarized fields travelling into the host medium with
refractive index

√
εx without interacting with the 2D planes

which are positioned along the z axis [15]. Near the Brillouin
zone center (kx/k0 � 1 and κ � 0) and under the reasonable
assumption of a very dense grid (d → 0), we obtain kxd � 1
and κd � 1, and we Taylor expand Eq. (2) to second order in d:

k2
z

εx

+ d

(d − ξ )εz

k2
x = k2

0 . (3)

From a metamaterial point of view [13,14], the entire system is
treated as a homogeneous anisotropic medium with effective
relative permittivities given by

εeff
x = εx, εeff

z = εz + i
η0σs

k0d
= εz

d − ξ

d
. (4)

The approximate dispersion relation Eq. (3) is identical to that
of an equivalent homogenized medium described by Eq. (4):
k2
z /ε

eff
x + k2

x/ε
eff
z = k2

0. Indeed, a very dense mesh of 2D media
is a prerequisite for homogenization [30,36,37]. Equation (4)
indicates the capability to control the behavior of the overall
structure along the z direction: The choice d = εz/(εz − εx)ξ
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FIG. 1. Magnitude of the function log |F (kx,kz)| (darker to lighter
colors = smaller to larger values); F (kx,kz) = 0 corresponds to black.
(a) d < ξ , strong SPP coupling; (b) d > ξ , weak SPP coupling; (c)
d = ξ , plasmonic Dirac point.

leads to an isotropic effective medium, εeff
z = εeff

x . For the
lossless case, ξ ∈ R, we identify three possibilities, provided
an ordinary material (εx,εz > 0) is used as host:

(i) ξ > d, strong SPP coupling: SPPs develop along the z

direction at the interface between the conducting planes and
the dielectric host. In this case, the overall effective response
of the system becomes also plasmonic, with Bloch plasmon
polaritons waves [37] created along the x direction. The shape
of the supported band on the (kx,kz) plane is hyperbolic, since
the system behaves as a hyperbolic metamaterial [11,15,36]
with εeff

z < 0, εeff
x > 0, Fig. 1(a).

(ii) 0 < ξ < d, weak SPP coupling: Since ξ is still positive,
SPPs develop along the z direction between the conducting
plane and the dielectric host. However, the effective behavior
of the entire structure is not dominated by SPP coupling [11]
and the shape of the dispersion relation on the (kx,kz) plane is
an ellipse since εeff

z ,εeff
x > 0, Fig. 1(b).

(iii) ξ < 0: In this case, the 2D planes do not support
plasmonic modes. The dispersion relation on the (kx,kz) plane
is an ellipse, as in an ordinary photonic crystal [12,36], with
εeff
z ,εeff

x > 0, Fig. 1(b).
When either the 2D medium (Re[σs] �= 0) or the host

material (Im[εz] �= 0) are lossy, a similar separation holds by
replacing ξ by Re[ξ ].

The most interesting case is the linear dispersion, where
kz is linearly dependent on kx and dkx/dkz is constant for
a wide range of kz [11,36]. When this condition holds, the
spatial harmonics travel with the same group velocity into
the effective medium [11,12]. To engineer our structure to
exhibit a close-to-linear dispersion relation, we inspect the
approximate version of Eq. (3): A huge coefficient for kx

will make k2
0 on the right-hand side insignificant; if ξ = d,

the term proportional to k2
x increases without bound yielding

a linear relation between kz and kx . With this choice, σs =
−i(k0dεz/η0), and substituting in the exact dispersion relation
Eq. (2), we find that (kx,kz) = (0,k0

√
εx) becomes a saddle

point for the transcendental function F (kx,kz) giving rise to the
conditions for the appearance of two permitted bands, namely
two lines on the (kx,kz) plane across which F (kx,kz) = 0.
This argument connects a mathematical feature, the saddle
point of the dispersion relation, with a physical feature, the
crossing point of the two coexisting linear dispersion curves,
the plasmonic Dirac point [35], as indicated in Fig. 1(c).
From a macroscopic point of view, the choice ξ = d makes
the effective permittivity along the z direction vanish, as is
evident from Eq. (4). The existence of a PDP makes the
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effective medium behave like an ENZ material in one direction
(εeff

z = 0).
The very special behavior associated with the PDP would

be of restricted usefulness if its existence were sensitively
depended on the the exact fulfillment of the condition
Re[ξ ] = d, where losses have been taken into account
(Im[ξ ] �= 0). For this reason, we investigate the behavior of the
gap created between the two bands on the (kx,kz) plane, when
the PDP breaks down. At the center of the Brillouin zone (kx =
0), where the minimum gap is created [35–37], the dispersion
relation Eq. (2) is g(kz) = 2[cosh(κd) − 1]/[κ sinh(κd)] = ξ .
Near the PDP, kz = k0

√
εx + 	kz and ξ = d + 	ξ , while

g(kz) ∼= g(k0
√

εx) + g′(k0
√

εx)	kz; given that g(kz) = d and
g′(kz) = −(k0d

3εz/6
√

εx) in the limit kz → k0
√

εx , a direct
relation between 	kz and 	ξ is obtained,

	kz

k0
√

εx

= − 6

(k0d)2εz

	ξ

d
. (5)

In the derivation of Eq. (5), we assume that 	ξ is small com-
pared to d in the vicinity of the PDP, that is, d = Re[ξ ], leading
to two conditions: Re[	ξ ]/d � 1 and Im[	ξ ]/d � 1. Near
the PDP the former condition is satisfied, since Re[	ξ ] =
Re[ξ ] − d → 0. For the imaginary part we have, Im[	ξ ]/d =
Im[ξ ]/Re[ξ ] = Re[σs]/Im[σs] � 1, which is satisfied if the
system is characterized by low losses. To illustrate the
situation with an example, we use the Drude model to
describe the conductivity of a 2D metal, as is appropriate for
doped graphene. In this case Re[σs]/Im[σs] = 1/τω, where τ

accounts for losses. For representative values of τ and ω, we
obtain 1/(τω) � 10−2, which makes our assumption of low
losses reasonable. Moreover, in Eq. (5) the real and imaginary
parts have been decoupled, that is, the losses, corresponding
to Im[	ξ ], do not affect the band gap given by Re[	kz].

The choice kz = k0
√

εx works as a trivial solution of the
dispersion equation regardless of the values of the rest of the
parameters. Consequently, in the vicinity of ξ = d, Eq. (5)
gives the relative spread of the gap (	kz/k0

√
εx) between

the two bands since it implies that kz = k0
√

εx + 	kz is also a
solution of Eq. (2) at kx = 0. Since the lattice of the 2D medium
is electrically dense (k0d � 1), Eq. (5) indicates a substantial
sensitivity of the PDP on the value of 	ξ . As a consequence,
a small error on the ξ = d condition leads to a significant gap
between the two bands: Taking an isotropic silica glass with
εx = εz = 4 as host material, a deviation of order (	ξ/d) ∼=
10% gives rise to a band gap of order 	kz

∼= 103k0 for k0d =
10−2. It should be additionally stressed that only one band
moves from the PDP position: For 	ξ < 0 ⇒ ξ < d the upper
point of the elliptical band remains at (kx,kz) = (0,k0

√
εx),

whereas the hyperbolic band moves to higher values of kz

at a rate given by Eq. (5) with the converse behavior for
	ξ > 0 ⇒ ξ > d.

The extreme sensitivity of the PDP on the spatial period d

between the 2D planes makes the use of regular materials as
dielectric hosts impractical, unless the dielectric host is also
a 2D material with atomic scale control of the thickness d

and no roughness. For instance, one could build the dielectric
host by stacking 2D layers of materials like hBN [23,24]
or molybdenum disulfide (MoS2) [25–27] with essentially
perfect planarity, complementing the planarity of graphene,
which has been used extensively in optoelectronic and

FIG. 2. (a) Combinations of graphene chemical potential μc and
free space operational wavelengths λ leading to ENZ behavior (PDP
in dispersion relation) for several lattice periods d (in nm). (b) The
propagation distance L of a plasmonic mode in units of d for all the
combinations of the wavelength λ and the period d leading to ENZ
effect. The white lines show representative levels of graphene doping
[dotted lines in (a)]. (c) Real (d) imaginary parts of the effective
permittivity εeff

z of the effective medium for the choice d = 20 nm
[dashed line in (a)]; dashed curves indicate the ENZ regime.

plasmonic applications [29]. The surface conductivity σs of an
infinite graphene plane includes both intraband and interband
transition contributions [33], with the intraband contribution
dominating at THz frequencies which is approximated by the
Drude model, σs(ω) = ie2μc/[π�

2(ω + i/τ )], where μc is the
tunable chemical potential and τ is the transport scattering
time of the electrons [4,11,29,36]. In the following, we use
bulk MoS2, which at THz frequencies is assumed lossless
with a diagonal permittivity tensor of elements, εx

∼= 3.5 (out
of plane) and εy = εz

∼= 13 (in plane) [25–27]. The optical
losses of graphene are taken into account using τ = 0.5 ps
[11]. In Fig. 2(a), we show the combinations of μc and the
operational wavelength in free space λ which lead to a PDP
for several values of lattice density distances d = Re[ξ ] in nm.

The ENZ behavior should be accompanied by low effective
losses, otherwise the propagating field is damped fast. A
crucial quantity demonstrating the efficiency of the proposed
medium is the length L that an EM wave can propagate into
such a device without losing a significant part of its power. We
find that the length L before the amplitude falls to the 1/e of
its maximal value, in units of the period d, is given by:

L

d
=

√
2

εz

√
Im[σs]

Re[σs]

1

k0d
. (6)

From Eq. (6), the propagating beam travels along x for more
lattice periods, the less lossy the graphene sheets and the denser
the lattice. The seeming contradiction of longer propagation in
a denser lattice can be explained by the stronger SPP coupling
for smaller periods d [11]. Using the Drude model for σs

gives L/d = √
cτλ/(d

√
εzπ ). This is shown in Fig. 2(b) by

a contour plot as a function of free-space wavelength λ and
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cell physical size d and takes values in the range of several
hundreds. The loss-unaffected transmission length in terms of
the number of wavelength cannot be determined explicitly by
Eq. (6), because σs depends on λ. Nevertheless, an explicit
expression of L in terms of the number of wavelengths
λ can be calculated, in the context of the Drude model.
Equation (6) can be rewritten as L/λ = √

cτ/(εzπλ), indi-
cating that L/λ is inversely proportional to

√
λ and has no

dependence on the doping level μc. The proposed design
exhibits no significant losses of the propagating wave even
in long structures consisting of several hundred periods.
Interestingly, the best results (smallest losses) do not require
large graphene doping.

To illustrate, for a reasonable distance between successive
graphene planes of d = 20 nm, the real [Fig. 2(c)] and
imaginary [Fig. 2(d)] permittivity values that can be emu-
lated by this specific graphene-MoS2 architecture determine
the device characteristics at different frequencies (λ) and
graphene doping levels (μc). Positive values of Re[εeff

z ] are
relatively moderate and occur for larger frequencies and lower
doping levels of graphene; on the other hand, Im[εeff

z ] is
relatively small in the ENZ region as indicated by a dashed
line in both graphs. Such a fact renders our theoretical
assumptions for lossless structures quite realistic; however,
losses become larger as Re[εeff

z ] gets more negative. As
these results show, the extreme sensitivity of the PDP on d

can be turned into an advantage for device fabrication: The
proper combination of d and μc can be selected to produce a
device that operates at a given frequency (λ), as the practical
limitations of layer stacking (d) or graphene doping (μc)
dictate.

To examine the actual EM field distribution in our graphene-
MoS2 configuration for each of the three characteristic cases
of supported bands, we excite a finite structure consisting of 40
graphene planes and Re[ξ ] = 20.8 nm for operational wave-
length in vacuum λ = 12 μm, using as a source a 2D magnetic
dipole positioned close to one of its two interfaces and oriented
parallel to them; this choice of source allows us to study the
system’s response when exciting all the incidence angles with
the same power. The spatial distribution of the magnetic field
value is shown in Fig. 3 where the volume containing the
graphene multilayers is denoted by a thick black frame. In all
three cases, the reflections are negligible because the back-
ground region is filled with a medium of the same dielectric
properties as MoS2. In Fig. 3(a), the system is in the critical
case (d = Re[ξ ]), where the wave propagates through the

kz

z

x

kx

-1

1

0

y

2D host (εx,εz)

2D plane (σs)

d

(a)

(b) (c)

FIG. 3. Spatial distribution of the axial magnetic field of a
device consisting of 40 graphene sheets embedded in MoS2 back-
ground excited by a magnetic dipole at the point marked as white
dot. The thick black boundary defines the volume containing the
graphene multilayers. (a) d = Re[ξ ] (ENZ behavior); the inset has
details of the graphene multilayer configuration. (b) d = 0.5Re[ξ ]
(hyperbolic metamaterial). (c) d = 1.5Re[ξ ] (elliptical medium).
Re[ξ ] = 20.8 nm.

graphene sheets without dispersion as in an ENZ medium. In
Fig. 3(b), the interlayer distance is d = 0.5Re[ξ ] (strong SPP
coupling regime) and the system shows negative (anomalous)
diffraction with the front of the propagating wave into the mul-
tilayered structure showing a hyperbolic shape. In Fig. 3(c),
d = 1.5Re[ξ ] (weak SPP coupling regime) and the EM wave
shows ordinary diffraction through the graphene planes.
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