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Collective transport of charges in charge density wave systems based on traveling soliton lattices
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Solitons are peculiar excitations that appear in a wide range of nonlinear systems such as in fluids or optics.
We show here that the collective transport of charges observed in charge density wave (CDW) systems can be
explained by using a similar theory based on a traveling soliton lattice. A coherent x-ray diffraction experiment
performed in the sliding state of a CDW material reveals peculiar diffraction patterns in good agreement with this
assumption. Therefore, the collective transport of charges in CDW systems may be due to a nonlinear interaction
leading to a self-localized excitation, carrying charges without deformation through the sample, on top of the
CDW ground state. This single theory explains why charges remain spatially correlated over very long distances
and reconciles the main features of sliding CDW systems observed by transport measurements and diffraction.
This approach highlights a new type of charge transport in CDW systems and opens perspectives in controlling
correlated charges without dispersion over macroscopic distances.
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A soliton can take the form of a localized solitary wave
which propagates in a medium while keeping a constant shape
through nonlinear interactions. Once created, this localized
wave, with particle-like properties, propagates without dis-
persion and with a remarkably long lifetime. Solitons are
present in many systems such as fluids [1] and optical fibers
[2] and also in more unexpected fields like traffic jams [3] and
blood pressure [4]. Their involvement in electronic crystals is
invoked in only a few systems, such as Josephson junctions
[5] and conducting polymers [6], manifesting themselves in
different forms.

Charge density wave (CDW) systems are another type of
electronic crystal made of spatially correlated electrons. CDWs
can coexist with spin density waves like in chromium [7,8] or
compete with superconductivity like in cuprates [9]. Although
the static CDW state is now well understood, the dynamical
one is still debated. Indeed, the most spectacular property of a
CDW system is its ability to carry correlated charges when
submitting the sample to an external electric field. Above
a threshold field Eth, a non-ohmic resistivity is observed,
including voltage oscillations with a fundamental frequency f0

proportional to the applied field, as well as several harmonics in
the frequency spectrum [10,11]. Up to 23 harmonics have been
observed in NbSe3 [12]. This existence of collective transport
through CDW compounds has received considerable interest
for more than 35 years. However, the understanding of the
type of charge carriers and their propagation mode remains
incomplete.

Many theoretical approaches have been proposed to de-
scribe this phenomenon. The simplest one is based on transla-
tion invariance of the incommensurate CDW [13]: the whole
sinusoidal density of condensed charges slides over the atomic
lattice with a constant velocity. Although appealing, this
explanation remains probably approximate since the CDW is
described as an almost sinusoidal modulation from diffraction
experiments [14] while transport measurements reveal a strong
anharmonic signal [12]. A more realistic description of CDW
dynamics assumes a slowly varying phase φ(x) of the CDW
interacting weakly with impurities [15]. On the contrary,
theories considering strong electron-phonon coupling neglect

the role of impurities and treat CDW dynamics as only due
to phonons [16]. The most accepted theory, developed by
Ong and Maki [17] and Gor’kov [18–20], deals with the
CDW-metal junction at electrical contacts. The conversion of
normal electrons from the metallic electrode into condensed
charges in the CDW is made possible by climbing CDW
dislocations at the interface. These so-called phase slippage
and current conversion phenomena are in agreement with local
resistivity measurements close to contacts [21].

This conversion phenomenon is also accompanied by an
elastic deformation of the CDW. Without an external field, the
CDW ρ = ρ0 cos[2kF x + φ(x,t)] is homogeneous along the
sample and pinned at both ends at the two metal/CDW junc-
tions. In the sliding state, however, the CDW is compressed
at one electrode and stretched at the other as revealed by
diffraction experiments [22,23]. A simple static elastic theory
shows that the time-averaged phase φ of the elastic object has
to obey a quadratic behavior: 〈 ∂2φ

∂x2 〉t = const. [24], leading to
a parabolic phase between the two contacts, in agreement with
the experiment.

The impressive number of studies focusing on sliding
CDWs deserves, however, a few comments. While many
studies have been devoted to the conversion process close
to electrodes, the charge carrier propagation through macro-
scopic samples remains a subject that has been little studied
to date. A pure quantum tunneling through the sample has
been mentioned [25] and phase slippage mixed with quantum
tunneling has also been considered at low temperature [26].
However, current oscillations are clearly observed in very long
samples, up to several centimeters for NbSe3 and a pure quan-
tum tunneling over such large distances is probably unlikely.
Note also that in the phase slippage theories [17], impurities
play a minor role, hidden in the tunneling coefficient. The
authors justify this absence by the increase of CDW correlation
lengths ξl in the sliding regime. Nevertheless, recent diffraction
experiments show that ξl is always shorter in the sliding state
than in the pristine one [27], suggesting on the contrary that
defects may still play a role in the sliding state.

Several ascertainments can also be made with respect to
diffraction experiments. First, CDW systems can stabilize
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FIG. 1. Coherent diffraction patterns of the 2kF satellite re-
flection associated with the CDW vs applied currents. (a) The
Q = (1,q2kF

,0.5) with q2kF
≈ 0.748 b∗ satellite reflection in the blue

bronze K0.3MoO3 for several external currents (T = 70 K). The
two-dimensional patterns correspond to a sum over several θ angles
through the maximum of intensity. The b* chain axis is vertical and
the additional satellites are indicated by white arrows. The scale
is in pixels (logarithmic color scale from blue for lowest intensity
to red for highest intensity). (b) Corresponding profiles along b*
after summation along the perpendicular axis (opened circles) and
fits using the soliton lattice model (continuous lines). A convolution
with a Lorentzian shape has been used to take into account the finite
Q resolution as well as the projection along the chain axis b*, the
integration over several θ angles, and temporal fluctuations during
data acquisition.

CDW dislocations, i.e., abrupt phase shifts of the CDW
modulation, first observed by coherent x-ray diffraction [28].
Second, those CDW dislocations are mobile in the sliding
regime, as proved by the disappearance of speckles [27],
suggesting that moving phase shifts can play a role in the
charge transport.

The starting point of this study is the reinterpretation of
experimental data we have obtained in the archetype K0.3MoO3

blue bronze system under applied currents [29]. The most
spectacular point of this experiment is the appearance of
two secondary satellites located on both sides of the 2kF

satellite reflections associated with the CDW (see Fig. 1).
The corresponding spatial frequencies leading to micron-size
distances have been observed thanks to coherence properties
of the x-ray beam [30]. In [31], we used a phenomenological
static model to account for this observation. We develop here
a fundamentally different model based on the existence of a
moving 2π -soliton lattice that not only accounts for coherent
diffraction experiments but also describes all the main features
of sliding CDW observed by transport measurements and
diffraction.

An interaction that couples impurity potential and the phase
φ of the CDW is considered as in [32]. The corresponding
phase-dependent Hamiltonian leads to the following equation
of motion:

∂2φ

∂t2
− c2

φ

∂2φ

∂x2
+ η

∂φ

∂t
+ ω2

0 sin(φ) = F, (1)

where F = 2c2
φ e E

� vF
is proportional to the applied force, cφ =√

m/m∗ vF is the phason velocity, ω0 the pinning frequency,
m the free electron mass, m∗ the electron band mass, and
vF the Fermi velocity. We also add an effective damping
term η

∂φ

∂t
to mainly take into account the coupling between

CDW and phonons. Contrary to [32], the sin (φ) term is
here not linearized, thus allowing abrupt phase variations.
The usual nonperturbed sine-Gordon equation (for which
F = η = 0) is known to admit soliton solutions. However,
soliton excitations are quite robust and survive the inclusion
of a reasonable external force and dissipation keeping their
topological properties, although the soliton shape is slightly
modified [33].

Let us now solve Eq. (1) considering that the phase φ(x,t)
contains two terms: a slowly varying phase φ0(x) and a
dynamical part φ1(x,t) where φ1 varies much more rapidly than
the static one (〈|d2φ1/dx2|〉t � 〈|d2φ0/dx2|〉t ). The static part
φ0(x) can be calculated by averaging Eq. (1) in time:

〈
∂2φ0(x)

∂x2

〉
t

=
(

η π

e
j − F

)/
c2
φ, (2)

where the excess of current in the sliding mode j = e
π

∂φ

∂t
=

e
π
vs is constant far from electrodes as observed by several

transport measurements [34–38]. This leads to a quadratic
variation of the phase φ0(x) in perfect agreement with
diffraction experiments [22,23]. The complete Eq. (1) now
reads

∂2φ1

∂t2
− c2

φ

∂2φ1

∂x2
+ ω2

0 sin (φ1) = F + c2
φ

∂2φ0

∂x2
− η

∂φ1

∂t
. (3)

The dynamical part φ1(x,t) obeys the sine-Gordon equation
and is submitted to an effective force including the friction.
Considering the periodic nucleation of CDW dislocations at
the electrode [26], we obtain a train of solitons plus a negligible
quantity δ [33]:

φ1(x,t) = δ +
∞∑

n=−∞
4 arctan

[
exp

(
x − vst − ln

lS γ (v)

)]
, (4)

where l is the distance between successive solitons and lS =
cφ/ω0 their extension. Overlapping effects between solitons
are neglected (l/ lS > 2).

The soliton lattice model presented here leads to a singular
diffraction pattern in good agreement with the experiment,
especially for larger currents when the soliton lattice is well
formed (see Fig. 1). Two additional satellite reflections appear
on both sides of the main 2kF peak located at δq = ±2π/l.
Since Eq. (4) is not an even function, the two satellites at δq do
not have the same intensity in agreement with the experiment.
The soliton extension lS mainly affects the intensity ratio
between the central peak and the two satellites. Note that the
central peak is not necessarily located at 2kF but may be shifted
with respect to l/ lS [39]. Note also that the soliton model used
here is global in the sense that one soliton cannot be considered
individually without considering the complete soliton lattice.
The three main fitting parameters (l, lS , and 2kF ) are extremely
sensitive to each other in this nonlinear model and the solution
space is particularly narrow.
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FIG. 2. (a) Profile of the CDW phase φ(x) obtained from the fits
of Fig. 1(b) vs the distance along the chain axis for different external
currents. (b) Distance l between solitons, soliton size lS , and 2kF vs
currents.

The traveling soliton lattice correctly accounts for the
diffraction patterns [see Fig. 1(a)]. The corresponding phase
φ(x) and the behavior of l, lS , and 2kF versus the external
current are shown in Fig. 2. The distance between solitons
l reaches the micron size for small currents, decreases for
I < 2IS , and reaches a stationary value above 2IS where IS is
the threshold current. The soliton extension lS follows a similar
behavior versus current. The distance l between solitons is
always greater than the soliton extension lS (l/ lS > 3) which
justifies the assumption of noninteracting solitons.

A finite threshold field Eth appears in this nonlinear
framework [for which ∂2φ1

∂t2 = ∂φ1

∂t
= 0 in Eq. (1)] in agreement

with the experiment. For E/Eth � 1, the soliton reaches a
stationary sliding velocity [33]

vs = πe τ ∗vF kF

2ω0m∗

√
m

m∗ E, (5)

proportional to the applied field E, in agreement with the
experiment. In this framework, a quantitative sliding velocity
vS can be given. Since the observed l saturates for large enough
fields [see Fig. 2(b)] and the fundamental frequency ranged
from f0 = 1 to 100 MHz [40], vs = f0l ranges from vs = 0.5
to 50 m/s.

FIG. 3. (a) Soliton lattice in top the CDW modulation for l/ lS =
20. The lighter wave fronts correspond to an excess of electrons. (b)
Corresponding electronic density profile and (c) corresponding phase
φ1. See movies showing the moving soliton lattice in the Supplemental
Material [41].

Remarkably, the most impressive feature of a sliding CDW
is the presence of many harmonics in the frequency spectrum
as observed by transport measurements [12]. This signature is
quite naturally explained by the abrupt shape of solitons when
lS 	 l (see Fig. 2). Note that in the opposite case, when lS ∼ l,
the electronic density is close to a harmonic modulation and
the sliding process is more similar to a global CDW translation
as in the Fröhlich approach [13].

In this semiclassical description, charges are carried by
moving phase shifts of the CDW modulation (see Fig. 3
and Supplemental Material [41]) which can travel through
macroscopic samples without deformation on top of the
CDW ground state. The traveling 2π soliton lattice which
is superimposed to a slowly varying static phase reconciles
seemingly contradictory results: on the one hand, it explains
results obtained by diffraction including the macroscopic
elastic deformation along the sample and the singular coherent
diffraction patterns in Fig. 1. On the other hand, this single
theory also explains the main features observed in transport
measurements such as the existence of a threshold field, the
presence of correlated charges despite the large distances
involved in this phenomenon, and finally the presence of
several harmonics in the frequency spectrum. The model
presented here highlights a type of charge transport based
on traveling CDW phase shifts and opens new perspectives in
controlling correlated charges over macroscopic distances.
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