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Exceptional points in three-dimensional plasmonic nanostructures
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Exceptional points (EPs) are degeneracies in open wave systems where at least two energy levels and
their corresponding eigenstates coalesce. We report evidence of the existence of EPs in three-dimensional
(3D) plasmonic nanostructures. The systems are composed of coupled plasmonic nanoresonators and can be
judiciously and systematically driven to EPs by controlling symmetry-compatible modes via their near-field and
far-field interactions. The proposed platform opens the way to the investigation of EPs for enhanced light-matter
interactions and applications in communication, sensing, and imaging.
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Most physical systems are open in nature, i.e., energy flows
in and out, and is exchanged with the environment as radiation
and absorption which is in contrast with closed systems
where energy stays put and is conserved. Closed systems
benefit from the well-established theory for conservative
systems, i.e., Hermitian systems. A remarkable difference
is that in Hermitian systems, eigenmodes do not decay and
their corresponding eigenvalues are real, whereas in non-
Hermitian systems eigenmodes do decay and consequently
their corresponding eigenvalues are complex [1]. Over the
last decade many have sought to bridge the gap between
physics of open and closed systems. This renewed attention
has underlined one of the fundamental differences between
Hermitian and non-Hermitian systems: their singularities. In
Hermitian systems, modes couple to induce singularities called
diabolical points (DPs), where only the respective eigenvalues
are equal, whereas for non-Hermitian systems modes couple
to induce singularities called exceptional points (EPs), where
both eigenvalues and eigenvectors coalesce [2,3].

In conjunction with theoretical inquiries, recent experimen-
tal work has given a glimpse of the many promises that an
increased understanding of open systems holds. For instance,
there has been ample effort in realizing novel photonic devices
in the realm of lasers such as PT-symmetric lasers [4,5], lasers
operating near EPs [6], and bound state in continuum lasers
[7–9]. Concurrently there has also been theoretical progress
with strictly passive devices exploiting EPs for a superior
sensing scheme that offers enhanced sensitivity [10,11]. Thus
far, EPs have been experimentally studied in a variety of
physical systems including two-dimensional (2D) microwave
cavities [12], electronic circuits [13], 2D chaotic optical
microcavities [14], and coupled atom-cavity systems [15].
However, to date, exceptional points have not been realized
in a fully three-dimensional plasmonic system. This is of
importance because it is highly desirable to have a sensitive
subwavelength sensing system compatible with biologically
relevant substances. Plasmons resulting from the interaction
between photons and free electrons are ideally suited for
biological sensing given the field enhancement and resonance
sensitivity to environment.

Here we report evidence of the existence of EPs in an open
plasmonic system made of coupled plasmonic nanoresonators.
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We show that the control of the near-field and far-field
interactions lead to a systematic construction of EPs. We
subsequently propose a general class of plasmonic architecture
exhibiting designer exceptional points.

We consider the plasmonic system based on three coupled
nanobars, depicted in Fig. 1(a). The dimensions of an individ-
ual gold nanobar are chosen such that the fundamental reso-
nance falls in the optical domain at a frequency of 193.5 THz
(1.55 µm). Placing these gold nanobars in close proximity
couples their individual plasmon modes into hybrid modes
as shown in Fig. 1(b) [16]. Here the instantaneous charge
profiles of the first three modes are depicted. Intrinsically,
the system has reflection symmetry with respect to the xy

plane that bisects the central nanobar and its modes are thus
either even or odd. In our case, modes A and C have an even
symmetry, whereas mode B has an odd symmetry. Mode A,
with eigenfrequency ωA, has charges in all the bars oscillating
in-phase and mode C, with eigenfrequency ωC , has charges
in all bars oscillating out-of-phase. Mode B, ωB , has no
charges in the central bar as seen in Fig. 1(b). Therefore, mode
A resides at a higher energy (higher frequency) due to all
repelling Coulomb interactions and mode C resides at a lower
energy (lower frequency) as a result of attractive Coulomb
interactions. Lastly, mode B resides between mode A and
mode C on the energy scale.

The formation of an EP can be understood as a specific case
of mode coupling and can thus be described by coupled mode
theory (CMT). In this framework, mode coupling is described
by a non-Hermitian effective Hamiltonian matrix [18,19]

Heff = H0 + j�L + j 1
2 VV†, (1)

where H0 is a Hermitian Hamiltonian matrix that describes
the system without coupling (closed system). The second
term j�L in the equation represents extraneous losses. In
our case, this term accounts for plasmonic losses. The third
term VV† describes the coupling with the environment.
Hence Heff describes the full system (open system). Here the
eigenmodes of the system are represented by the complex
eigenvalues and eigenvectors of the effective Hamiltonian.
Experimentally, however, these eigenvalues are not directly
available. Nevertheless, we can measure the scattering spectra
and extract eigenvalues as they directly correspond to the
complex poles of the scattering spectra [20,21].
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FIG. 1. (a) Physical setup of a unit cell with three paired gold bars,
with the middle one separated by a variable distance (dx, dy, dz) with
respect to the other two. The dimensions of each nanobar are given
by L (450 nm), W (50 nm), and t (40 nm). The periodicity in x and y

directions are given by Px (800 nm) and Py (400 nm). The dielectric
(SiO2) spacer is shown in blue. The gold bars are described using
a Drude model with a plasma frequency (ωp = 1.367 × 1016 rad/s)
and collision frequency (ωc = 6.478 × 1013 rad/s) [17]. (b) Energy-
level diagram describing the plasmon hybridization in the gold-bar
system with three modes: ωA, ωB, ωC , where ωA > ωB > ωC for
dx = 0. ω0 corresponds to the resonance of an individual bar.

An EP is a singularity of the effective Hamiltonian, which
arises due to its non-Hermitian nature, at which two modes
coalesce [2]. To achieve an EP, both the real and imaginary
parts of the eigenvalues (resonance frequency and linewidth)
need to coincide simultaneously. For an EP of order 2, such
coalescence is dependent on at least two physical parameters
[3]. A method is thus needed to select among the geometrical
parameters of the system (dx,dy,dz).

For the three-nanobar setup portrayed in Fig. 1, a closed
system Hamiltonian can be used for an intuitive understanding
of the mode behavior as described below:

H0 =
⎛
⎝ω0 κn κn2

κn ω0 κn

κn2 κn ω0

⎞
⎠. (2)

Here ω0 is the uncoupled resonance of an individual
nanobar. κn and κn2 are the nearest and next-to-nearest
neighbor coupling constants acting between two individual
nanobars. We note that this matrix is bisymmetric and hence
has eigenvectors that are either symmetric (even) or skew-
symmetric (odd) [22]. For a 3 × 3 H0, there are always two
even (modes A and C) and one odd (mode B) eigenvectors.
For the initial three-nanobar setup (dx = 0, dy = 0, dz =
0), κn is much larger than κn2 and the Hamiltonian is almost
tridiagonal. This is not favorable for coalescence as even and

FIG. 2. Resonance information in the form of complex poles
extracted from scattering parameters and plotted as a function of shift
dx (middle bar) for Px = 800 nm and dz = 60 nm. (a) Resonance
frequency of modes A( ),B( ),C( ), and higher order mode D

( ) with varying dx and their corresponding (b) linewidths. There
is observable coupling between neighboring modes that share a
symmetry, i.e., mode A with C at dx = 350 nm and mode A with
D at dx = 80 nm. Mode B is unperturbed by both the shift and
neighboring modes due to its symmetry. Coupling of modes A and C

is of interest for this parameter set as the resonance frequency cross
with dx and linewidths experience an avoided resonance crossing.

odd modes are then interlaced. Hence, we need to reduce κn

with respect to κn2 to move away from a diagonally dominant
Hamiltonian (first constraint). Besides, since even and odd
modes do not couple, we are only interested in the coalescence
of the two even modes. Therefore, we seek a parameter that
does not introduce coupling between even and odd modes,
i.e., does not break the system’s mirror symmetry (second
constraint). Both constraints can be met by shifting the middle
bar along the x direction [21,23].

Since plasmonic losses in these identical nanobars are
represented by a scalar matrix, the losses only contribute
an overall complex shift. Moreover, the coupling to the
environment adds to the imaginary part of the eigenvalues.

Here xL and xR are the left and right eigenvectors,
respectively. For a sufficient shift, dx and dz, mode A and
mode C become degenerate (complex eigenvalue):

λi = ωi + jγ i
L − j

1

2

xi
LVV†xi

R

xi
L(H0 + j�L)xi

R

i ∈ [[a,b,c]]. (3)

We now numerically examine the effect of shifting the
middle bar in the x direction on all three modes of the
coupled plasmonic system (see Fig. 2). As the middle bar
is progressively displaced, the repelling forces associated with
mode A weaken to become attractive. Similarly, the attractive
forces of mode C weaken to become repulsive. Lastly, the
Coulomb forces associated with mode B remain constant with
shift of the central bar as there is no field present in this bar. This
behavior is noticeable in the resonances of this system as seen
in Fig. 2(a). Mode A moves to lower frequencies with shift and
mode C moves to higher frequencies with shift, whereas mode
B remains unperturbed. Due to the presence of a higher-order
resonance (mode D), also with an even symmetry, mode A

does not monotonously decrease with shift. For values of dx

below 80 nm, mode A increases in frequency with shift due to
coupling to mode D. As evident from the coupling between

201103-2



RAPID COMMUNICATIONS

EXCEPTIONAL POINTS IN THREE-DIMENSIONAL . . . PHYSICAL REVIEW B 94, 201103(R) (2016)

FIG. 3. Resonances approaching an exceptional point (black �)
plotted in the complex plane (γ + jω) for modes A ( ) and C ( ) as
a function of dx (300 to 400 nm) for two different values of interbar
spacing, dz = 61 and 61.5 nm (increasing dx indicated by arrows).
(a) For dz = 61 nm, the resonance frequencies of modes A and C

cross as the center bar is shifted (dx) but the linewidths are avoided,
whereas (b) for dz = 61.5 nm, the linewidths cross and the resonance
frequencies are avoided. An EP singularity occurs at a value of dz

between 61 and 61.5 nm for a dx of ∼345 nm where both resonance
frequencies and linewidths coalesce.

even modes A and D around dx = 100 nm and between
modes A and C at dx = 340 nm, neighboring resonances
of shared symmetry couple to each other. Having an odd
symmetry, mode B never couples to any of the even modes. The
coupling between modes is further evident in their linewidth
behavior as seen in Fig. 2(b). As modes A and D are avoided
in frequency at dx = 80 nm, their respective linewidths cross.
Similarly, modes A and C cross in frequency at dx = 340 nm
and their linewidths exhibit an avoided resonance crossing. In
terms of the near-field coupling terms, at no shift, i.e., dx = 0,
κn is the dominant coupling term. With an increase in dx, κn

weakens with respect to κn2. It is precisely this interplay that
forces the eigenvalues associated with modes A and C to con-
verge towards one another, which is mandatory for engineering
an EP. Note that the present system is not exactly at an EP.

In the close vicinity of an order-2 EP, the effective
Hamiltonian of this system can be written in its reduced form
as a 2 × 2 matrix considering only the two concerned even
modes [2]:

Heff =
[
ωA 0
0 ωC

]
+ j

[
γA

√
γAγC√

γAγC γC

]
. (4)

As stated earlier, realization of an EP via two modes
requires at least two physical parameters. The two parameters
used for the above system to reach an EP are a shift dx in
the central bar and the interspacing between nanobars dz in
the z direction where both parameters influence κn and κn2.
By performing detailed full-wave finite element simulations,
we present here a numerical proof of an EP in our nanobars
system (see Fig. 3 ). An EP occurs at a frequency of ∼212 THz
for a 345 nm lateral shift of the middle bar and an interparticle
spacing close to 61 nm. For dz = 61 nm, the two resonance
frequencies (ωA,ωC) cross each other with increasing shift
dx, and the linewidths (γA,γC) avoid each other as seen in
Fig. 3(a). Conversely, for dz = 61.5 nm, the linewidths cross
and frequencies are avoided as seen in Fig. 3(b). For a value

FIG. 4. Residues of the corresponding modes A ( ) and C ( ) as a
function of shift dx for dz = 61 nm. (a) Real and (b) imaginary parts
of the residues diverging when approaching the EP (dx = 345 nm).
Sum of the (c) real and (d) imaginary parts of the residues which
remain finite.

between 61 and 61.5 nm, there is a definite occurrence of an EP
singularity where both resonance frequencies and linewidths
coalesce.

Another indication of an occurrence of an EP lies with
the complex residues of the corresponding complex poles
associated with the resonances [24,25]. In the case of the
three-nanobar system, both the real and imaginary components
of the residues diverge as one approaches the EP [see Figs. 4(a)
and 4(b)]. As the EP is approached from the left, or increasing
dx, the real parts diverge and similarly the imaginary parts
diverge as the EP is approached from the right. However, the
sum of the residues for both the real and imaginary remain
finite [see Figs. 4(c) and 4(d)] [26].

Furthermore, an EP is not exclusive to the three-bar system.
An EP can also be realized in systems with more plasmonic res-
onators in a given unit cell. Here we address the general case of
having an odd number of bars (N = 2n + 1) in a unit cell and
once again guided by an N × N closed system Hamiltonian.
In general, for such a matrix of order N , there are �N/2� even
and �N/2� odd eigenvectors. These eigenvectors are alter-
nately even and odd with eigenvalues arranged in descending
order given that the eigenvalues are distinct. The resulting
eigenvectors of eigenvalues [see Eq. (3)] can be expressed as

(u α +Ju)T (even eigenvectors),

(u 0 −Ju)T (odd eigenvectors). (5)

Here J is the exchange matrix [22]. Note for an odd
eigenvector, there is no excitation or field in the central bar
as was the case for mode B earlier.

As an example, we take the case with five coupled
bars (n = 2) described by 5 × 5 Hamiltonian H0 written as
follows when all bars are perfectly aligned in the z direction,
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FIG. 5. Realization of an exceptional point in a system with 5
bars (2n + 1 with n = 2) with top, middle, and bottom bars shifted
by dx (300 to 400 nm) for dz = 42 nm and 43 nm. Mode 1 ( )
and mode 2 ( ): two modes of shared symmetry interact to form an
EP (�) at a value of d between 42 and 43 nm for a dx of ∼345 nm.
(a) For dz = 42 nm, the resonance frequencies of modes 1 and 2 cross
as the bars, indicated by arrows, are shifted (dx) but the linewidths
are avoided, whereas (b) for dz = 43 nm, the linewidths cross and
the resonance frequencies are avoided.

i.e., dx = 0:

H0 =

⎛
⎜⎜⎜⎝

ω0 κn

κn ω0

κn2 0 0
κn κn2 0

κn2 κn

0 κn2

0 0

ω0 κn κn2

κn ω0 κn

κn2 κn ω0

⎞
⎟⎟⎟⎠. (6)

Here we can neglect the coupling terms κn3 and κn4 as
they are simply dominated by κn and κn2. Similar to the
three-bar case, we must choose physical parameters to modify
so as to weaken κn and strengthen κn2. In order to retain
the bisymmetric nature of the Hamiltonian, we note that all
nearest-neighbor and next-to-nearest-neighbor coupling terms

need to be the same as you modify the geometry of the
system in accordance with the two constrains outlined earlier.
Therefore, we concurrently shift the top, middle, and the
bottom bars in the x direction which satisfies this condition and
appropriately modifies κn and κn2. For an order N = 5, there
are three even and two odd eigenvectors. For an EP, we focus
our attention on interaction between two of the even modes.
The two parameters are still the interspacing dz along the z

direction and shift dx (see Fig. 5). Similar to the three-bar
case, we observe resonances crossing in frequency and an
avoided crossing in linewidths as evidence of an EP. An EP
occurs at a frequency of ∼227 THz for a 345 nm lateral shift
of the bars and an interparticle spacing dz close to 42 nm.
This approach is general and can be utilized to engineer an EP
in coupled nanoresonator structures which can be physically
realized [27].

We have demonstrated the existence of exceptional points
in three-dimensional systems of coupled plasmonic nanos-
tructures. The EP is constructed by coalescing symmetry-
compatible modes and its existence is further evident from the
diverging complex residues in the vicinity of the EP singularity.
A thorough discussion on the importance of mode symmetries
for EPs was presented.

The general approach to designing EPs in systems of
coupled resonators proposed here can be used to construct
EPs of higher order in physical systems where more than two
modes coalesce. These ideas could be applied to other areas of
wave physics such as acoustic and matter waves. We believe
this work paves the way to the experimental observation of
exceptional points in various physical systems and will foster
further research towards unprecedented sensing schemes.
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National Science Foundation Career Award (ECCS-1554021),
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