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The two-dimensional quantum XY model, with a Caldeira-Leggett form of dissipation, is applicable to the
quantum-critical properties of diverse experimental systems, ranging from superconductor to insulator transitions,
ferromagnetic and antiferromagnetic transitions in metals, to the loop-current order transition in cuprates. We
solve the reexpression of this model in terms of orthogonal topological excitations, vortices, and a variety of
instantons, by renormalization group methods. The calculations explain the extraordinary properties of the model
discovered in Monte Carlo calculations: the product form of the quantum-critical fluctuations in space and time, a
spatial correlation length proportional to the logarithm of the temporal correlation length near the transition from
a disordered to a fully ordered state, and the occurrence of a phase with spatial order without temporal order. They
are intimately related to the flow of the metric of time in relation to the metric of space, i.e., of the dynamical
critical exponent z. These properties appear to be essential in understanding the strange metallic phase found in
a variety of quantum-critical transitions as well as the accompanying high-temperature superconductivity.
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The dissipative quantum XY (DQXY) model, with a
Caldeira-Leggett form of dissipation, was introduced [1] to
understand superconductor to insulator transitions in two-
dimensional (2D) films as a function of normal state re-
sistance [2]. The model is of course directly applicable to
quasi-2D metallic ferromagnets with strong XY anisotropy, a
realization of which has been found in the quantum-critical
region [3]. Quasi-2D metallic antiferromagnets, with incom-
mensurate uniaxial order or commensurate planar order, also
map to the dissipative XY model [4]. Quasi-two-dimensional
metals are realized in several Fe-based compounds [5],
where superconductivity occurs in a region around the anti-
ferromagnetic quantum-critical point, and in several heavy-
fermion compounds [6]. The same model also describes the
statistical mechanics of the loop-current order in underdoped
cuprates [7]. In such Fe compounds and heavy fermions, and
in cuprates, the normal state singular Fermi-liquid properties
in the quantum-critical or strange metal region, for example,
the entropy, the resistivity, and the nuclear relaxation rates,
have the same singular functional dependence on temperature,
despite a complete difference in their microscopic models [8].
This encourages one in seeking a common universality class
for their statistical mechanics.

It is well known that the classical XY model in 2D
does not belong to the Ginzburg-Landau-Wilson (LGW)
class of models for phase transitions which in essence are
driven by renormalized spin waves. The classical transition
in the 2D XY model, on the other hand, is driven by a
proliferation of vortices [9,10]. The kinetic energy in the
quantum XY model turns it into a Lorentz-invariant model
so that the quantum transition and the associated critical
fluctuations are in the same class as the classical 3D XY
model. However, on inclusion of dissipation, the model has
a much richer phase diagram [11–13]. The 2D dissipative
quantum XY model (DQXY) can be transformed [14,15] into
a model in which the properties are governed by topological
excitations—two-dimensional vortices and “warps.” Warps are
instantons of monopole antimonopole combinations with zero
net charge and dipole moment. The order parameter correlation

functions discovered by Monte Carlo calculations and traced
to a proliferation of warps and vortices [12] are quite unlike
the form expected in extensions of the LGW theories to
quantum-critical phenomena [16,17].

The action of the (2+1)D quantum dissipative XY model
for the angle θ (x,τ ) of fixed-length quantum rotors at a space-
imaginary time point (x,τ ) is

S = −K0

∑
〈x,x′〉

∫ β

0
dτ cos(θx,τ − θx′,τ )

+ 1

2E0

∑
x

∫ β

0
dτ

(
dθx

dτ

)2

+α
∑
〈x,x′〉

∫ β

0
dτdτ ′ π

2

β2

[(θx,τ − θx′,τ ) − (θx,τ ′ − θx′,τ ′)]2

sin2
(

π |τ−τ ′|
β

) ,

(1)

where τ/2π is periodic in β = 1/kBT . 〈x,x′〉 denotes nearest
neighbors. The first term is the spatial coupling term as
in the classical XY model. The second term is the kinetic
energy where E0 serves as the moment of inertia. The
third term describes quantum dissipations of the ohmic or
Caldera-Leggett type [18]. Such a dissipation also comes from
the decay of the current fluctuations of the DQXY model
to fermion currents [8] with resistance per square R. In that
case, α = 4π2(RQ/R), where RQ = h/e2 is the quantum of
resistance per square. For the alternate form of dissipation, in
which the last term in (1) is replaced by a periodic function of
the θ ’s, the transitions remain in the same class as without
dissipation [13,19]. Also, when both forms of dissipation
are included, the phase diagram and correlation functions
are unchanged from those of the Caldeira-Leggett dissipation
alone [13].

The phase diagram [11,12] for this model is shown in Fig. 1.
There are three different phases. There is a transition from the
disordered phase, by varying the dissipation parameter α or
the parameter

√
K0E0, to a phase with the properties of the

ordered phase of the classical 3D XY model. By increasing
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FIG. 1. Phase diagram for the dissipative 2D quantum XY
model calculated by Monte Carlo in Refs. [11,12]. J ≡ K0τc. The
calculations are for a fixed value of the dimensionless variable
Ec ≡ E0τc = 100. τ−1

c serves as the ultraviolet cutoff by which K0

and E0 of Eq. (1) have been normalized. More results can be found
in Refs. [12,13]

√
K0E0 for small enough α, one has a Kosterlitz-Thouless

(KT) type 2D vortex induced transition to a quasiordered
phase, which is spatially ordered but (1D) disordered in time.
The temporal correlations do not change across this transition.
The quasiordered phase also orders in time by increasing α

to the fully ordered phase. We use here reexpression of the
dissipative quantum XY model in terms of warps and vortices
and perform renormalization group calculations, which have
some interesting technical aspects, to reproduce the principal
features of the phase diagram and of the essential aspects
of the correlation functions discovered in the Monte Carlo
calculations.

In Refs. [14,15], it is shown that after making a Villain
transformation [20] or a duality transformation [21] using the
Poisson summation formula, and integrating over the small
oscillations or spin waves, the action is expressed in terms
of link variables which are the differences of θ ’s at nearest-
neighbor sites,

mx,x′(τ,τ ′) ≡ θ (x,τ ) − θ (x′,τ ′). (2)

Using Eq. (2) at the two nearest neighbors of a lattice site x,
one can define m(x). Quite generally, m = m� + mt ; m� is
longitudinal (or curl free) and mt is transverse (or divergence
free). The appearance of m� is an interesting feature of the
quantum dissipative XY model. As usual,

∇ × mt (x,τ ) = ρv(x,τ )ẑ, (3)

so that ρv(x,τ ) is the charge of the vortex at (x,τ ). The model
also has quantized jumps in phase at the point x between τ and
τ + dτ . Such jumps produce divergences in m [15] and can
be represented by

∂∇̂ · m�(x,τ )

∂τ
= ρw(x,τ ). (4)

Although a continuum description is being used for simplicity
of writing, it is important to do the calculation so that the

discrete nature of the ρv,ρw fields is always obeyed. The action
of the model (1) in terms of warps and vortices, after Fourier
transforming from the result given in Refs. [14,15], is

S = J

2π

∑
i �=j

ρv(ri,τi) ln
|ri − rj |

ac

ρv(rj ,τi)

+α
∑
i �=j

ρw(ri,τi) ln
|τi − τj |

τc

ρw(ri,τj )

+ g
∑
i �=j

ρw(ri,τi)
1√|ri − rj |2 + v2(τi − τj )2

ρw(rj ,τj )

+ ln yw

∑
i

|ρw(ri,τi)|2 + ln yv

∑
i

|ρv(ri,τi)|2. (5)

The sum is over all space points and over imaginary time
τ from an upper cutoff τc to 1/(2πT ). Here, J = K0τc,
g = √

J/Ec/4π , v2/c2 = JEc, Ec = E0τc are dimensionless
variables, and c = a/τc, where a is the lattice constant. Some
spatial dimensions have been absorbed in the redefinition
of ρv and ρw [15]. The first term in (5) is the action of
the classical vortices interacting with each other through
logarithmic interactions in space but the interactions are local
in time. The second term describes the warps interacting
logarithmically in time but locally in space. The third term
is the action for a (anisotropic) Coulomb field between warps,
which, if present alone for the isotropic case, is known [22]
not to cause a transition; it will be seen to play a crucial role
in the present problem in which the space-time anisotropy is
required to flow. The short-distance core energy of the warps
and vortices is taken care of by the final term in which yv and
yw are the fugacity of the vortices and the warps, respectively.

The warp and the vortex variables in the first two terms are
orthogonal since they are related respectively to the divergence
and rotation of a vector field. The problem is trivial with
just these two terms alone. If the first term dominates, one
expects a transition of the class of the classical Kosterlitz-
Thouless transition through the renormalization of the fugacity
of vortices to 0. But the ordered phase would have bound
vortex-antivortex pairs in space with nothing to correlate them
in time. If the second term dominates, there is a quantum
transition to a phase with binding of warp-antiwarp pairs in
time but nothing to order them with respect to each other
in space. Four distinct phases would therefore be found in
the α-JEc plane. This is unlike the phase diagram of Fig. 1.
We will show that given the growth of correlations due to
the renormalization of the fugacity of vortices or of warps,
the flow to the critical points are determined by the third term,
which scales time and space differently, depending on whether
the warps or the vortices in the first two terms dominate, i.e.,
by the relative magnitudes of J and α. This leads to ordering
at T = 0 both in time and space to a state with symmetry of
the 3D XY model over most of the phase diagram, but an
interesting region in which the system is spatially ordered for
small times but disordered at larger times persists.

The renormalization group (RG) equations for the coupling
J and the vortex fugacity yv may be obtained following
the procedure of Kosterlitz [23] or Jose et al. [21]. The
renormalizations of these quantities obtained by scaling the
spatial length scale �r = ln(r/a), where the lattice constant a
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serves as the short-distance cutoff, are

dJ = −πy2
vJ

2d�r, dyv =
(

2 − J

4π

)
yvd�r . (6)

To derive the RG equation for the parameters for the warps,
we consider the effective interaction between two warps at
a point in space and separated by time τ > τc as modified
by the screening due to the creation of a virtual pair, at
times τ ′ and τ ′′, τc < |τ ′ − τ ′′| < τce

d�τ , where �τ = ln(τ/τc)
and τc is the short-time cutoff. The RG equations for α

by scaling �τ are derived. However, the fugacity of warps
is renormalized by both rescaling �τ and, due to the third
term in the action (5), by rescaling �r . Therefore, we must
also consider the renormalization of the parameters g and v.
A scale-dependent v = d|r|/dτ is equivalent to allowing a
scale-dependent dynamical critical exponent, z ≡ d�τ /d�r .

The renormalization procedure is given in the Supplemental
Material [24]. The results are

dα = −2αy2
wd�τ , (7)

dyw = yw[(1 − α)d�τ + (2 − g)d�r ], (8)

dg = −gd�r − 8π3

3

g2y2
w

ac

[(
1

4v
+ v

2

)
dlτ +

(
1

v
+ v

3

)
dlr

]
,

(9)

dv = (d�τ − d�r )v. (10)

These equations may be written as scaling equations either
with respect to �r or �τ by suitably using z. It is also redundant
to keep both z and v. We note the identity

dz−1

d�τ

− z−1(1 − z−1) = τ

r

dv

d�τ

. (11)

Using this, (10) can be rewritten as

d(z−1)

dlτ
= 2z−1(1 − z−1). (12)

We now have a closed system of RG equations. First, we
note that Eq. (12) gives the fixed points z∗ = 1,∞,0. z∗ = 1
is a stable fixed point. The z∗ = ∞ fixed point is unstable,
corresponding to the unstable fixed point for velocity at v∗ =
∞. The z∗ = 0 fixed point is also unstable, corresponding to
the unstable fixed point at v∗ = 0. These results are in accord
with the investigations on expansion about the isotropy of the
classical anisotropic Coulomb gas model in 3D [25], i.e., the
model with only the third term in (5). Thus the 2D limit (i.e.,
v∗ = 0) as well as the 1D limit (v∗ = ∞) are unstable (i.e.,
has a critical point) towards the stable isotropic problem.

We now consider the regimes of the initial parameters in
which the three different regions in the phase diagram in Fig. 1
are obtained, and calculate the correlation lengths in time and
space near the critical points separating them:

I. J/2π � 4 and α � 1: On examining the RG equa-
tions (6)–(8), one finds, that the fugacity of both vortices and
warps is large in this region, provided g < 2, as will be shown
below. The model is therefore in its quantum-disordered state
in this region, as in the phase diagram in Fig. 1.

II. J/2π � 4 and α ≈ 1: In this region, we must first
analyze the equations for the warps, Eqs. (7)–(9).

We note from Eqs. (7) and (8) that for z∗ → ∞, and the
initial α > 1, α and yw flow asymptotically for long times
→0, provided g remains finite. For initial α < 1, α flows
asymptotically at long times to 0 and yw to ∞. So α∗ = 1 is an
unstable critical point. We note from (9) that near the α∗ = 1
fixed point, as z → ∞ and yw → 0, g flows to a constant
value, consistent with the above requirement.

We expand near the unstable α = 1− fixed point and solve
to find

yw ∝ (e−τ/ξτ − 1), ξτ ∝ e[b0/(1−α)]12
. (13)

b0 is a coefficient of O(1). To study J and yv near this point,
we write the scaling equations in terms of �τ by using z ≡
d�τ /d�r . The flow of the vortex parameters J and yv is now
given by

dJ

dlτ
= −1

z
πy2

vJ
2,

dyv

dlτ
= 1

z

(
2 − J

4π

)
yv. (14)

We also have

dyv

dyw

= 1

z(1 − α)

(
2 − J

4π

)
yv

yw

. (15)

Near the critical point z∗ → ∞, and (1 − α) → 0. But, near
this point, 1/z = 0 + O(τ−2) and α approaches its fixed point
of 1 exponentially slowly with τ−1. Therefore, if (2 − J/4π )
does not flow, as is found self-consistently,

yv ∝ y1/z
w , i.e., for z → ∞, yv ∝ ln yw. (16)

We can get a correlation length in space from the relation
d�r = (1/z)d�τ and the result that 1/z ∝ τ−2 near this fixed
point. This gives the important result that the spatial correlation
length ξr and the temporal correlation length ξτ are related by

ξr

a
∝ log

(
ξτ

τc

)
. (17)

The same results for the RG flows are also obtained from the
numerical solution of the equations near this critical point.
The critical point corresponds to the quantum-disordered to
3D ordered transition in Fig. 1. The correlation lengths in time
and space deduced above have been found in extensive Monte
Carlo calculations [12]. We understand now the physical
reason of the conjecture made in Refs. [12,26] that the freezing
of warps drives the freezing of vortices: the growing fugacity
of warps drives a flow of the space-time metric parameter z

so that the fugacity of the vortices, Eq. (14), becomes scale
dependent even for values of J below 8π .

III. α � 1 and J/4π ≈ 2: In this region, it is appropriate
to start the analysis with an examination of Eqs. (6) for the
flow of J and yv . Equations (6) have the standard KT flow
with the KT point J ∗ = 8π near which yv → 0. For J > 8π ,
yw flows towards ∞ and J flows to ∞. Following Nelson and
Kosterlitz, the spatial stiffness has a jump at the transition. Now
we examine whether this is changed by the action of warps.
We start by assuming that such a fixed point corresponds to
the z → 0 unstable fixed point, which is the same as v → 0.
Let us study how warps are affected by this. Equation (9) gives
that g flows to 0. Equations (7) and (8) should now be written
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in terms of the scale length �r as

dα

d�r

= −2zαy2
w,

dyw

d�r

= yw[z(1 − α) + 2]. (18)

We see that neither the fugacity yw nor α flows in this case. So
warps remain completely unaffected by the vortex freezing.
The time dependence of the correlation remains unaffected, as
can be checked directly. This is consistent with the assumption
that this fixed point corresponds to z∗ = 0. This corresponds
to the transition from the quantum-disordered phase to the
quasiordered phase in Fig. 1, in which the spatial correlations
are those of the ordered Kosterlitz-Thouless phase, with a
jump of spatial stiffness at the transition. But the correlations
in time remain of the disordered phase, consistent with the
Monte Carlo calculations.

IV. J/2π � 4 and α → 1−: As discussed in III above, for
these values of J , yv → ∞ and isolated vortices are frozen for
α < 1. As α → 1−, yv remains stable at this value and the RG
equations for α and yw are simply (7) and (8), respectively. So
yw → 0 as α → 1 and the density of isolated warps tends to 0
rapidly for α > 1. For α > 1, long-range correlations develop
in time as well as space and the ordered state is similar to that
obtained directly from the quantum-disordered state discussed
in II above.

V. α � 1: In this case, yw increases, which forces the flow
of α towards 0. But the RG calculation, as is well known, is
uncontrolled because the stable fixed point is of the strong-
coupling kind. The z → ∞, α → 1− critical point is unstable
towards the stable fixed point z → 1, α → 0.

In the Supplemental Material [24], we derive the correlation
functions of the order parameter approximately, using the
results of RG equations above, and a simple generalization
of the procedures used earlier [26] which are themselves a
space-time generalization of the procedure of Ref. [21]. We
find the remarkable result that the correlation function of the
order parameter is separable in space and time. This reflects the
orthogonality of the warps and the vortices. Near the critical
point z∗ = ∞ and α → 1, the correlation function is

C(r − r′,τ − τ ′) ≡ 〈cos θ (r,τ ) cos θ (r′,τ ′)〉
∝ log(|r − r′|)e− |r−r′ |

ξr

1

|τ − τ ′|e
− |τ−τ ′ |

ξτ . (19)

The Fourier transform of its imaginary part is, approximately,

Im C(ω,q) ∝ 1

κ2
q + q2

tanh

(
ω√

4T 2 + κ2
ω

)
,

κq ≈ 1/ξr , κω ≈ 1/ξτ , (20)

and with the result derived above that (ξr/a) ∝ log(ξτ /τc), and
a high-frequency cutoff ωc = τ−1

c .
The principal features of the phase diagram in Fig. 1 and the

correlation functions found by Monte Carlo calculations are
reproduced by the RG calculations. The extraordinary features
of the results are understood as arising from the fact that the
transitions are driven by orthogonal topological excitations,
vortices, and warps, which are respectively local in time and in
space and the flow of the dynamical critical exponent z between
its critical values z∗ = 0,∞ at the unstable fixed points, and
from them to the stable z∗ = 1 critical point. Some aspects
of the phase diagram and of the correlations are not obtained
in leading-order RG. The transition from the disordered to
the 3D XY ordered state occurs in RG calculations at α = 1,
while in Monte Carlo calculations, the ordered phase requires
larger α for smaller JEc. The Monte Carlo calculations reveal
that the transition from the quantum-disordered phase to the
ordered phase occurs along a line in the J -α plane, whereas the
leading-order RG results give the transition to be at α = 1 for
all J < 8π . In the Monte Carlo calculations, it is found also
that for fixed α, the correlation length ξτ varies as (g − gc)−ντ ,
with ντ ≈ 0.5, and again with (ξr/a) ∝ log(ξτ /τc). It should
also be mentioned that the transformation to the topological
model relies on a finite dissipation coefficient α. One cannot
take the limit α → 0 and get the properties of the (2+1)D
quantum XY model without dissipation. The passage of the
properties of the model from that of the 3D classical XY model
at α = 0 to those at finite α has been investigated by Monte
Carlo calculations [13].

The present theory provides the microscopic basis for
the results hypothesized long ago to get the marginal Fermi
liquid [27]. The frequency dependence is identical to that
proposed earlier, but the momentum dependence in Eq. (20)
replaces the assumption of spatial locality with ξr ∝ log ξτ . As
shown in Ref. [8], the results for transport and thermodynamic
properties derived earlier follow from scattering of fermions by
such fluctuations with a vertex proportional to q for criticality
at q = 0, and (q − Q0) for criticality at Q0. The fluctuations in
Eq. (20) themselves have been directly observed in cuprates in
the long-wavelength limit by Raman scattering, [28] and have
been deduced, by analyzing high-resolution angle-resolved
photoemission spectroscopy (ARPES) data, over a large region
of momentum space as responsible for their strange metal
properties as well as the promotion of d-wave superconduc-
tivity [29]. Analysis of the limited data on fluctuations near
the antiferromagnetic critical point in a heavy-fermion com-
pound [30] and in an iron compound [31] has been found to be
consistent [32] with Eq. (20). More experiments are suggested.
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(2015).

201101-5

https://doi.org/10.1143/JPSJ.78.062001
https://doi.org/10.1143/JPSJ.78.062001
https://doi.org/10.1143/JPSJ.78.062001
https://doi.org/10.1143/JPSJ.78.062001
https://doi.org/10.1103/RevModPhys.79.1015
https://doi.org/10.1103/RevModPhys.79.1015
https://doi.org/10.1103/RevModPhys.79.1015
https://doi.org/10.1103/RevModPhys.79.1015
https://doi.org/10.1103/PhysRevB.73.155113
https://doi.org/10.1103/PhysRevB.73.155113
https://doi.org/10.1103/PhysRevB.73.155113
https://doi.org/10.1103/PhysRevB.73.155113
https://doi.org/10.1088/0034-4885/79/8/082501
https://doi.org/10.1088/0034-4885/79/8/082501
https://doi.org/10.1088/0034-4885/79/8/082501
https://doi.org/10.1088/0034-4885/79/8/082501
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevB.85.224531
https://doi.org/10.1103/PhysRevB.85.224531
https://doi.org/10.1103/PhysRevB.85.224531
https://doi.org/10.1103/PhysRevB.85.224531
https://doi.org/10.1103/PhysRevB.91.205129
https://doi.org/10.1103/PhysRevB.91.205129
https://doi.org/10.1103/PhysRevB.91.205129
https://doi.org/10.1103/PhysRevB.91.205129
http://arxiv.org/abs/arXiv:1605.08419
https://doi.org/10.1103/PhysRevLett.99.067003
https://doi.org/10.1103/PhysRevLett.99.067003
https://doi.org/10.1103/PhysRevLett.99.067003
https://doi.org/10.1103/PhysRevLett.99.067003
https://doi.org/10.1103/PhysRevB.82.174501
https://doi.org/10.1103/PhysRevB.82.174501
https://doi.org/10.1103/PhysRevB.82.174501
https://doi.org/10.1103/PhysRevB.82.174501
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1103/PhysRevB.84.180503
https://doi.org/10.1103/PhysRevB.84.180503
https://doi.org/10.1103/PhysRevB.84.180503
https://doi.org/10.1103/PhysRevB.84.180503
https://doi.org/10.1051/jphys:01975003606058100
https://doi.org/10.1051/jphys:01975003606058100
https://doi.org/10.1051/jphys:01975003606058100
https://doi.org/10.1051/jphys:01975003606058100
https://doi.org/10.1103/PhysRevB.16.1217
https://doi.org/10.1103/PhysRevB.16.1217
https://doi.org/10.1103/PhysRevB.16.1217
https://doi.org/10.1103/PhysRevB.16.1217
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1088/0022-3719/7/6/005
http://link.aps.org/supplemental/10.1103/PhysRevB.94.201101
https://doi.org/10.1088/0022-3719/10/19/011
https://doi.org/10.1088/0022-3719/10/19/011
https://doi.org/10.1088/0022-3719/10/19/011
https://doi.org/10.1088/0022-3719/10/19/011
https://doi.org/10.1103/PhysRevB.79.184501
https://doi.org/10.1103/PhysRevB.79.184501
https://doi.org/10.1103/PhysRevB.79.184501
https://doi.org/10.1103/PhysRevB.79.184501
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevB.43.3764
https://doi.org/10.1103/PhysRevB.43.3764
https://doi.org/10.1103/PhysRevB.43.3764
https://doi.org/10.1103/PhysRevB.43.3764
https://doi.org/10.1126/sciadv.1501329
https://doi.org/10.1126/sciadv.1501329
https://doi.org/10.1126/sciadv.1501329
https://doi.org/10.1126/sciadv.1501329
https://doi.org/10.1103/PhysRevLett.80.5623
https://doi.org/10.1103/PhysRevLett.80.5623
https://doi.org/10.1103/PhysRevLett.80.5623
https://doi.org/10.1103/PhysRevLett.80.5623
https://doi.org/10.1038/nphys1483
https://doi.org/10.1038/nphys1483
https://doi.org/10.1038/nphys1483
https://doi.org/10.1038/nphys1483
https://doi.org/10.1103/PhysRevB.92.155150
https://doi.org/10.1103/PhysRevB.92.155150
https://doi.org/10.1103/PhysRevB.92.155150
https://doi.org/10.1103/PhysRevB.92.155150

