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Although massless Dirac fermions in graphene constitute a centrosymmetric medium for in-plane excitations,
their second-order nonlinear optical response is nonzero if the effects of spatial dispersion are taken into account.
Here we present a rigorous quantum-mechanical theory of the second-order nonlinear response of graphene
beyond the electric dipole approximation, which includes both intraband and interband transitions. The resulting
nonlinear susceptibility tensor satisfies all symmetry and permutation properties, and can be applied to all three-
wave mixing processes. We obtain useful analytic expressions in the limit of a degenerate electron distribution,
which reveal quite strong second-order nonlinearity at long wavelengths, Fermi-edge resonances, and unusual
polarization properties.
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I. INTRODUCTION

Nonlinear optical properties of graphene have attracted
considerable interest in the community. The magnitude of the
matrix element of the interaction Hamiltonian describing cou-
pling of massless Dirac electrons to light scales in proportion to
vF /ω ∝ λ, i.e., it grows more rapidly with wavelength λ than
in conventional materials with parabolic energy dispersion,
where it scales roughly as

√
λ. This promises a strong nonlinear

response at long wavelengths. Unfortunately, graphene is also a
centrosymmetric medium for low-energy in-plane excitations,
which suppresses second-order nonlinear response in the
electric dipole approximation. Therefore, most of the effort
was concentrated on the third-order nonlinear processes that
are electric dipole allowed. Recent theoretical proposals and
some experiments include third-harmonic generation [1,2],
four-wave mixing [3–5], current-induced second-harmonic
generation (SHG) [6–8], and SHG in biased bilayer graphene
[9]. In few-layer graphene, SHG arising from the interactions
between layers, which breaks the inversion symmetry, has
been observed [10,11]. Multiphoton excitation of electron-hole
pairs in monolayer and bilayer graphene was theoretically
studied in [12,13].

The aim of this paper is to show that monolayer graphene
does demonstrate quite significant second-order nonlinearity
at long wavelengths despite its inversion symmetry. Here and
throughout the paper, we will discuss only the 2D (surface)
nonlinearity due to in-plane motion of electrons. Like any
surface, graphene exhibits anisotropy between in-plane and
out-of-plane electron motion. However, the corresponding
second-order nonlinearity is very small and we will not discuss
it here.

We develop the full quantum-mechanical theory of the
in-plane second-order nonlinear response beyond the electric
dipole approximation. In this case one has to consider
oblique or in-plane propagation of electromagnetic waves. A
nonzero in-plane second-order susceptibility χ (2) of mono-
layer graphene appears when one includes the dependence
of χ (2) on the in-plane photon wave vectors, i.e., the spatial
dispersion. Physically, this means that the inversion symmetry
of graphene is broken by the wave vector direction. The spatial
dispersion in momentum space is of course equivalent to the

nonlocal response in real space. Spatial dispersion effects turn
out to be quite large because of a large magnitude of the
electron velocity vF . A nonzero value of the nonlocal χ (2)

has been pointed out before for second-harmonic generation
[14–16] (which only included intraband transitions in a
free-carrier model), difference-frequency generation [17], and
parametric frequency down-conversion [18]. The latter two
papers developed a quantum theory including both intraband
and interband transitions and applied it to the nonlinear
generation of surface plasmons. In the recent experiment [19],
evidence for the difference-frequency generation of surface
plasmons in graphene was reported. Here we provide a sys-
tematic derivation of the second-order nonlinear conductivity
tensor, valid for all second-order processes, all frequencies,
and doping densities, as long as the massless Dirac fermion
approximation for a single-particle Hamiltonian is applicable.
For graphene, this means the range of frequencies from zero
(more precisely, from inverse scattering time) to the near
infrared. Our approach can be applied to any system of
massless chiral Dirac fermions, for example, surface states in
topological insulators such as Bi2Se3. The resulting nonlinear
susceptibility tensor satisfies all symmetry and permutation
properties, and predicts unusual polarization properties of the
nonlinear signal. We also summarize main properties of the
linear current as a necessary step in deriving the nonlinear
response functions, and present a detailed discussion of its
gauge properties and regularization.

II. BASIC EQUATIONS

Consider a 2D quantum system which in the absence of
external fields can be described by the Dirac Hamiltonian

Ĥ0( p̂) = vF σ̂ · p̂, (1)

where p̂ = x0p̂x + y0p̂y , p̂x,y = −i� ∂
∂x,∂y

, and σ̂ = x0σ̂x +
y0σ̂y , where σ̂x,y are Pauli matrices. The spinor eigenfunctions

� = (�1
�2

) of the Hamiltonian (1) are

�k,s(r) ≡ 〈r|k,s〉 = eik·r
√

2A

(
s

eiθ(k)

)
, (2)

2469-9950/2016/94(19)/195442(11) 195442-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.195442


YONGRUI WANG, MIKHAIL TOKMAN, AND ALEXEY BELYANIN PHYSICAL REVIEW B 94, 195442 (2016)

and the eigenenergies are E = s�vF k where s = ±1 for
conduction and valence bands, respectively, k = x0kx + y0ky ,
θ (k) is the angle between the electron momentum k and x axis,
and A is the normalization area. This description is valid for
carriers in monolayer graphene up to the energies of order 1 eV.
For higher energies, quadratic and trigonal warping corrections
become non-negligible.

Consider the most general light-matter interaction Hamil-
tonian utilizing both vector and scalar potentials: E =
−∇ϕ − c−1 Ȧ and B = ∇ × A. Following a standard pro-
cedure [20,21], we replace p̂ ⇒ p̂ + e

c
A in the unperturbed

Hamiltonian Ĥ0( p̂) and add the potential energy operator −eϕ

assuming a particle with the charge −e. This gives

Ĥ = Ĥ0 + Ĥ
opt
int , Ĥ

opt
int = evF

c
σ̂ · A − eϕ · 1̂, (3)

where 1̂ is a unit 2 × 2 matrix. The Hamiltonian in Eq. (3)
leads to the von Neumann equation for the density matrix:

i�
∂

∂t
ρmn = (Em − En)ρmn

+
∑

l

[(
Ĥ

opt
int

)
ml

ρln − ρml

(
Ĥ

opt
int

)
ln

]
, (4)

where |n〉 = |k,s〉.
We will consider a monochromatic electromagnetic field in

plane of graphene,

E = 1
2 [x0Ex(ω) + y0Ey(ω)]e−iωt+iqx + c.c. (5)

or its bichromatic combinations. The field component z0Ez

can be ignored because neither this field component itself
nor the magnetic field it generates can affect the 2D carrier
motion. Furthermore, the component of the vector potential
z0Az which generates the z component of the electric field z0Ez

does not enter the Hamiltonian (3) because σ̂ · z0 = 0. The
field described by Eq. (5) corresponds to the electromagnetic
potentials

ϕ = 1
2φ(ω)e−iωt+iqx + c.c.,

A = 1
2 [x0Ax(ω) + y0Ay(ω)]e−iωt+iqx + c.c. (6)

Note that the P -polarized radiation can be defined through
both the scalar potential,

ϕ = 1

2

iEx(ω)

q
e−iωt+iqx + c.c., (7)

and the vector potential,

AP = 1

2
x0

cEx(ω)

iω
e−iωt+iqx + c.c. (8)

At the same time, the S-polarized radiation can be defined only
through the vector potential,

AS = 1

2
y0

cEy(ω)

iω
e−iωt+iqx + c.c. (9)

It is convenient to represent the surface current density
generated in response to a harmonic field as a sum over spatial
harmonics: j (r) = 2−1 ∑

q j (q)eiq·r + c.c., where 2−1 j (q) =
S−1

∫
S

j (r)e−iq·rd2r; the set of in-plane photon wave vectors
q is specified by appropriate conditions on the boundary of a

large area S 	 A. It is also convenient to choose the area S to
be a multiple of the normalization area A, so that

1

2A

∫
A

�∗
n(r)�m(r)d2r = 1

2S

∫
S

�∗
n(r)�m(r)d2r. (10)

After calculating the matrix elements j (q)
nm of the current density

operator and solving independently the master equations
(4), one can calculate the average amplitude of a given
current density harmonic, which could be used as a source in
Maxwell’s equations or to determine the conductivity tensor:

j (q) =
∑
mn

j (q)
nmρmn. (11)

In order to evaluate j (q)
nm we determine the velocity operator

v̂ = i�−1[Ĥ ,r̂] and define the current density operator as
ĵ = −ev̂:

ĵ = −evF σ̂ . (12)

Next, we take into account a standard expression for the current
density operator in a second-quantized formalism [20]: ĵ (r) =
�̂

† · ĵ · �̂, where �̂ = ∑
n ân�n(r) and �̂

† = ∑
m â

†
m�†

m(r)
are second-quantized operators, and â

†
m and ân are fermion

creation and annihilation operators. Treating â
†
m and ân as

Heisenberg operators and using j (r) = 〈 ĵ (r)〉, 〈â†
m(t)ân(t)〉 =

ρmn(t), we arrive at 2−1 j (q) = ∑
mn (e−iq·r ĵ )nmρmn, which

gives

2−1 j (q)
nm = 〈n|e−iq·r ĵ |m〉. (13)

To calculate the matrix elements j (q)
mn and (Ĥ opt

int )mn we will
need the following useful relationships:

(eiqx)mn = 1
2 (smsn + ei(θn−θm))δkm,kn+q, (14)

(σ̂eiqx)mn

= 1
2 [(x0 − i y0)smeiθn + (x0 + i y0)sne

−iθm ]δkm,kn+q .

(15)

The above general equations should allow one to calculate the
conductivity in any order with respect to the external optical
field. There is, however, a complication related to the fact
that the model described by the effective Hamiltonian Eq. (1)
contains a “bottomless” valence band with electrons occupying
all states to k → ∞. Therefore, only the converging integrals
make sense:∑

mn

j (q)
nmρmn ⇒ g

∑
ss ′

∫
∞′

d2k′

4π2

∫
∞

d2k

4π2
j (q)

k′ks ′sρkk′ss ′ , (16)

where g is the degeneracy factor. Otherwise, the optical
response could be determined by the electron dispersion far
from the Dirac point where the effective Hamiltonian Eq. (1)
is no longer valid. It turns out that the convergence of the
linear current depends on the choice of the gauge, whereas
for the second-order nonlinear current the integral in Eq. (16)
converges for any gauge. The divergence of the linear response
can be regularized as discussed in the next section. In addition,
the gauge dependence of the linear response violates gauge
invariance, which is a consequence of the fact that the density
matrix corresponding to the bottomless Hamiltonian in Eq. (1)
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has an infinite trace. In the next section we discuss this issue
in more detail.

III. LINEAR RESPONSE OF MASSLESS
DIRAC FERMIONS

The perturbation expansion of the nonlinear response
functions implies that the second-order nonlinear terms depend
on the first-order linear response. Therefore, in this section
we outline the derivation of the linear current. The nontrivial
aspect of this derivation is an apparent violation of gauge
invariance and divergence of the linear current. We address
these issues in this section and related Appendix sections.

The solution of the density matrix equation (4) in the linear
approximation with respect to the field is

ρ(1)
nm(ω) = 1

2

[V̂ (ω)eiqx]nm(ρmm − ρnn)

�ω − (En − Em)
, (17)

where we defined Ĥ
opt
int = 2−1[V̂ (ω)e−iωt+iqx + H.c.]. Here

V̂ (ω) = −eφ(ω)1̂ + evF

c
[σ̂xAx(ω) + σ̂yAy(ω)] and ρ(1)

nm(ω) is
a complex-valued amplitude of the linear perturbation ∝ e−iωt

of the density matrix. For a monochromatic current j =
2−1 j (q)(ω)e−iωt+iqx + c.c. we have

j (q)(ω) =
∑
mn

j (q)
mnρ

(1)
nm(ω). (18)

The expression (18) is evaluated in Appendix A. The most
straightforward derivation is for a P -polarized field defined
through a scalar potential, Eq. (7), since in this case the integral
(16) converges. If we keep only the terms of the lowest order
in q (i.e., the linear terms since Ex = −iqφ), the resulting 2D
(surface) conductivity tensor is independent of q. In the limit
of strong degeneracy or low temperatures, the relevant terms
are (i) intraband conductivity, which has a Drude-like form,

σ (intra)
xx (ω) = ie2vF kF

π�(ω + iγ )
, (19)

and (ii) the interband term,

σ (inter)
xx (ω) = ie2

4π�
ln

[
2vF kF − (ω + iγ )

2vF kF + (ω + iγ )

]
. (20)

Here k = kF is Fermi momentum, and we also added the
relaxation terms by replacing ω → ω + iγ in Eq. (17); in
the limit γ → +0 one can obtain from Eq. (20) the well
known result for the interband conductivity [22]: Reσ (inter)

xx =
e2

4�
�(ω − 2vF kF ), where �(x) is the Heaviside step function.
If we define the optical field with a vector potential, the

same calculation will lead to divergent integrals. In this case
the finite, and at the same time gauge-invariant, expression for
the linear current at frequency ω can be obtained by subtracting
the same current evaluated at zero frequency [23]:

j (q)(ω) =
∑
mn

j (q)
mn

[
ρ1,A

nm (ω) − ρ1,A
nm (ω → 0)

]
. (21)

Here ρ1,A
nm (ω) is Eq. (17) with φ(ω) = 0 in the interaction

Hamiltonian. This prescription cancels the divergent term
and leads to the Kubo formula for the linear response. In
our case Eq. (21) is equal to the sum of Eqs. (19) and (20)
for the diagonal conductivities σyy = σxx , and gives σxy = 0.

The procedure in Eq. (21) can be justified by considering
the graphene Hamiltonian with a small quadratic term in the
energy dispersion:

E = s�vF k + ε
�

2k2

2
, (22)

where ε is a small parameter. Adding this term provides a
bottom to the valence band. As shown in Appendix B, the
linear current for such a system approaches Eq. (21) when
ε → 0.

For a P -polarized field which can be represented through
both scalar and vector potentials the renormalization procedure
in Eq. (21) is equivalent to the gauge transformation of the
density matrix from the A gauge (8) to the ϕ gauge (7). Indeed,
let the function ρ1,AP

nm (ω) correspond to the solution of Eq. (17)
for the field defined in the gauge given by Eq. (8), whereas
the function ρ

1,ϕ
nm (ω) corresponds to the gauge of Eq. (7).

Since we just found that the sum
∑

mn j (q)
mnρ

(1,ϕ)
nm (ω) is finite,

it makes sense to try the transformation ρ1,AP
nm ⇒ ρ

1,ϕ
nm . The

gauge transformation from A and ϕ to Ã and ϕ̃ corresponds
to the unitary transformation of the density matrix (see
Appendix C)

ρ̃nm =
∑
qp

(
e− ief

�c

)
nq

ρqp

(
e+ ief

�c

)
pm

, (23)

where the scalar function f (t,r) determines the gauge trans-
formation of the potentials

Ã = A + ∇f (t,r), ϕ̃ = ϕ − 1

c

∂f (t,r)

∂t
. (24)

In particular, the transformation from the vector potential (8)
to scalar potential (7) is

∇f = −AP . (25)

Within the linear approximation with respect to f we obtain
from Eq. (23)

ρ1,AP

nm ⇒ ρ1,AP

nm − ie

�c
fnm(ρmm − ρnn). (26)

Next, we will use the general relationship (see e.g. [24])

fnm = −i�

En − Em

(∇f · v̂ + v̂ · ∇f

2

)
nm

, (27)

from which we obtain from v̂ = vF σ̂ that

fnm = −i�vF (σ̂ · ∇f )nm

En − Em

. (28)

As a result, from Eqs. (26), (28), and (25) one gets

ρ1,AP

nm (ω) ⇒ ρ1,AP

nm (ω) + evF

c

[σ̂xAx(ω)]nm(ρmm − ρnn)

En − Em

.

(29)

Taking into account Eq. (17), Eq. (29) can be represented as
ρ1,AP

nm (ω) ⇒ ρ1,AP
nm (ω) − ρ1,AP

nm (ω → 0), which is identical to
Eq. (21).

The structure of transformation (23) makes it clear why
the density matrix with an infinite trace can give rise to the
divergent current. Consider the density matrix in the form
ρnm = ρmmδnm + ξn�=m, where ξ is a small perturbation. The
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sum
∑

mn jmnξnm can converge in a certain gauge even if the
trace

∑
m ρmm diverges. However, the transformation (23) to

a different gauge projects the diagonal of the matrix with an
infinite trace onto off-diagonal elements, which can lead to the
divergence in Eq. (16). The inverse is also true: the divergence
can be eliminated by the transformation (23) as we have just
shown above.

It is also clear that the separation of the response
into intraband and interband components depends gener-
ally on the choice of the gauge since the transforma-
tion (23) mixes different contributions. At the same time,
a correctly defined current has to be gauge invariant.

IV. SECOND-ORDER NONLINEAR RESPONSE

Now we consider the second-order nonlinear response to the
bichromatic field which we will represent through the vector
potential in order to describe both P - and S-polarized fields
with the same formalism. We will write the in-plane field
components at frequencies ω1,2 directed along unit vectors
η1,2 as

A = 1
2η1A(ω1)ei(q1·r‖−ω1t) + 1

2η2A(ω2)ei(q2·r‖−ω2t) + c.c.
(30)

We need to calculate the perturbation of the density matrix at the sum frequency ω1 + ω2. The term quadratic with respect to
the field can be written as

ρ(2)
mn(ω1 + ω2) =

( e

2c

) 1

�(ω1 + ω2) − (εm − εn)

∑
l �=m,n

[
((v̂ · η1)eiq1·r )mlA(ω1)ρ(1)

ln (ω2) − ρ
(1)
ml (ω1)((v̂ · η2)eiq2·r )lnA(ω2)

]
+{1 ↔ 2}

= 1

2

(e

c

)2 A(ω1)A(ω2)

�(ω1 + ω2) − (εm − εn)

∑
l �=m,n

((v̂ · η1)eiq1·r )ml((v̂ · η2)eiq2·r )ln

[
(ρnn − ρll)

�ω2 − (εl − εn)
− (ρll − ρmm)

�ω1 − (εm − εl)

]

+{1 ↔ 2}. (31)

The trace of the corresponding Fourier harmonic of the induced current can then be calculated as

j (q1+q2)(ω1 + ω2) =
∑
mn

j (q1+q2)
nm ρ(2)

mn(ω1 + ω2). (32)

The second-order response at the difference frequency, ρ(2)
mn(ω1 − ω2), can be obtained by replacing

ω2 ⇒ −ω2, q2 ⇒ −q2, A(ω2) ⇒ A∗(ω2). (33)

Next, we transform from summation to integration over k states, introduce the corresponding occupation numbers f (s,k) of
the momentum states in each band, apply the momentum conservation in a three-wave mixing process, and take into account spin
and valley degeneracy. Note that the integral over the electron momenta converges, as opposed to the linear response calculations
where one needs to regularize the integral by either subtracting the contribution at zero frequency or adding a k2 term to the
Hamiltonian, as discussed above. The result is

j (q1+q2)(ω1 + ω2) = − e3v3
F

16π2c2�2
A(ω1)A(ω2)

∑
sm,sn,sl

∫
d2k

1

(ω1 + ω2) − vF (sm|k + q1| − sn|k − q2|)

×
[

f (sn,|k − q2|) − f (sl,|k|)
ω2 − vF (sl|k| − sn|k − q2|)

− f (sl,|k|) − f (sm,|k + q1|)
ω1 − vF (sm|k + q1| − sl|k|)

]

× [
(η1x − iη1y)smeiθ(k) + (η1x + iη1y)sle

−iθ(k+q1)
]

× [
(η2x − iη2y)sle

iθ(k−q2) + (η2x + iη2y)sne
−iθ(k)

]
× [

(x0 − i y0)sne
iθ(k+q1) + (x0 + i y0)sme−iθ(k−q2)

] + {1 ↔ 2}. (34)

This equation can be integrated numerically for any given
geometry of incident fields and electron distribution. We
consider the limit of the Fermi distribution with a strong
degeneracy, direct all in-plane photon wave vectors along x

axis, and expand the integrand in Eq. (34) in powers of q1,q2.
The integral over the term of zeroth order in q vanishes,
as expected from symmetry. We will keep the terms linear
in q. Also we have to evaluate separately the intraband
contribution sl = sm = sn and all types of mixed interband-
intraband contributions: sm = sn = −sl , sm = sl = −sn, and
sn = sl = −sm. After performing this procedure, we find that

the xxx, xyy, yxy, and yyx components of the second-order
nonlinear conductivity tensor are nonzero, while all other
components are zero. Their expressions are bulky, so we give
them in Appendix D and plot them in the figures below.

A sketch of the second-order nonlinear process for an
obliquely incident light of mixed polarization is shown in
Fig. 1. Note that when both pump fields have either S or
P polarization, the generated nonlinear current has only the x

component (along the in-plane direction of propagation of the
pumps). When the polarizations are mixed, the y component of
the nonlinear current appears due to yxy and yyx components
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FIG. 1. Sketch of the second-order nonlinear current generation
in the graphene plane for obliquely incident light.

of the nonlinear conductivity (they are different only by per-
mutation of indices 1 and 2 referring to the two pump fields).

Apparent “nonreciprocity” of the expressions for σ (2)
yxx = 0

(P -in, S-out channel) and σ (2)
xyy �= 0 (S-in, P -out channel) has

a simple physical explanation: a P -polarized incident field
cannot create a current in the y direction orthogonal to the
electric field, whereas an incident S-polarized field creates
such a current in x direction via the magnetic field component
Bz normal to the layer. Note that any cross components of
the linear conductivity such as σxy have to vanish since the
linear response was calculated in Sec. III neglecting any spatial
variation of the field, i.e., for isotropic graphene.

The expressions for the nonlinear conductivity tensor that
we obtained pass all symmetry and gauge invariance tests.
Indeed, one can verify that the value of σ (2)

xxx agrees with the one
derived using scalar potential in the interaction Hamiltonian.
Furthermore, after converting the nonlinear conductivity to the
nonlinear susceptibility according to

χ
(2)
ijk(ω1 + ω2; ω1,ω2) = iσ

(2)
ijk (ω1 + ω2; ω1,ω2)

ω1 + ω2
,

one can verify that all components of the nonlinear suscep-
tibility tensor satisfy proper permutation relations; see, e.g.,
Chap. 2.9 in [25]:

χ
(2)
ijk(ω3 = ω1 + ω2) = χ

(2)
jik(−ω1 = −ω3 + ω2)

= χ
(2)
kji(−ω2 = −ω3 + ω1), (35)

where in-plane wave vectors have to be permuted together with
frequencies.

The second-order response goes to zero when the Fermi
energy εF goes to zero, and has maxima at resonances when
one of the three frequencies involved in three-wave mixing
is close to 2εF /� = 2vF kF . Far from these resonances and
for high frequencies or low doping, 2vF kF � ω1,ω2,ω1 +
ω2, expressions for the nonlinear conductivity are greatly
simplified (we will give only the expressions for σ (2)

xxx and
σ (2)

xyy for brevity):

σ (2)
xxx

= s(εF )
2e3v2

F

π�2

v4
F k4

F

[
q1ω

3
2(2ω1 + ω2) + q2ω

3
1(2ω2 + ω1)

]
ω4

1ω
4
2(ω1 + ω2)3

,

(36)

σ (2)
xyy = − s(εF )

2e3v2
F

π�2

v2
F k2

F

(
q1ω

2
2 + q2ω

2
1

)
ω3

1ω
3
2(ω1 + ω2)

. (37)

Here s(εF ) = ±1 depending on whether the Fermi level is in
the conduction or valence band. An interesting and surprising
result contained in these expressions is that the nonlinear fre-
quency conversion of S-polarized radiation into P -polarized
radiation is much more efficient at high frequencies as
compared to the P -in, P -out channel: σ (2)

xyy/σ
(2)
xxx ∝ ω2

v2
F k2

F

	 1.
In particular, for the second-harmonic generation process
ω1 = ω2 = ω and q1 = q2 = q, and the dominant component
of the nonlinear conductivity tensor is simply

σ (2)
xyy(2ω; ω,ω) = −s(εF )

e3

π�2

v4
F k2

F q

ω5
. (38)

Although it is expected that xyy and xxx components of
the nonlinear conductivity should scale differently because
the magnetic field contributes only to the xyy component,
we are not aware of any simple argument that would predict
their particular ratio in the high-frequency limit. It is clear
that the contribution from each three-wave mixing channel in
Eq. (34) will be at least linear in kF , because the differences
in the occupation numbers contribute q cos θδ(k − kF ) when
expanded in powers of q. After performing integration

∫
k dk

a factor of kF is present in every term. The subsequent
integration over the angles and summation over all three-wave
mixing channels cancels many terms. The cancellation is
different between xyy and xxx components, so that the leading
nonzero order in the xyy component is k2

F , whereas the leading
term in the xxx component scales as k4

F .
In the opposite limit of low frequencies or high doping,

2vF kF 	 ω1,ω2,ω1 + ω2, we also obtain simplified expres-
sions:

σ (2)
xxx = s(εF )

e3v2
F

8π�2ω1ω2

(
q1 + q2

ω1 + ω2
+ q1

ω1
+ q2

ω2

)
, (39)

σ (2)
xyy = s(εF )

e3v2
F

8π�2ω1ω2

[
q1 + q2

ω1 + ω2
+ ω1 − ω2

ω1 + ω2

(
q1

ω1
− q2

ω2

)]
.

(40)

We verified that Eqs. (39) and (40) can be derived inde-
pendently from the single-band kinetic equation, i.e., in the
quasiclassical approximation described in Appendix E. This
provides another test of our general expressions, since one
should indeed expect that the single-band physics emerges in
the limit of a strong doping and low frequencies, when all
interband transitions become suppressed by Pauli blocking.
Note that although Eqs. (39) and (40) do not depend on kF ,
they are valid only in the high-kF limit and are completely
inapplicable for undoped graphene. In fact, exact expressions
(D1) and (D2) give σ (2)

xxx = 0 and σ (2)
xyy = 0 for kF = 0, since

in this case the nonlinear currents due to interband and
intraband transitions cancel each other. This can be viewed
as a manifestation of the electron-hole symmetry in graphene.

The nonlinear conductivity components (D1) and (D2)
diverge when one or more of the three frequencies involved
in three-wave mixing is close to 2εF /� = 2vF kF . Close to
resonance with 2εF /� one has to include the imaginary part
of the frequency which comes from the omitted relaxation
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FIG. 2. Nonzero components of the second-order nonlinear
conductivity tensor for the process of SHG as a function of the
fundamental frequency. The pump is incident in the (xz) plane at
45◦. The Fermi energy is 200 meV and all resonances are broadened
by the same factor γ equal to 5 meV.

term −γρmn in the density-matrix equations. This amounts to
substituting ω1 → ω1 + iγ1, ω2 → ω2 + iγ2, and ω1 + ω2 →
ω1 + ω2 + iγ3. Note that if we flip the sign of ω2 to describe
the difference frequency generation process, the sign of +iγ2

remains the same, i.e., ω2 → −ω2 + iγ2.
Even if dissipation is included, we can still use Eqs. (35) to

derive the components of the nonlinear susceptibility tensor
from other components. In order to do that, one needs to use
Eqs. (35) in the absence of dissipation and then add imaginary
parts of frequencies. Of course, the resulting expressions
after adding dissipation won’t satisfy the permutation relation
Eqs. (35).

Figures 2–4 illustrate the above properties of the nonlinear
conductivity for the processes of the second-harmonic genera-
tion (SHG), difference-frequency generation (DFG), and sum-
frequency generation (SFG). We used SI units in the figures
for easier comparison of the values with known materials. In
Fig. 2, absolute values of nonzero components of the nonlinear
conductivity tensor for the SHG process ω + ω ⇒ 2ω are plot-
ted as a function of the fundamental frequency ω, assuming that
the Fermi energy is 200 meV and all resonances are broadened
by the same half-width factor γ equal to 5 meV in energy units.
The plots for σ (2)

yxy and σ (2)
yyx are identical as they should be.

There are two prominent resonances at �ω = 2εF = 400 meV
and 2�ω = 2εF . At high frequencies, the xxx component falls
off much faster than the xyy component. At low frequencies,
both components diverge as 1/ω2. Our treatment, however,
becomes invalid in the static limit ω � γ when any of the
frequencies becomes lower than the scattering rate; that is
why the plots are truncated at ω = 20 meV. The quasiclassical
method of the kinetic equation has the same applicability limit.

Figure 3 shows absolute values of the nonzero components
of the nonlinear conductivity tensor for the DFG process for
the same values of εF and γ , as a function of ω2. The second
frequency �ω1 is fixed to be 400 meV. The same qualitative
behavior is observed: there is a double resonance when both ω1

FIG. 3. Nonzero components of the second-order nonlinear con-
ductivity tensor for the process of DFG as a function of one of the
pump frequencies (ω2). Frequency ω1 is fixed at 400 meV. Both pumps
are incident in the (xz) plane at 45◦. The Fermi energy is 200 meV
and all resonances are broadened by the same factor γ equal to
5 meV.

and ω2 are equal to 2kF vF . Note that there is no divergence at
ω1 − ω2 → 0 because the same factor ω1 − ω2 appears in the
numerator. There is divergence when ω2 → 0 which should
be truncated at ω2 ∼ γ .

In Fig. 4, the nonzero components of the nonlinear
conductivity tensor for the SFG process are shown as a function
of ω2. The second frequency �ω1 is fixed at 200 meV. As
expected, all components show strong resonances when one
of the frequencies or their sum is equal to 2εF = 400 meV.

The magnitude of the nonlinear response generally in-
creases rapidly when one or more of the frequencies is
decreased, as is obvious also from analytic expressions. For

FIG. 4. Nonzero components of the second-order nonlinear con-
ductivity tensor for the process of SFG as a function of one of the
pump frequencies (ω2). Frequency ω1 is fixed at 200 meV. Both pumps
are incident in the (xz) plane at 45◦. The Fermi energy is 200 meV
and all resonances are broadened by the same factor γ equal to 5 meV.
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the DFG process, the magnitude of the nonlinear conductivity
components is two orders of magnitude higher as compared to
SHG or SFG. As one of the frequencies goes to zero, the
treatment becomes invalid, but one could get an order of
magnitude estimate of the maximum nonlinear conductivity
by putting this frequency equal to γ . Using the same value
of γ = 5 meV, one gets the nonlinear conductivity for DFG
of the order of several m2/(V s) in the THz range. This is
a 2D conductivity. Purely for the sake of comparison with
known bulk nonlinear materials, we can convert it to the bulk
nonlinear susceptibility dividing by the frequency and the
monolayer thickness of 0.3 nm, to arrive at |χ (2)

3D| ∼ 10−3 m/V.
This is a huge value as compared to 1–100 pm/V values for
most materials. As we already mentioned in the Introduction,
the reason is a large magnitude of the matrix element of
the interaction Hamiltonian which scales in proportion to
vF /ω ∝ λ, i.e., it grows more rapidly with wavelength λ than
in conventional materials with parabolic energy dispersion,
where it scales as

√
λ. Of course, only the 2D values of

the graphene conductivity or susceptibility enter all physical
results such as the intensity of the generated nonlinear signal
[17,18] or the parametric gain [18]. Still, combination of
intrinsically large nonlinear conductivity of graphene and a
surface plasmon resonance for the nonlinear signal may lead
to quite significant efficiency of the nonlinear processes, as
emphasized in the theoretical proposals [17,18].

Massless metallic surface states in the topological
insulator Bi2Se3 can be described by a low-energy effective
Hamiltonian Ĥ0( p̂) = v′

F (σ̂xp̂y − σ̂y p̂x) (see for example
[26] and references therein), where v′

F � 5 × 107 cm/s and
the chirality is now associated with real spin as opposed to
pseudospin in graphene. The eigenenergies of this Hamiltonian
have the same form as for graphene. Also, the matrix elements
of the velocity operator and interaction Hamiltonian are
the same as in graphene; see Eqs. (14) and (15). Therefore,
expressions for the nonlinear conductivity tensor are also
the same, except for a four times lower degeneracy per
surface and about two times lower Fermi velocity. In fact, the
Hamiltonian for the surface states of Bi2Se3 can be written
in the form equivalent to that of graphene by choosing the
representation of the Pauli matrices as (−σ̂y,σ̂x), which still
satisfies the required commutation relation.

In conclusion, we developed the full quantum-mechanical
theory of the in-plane second-order nonlinear response of
graphene beyond the electric dipole approximation. We pro-
vided a systematic derivation of the second-order nonlinear
conductivity tensor, valid for all second-order processes, all
frequencies, and doping densities, as long as the massless
Dirac fermion approximation for a single-particle Hamiltonian
is applicable. Our approach can be applied to any system of
massless chiral Dirac fermions, for example, surface states
in topological insulators such as Bi2Se3. We derived useful
analytic expressions for the components of the nonlinear
conductivity tensor, which satisfy all symmetry and permu-
tation properties, and have a correct quasiclassical limit. We
also summarized main features of the linear response, with
emphasis on its gauge properties and regularization.

Note added in proof. While this paper was in review, a paper
with a theoretical analysis of the second-order nonlinearity of
graphene was posted on arXiv [27]. Their results appear to be
consistent with our results.
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APPENDIX A: EVALUATION OF THE LINEAR CURRENT

To calculate the current in the linear approximation with
respect to the electromagnetic (EM) field, we will use Eqs.
(13), (14), (15), (17), and (18). Assuming that the photon wave
vector is much smaller than typical wave vectors of electrons,
q � k, we calculate the following quantities in the zeroth and
first order in q:

n(k+q)(s=+1) − nk(s=+1) ≈ q cos θ (k)
∂nk(+1)

∂k
, (A1)

E(k+q)(s=+1) − Ek(s=+1) ≈ �vF q cos θ (k), (A2)

1
2 j (q)

k(k+q)(+1)(+1) ≈ −evF [x0 cos θ (k) + y0 sin θ (k)], (A3)

1
2 j (q)

k(k+q)(+1)(−1) ≈ −ievF [x0 sin θ (k) − y0 cos θ (k)]. (A4)

Consider first the EM field determined through a scalar
potential. In this case we can replace in Eq. (17)

[V̂ (ω)eiqx](k+q)kss ′ ≈ −eφ(ω)

4

[
i
q

k
sin θ (k) + 1 + ss ′

]
. (A5)

The summation in Eq. (18) can be replaced by integration
using Eq. (16). Keeping the terms of the first order in q

in the conduction band, the integral can be transformed
as

∫ ∞
0 (∂nk(+1)/∂k)k dk = − ∫ ∞

0 nk(+1)dk = −kF . Introduc-
ing relaxation through the substitution ω → ω + iγ , we arrive
at Eqs. (19) and (20).

Now we determine the EM field through the vector
potential, in which case we should substitute the following
in Eq. (17):

[V̂ (ω)eiqx](k+q)kss ′ ≈ evF

4c
[Ax(seiθ(k) + s ′e−iθ(k))

−iAy(seiθ(k) − s ′e−iθ(k))]. (A6)

After exactly the same steps as in the case of a scalar potential,
we arrive at

j (q)
(intra)(ω) = −gv2

F e2(x0Ax + y0Ay)

4π2�c

×
∫ 2π

0

q cos3 θ dθ

ω − vF q cos θ

∫ kF

0
nk(+1)dk, (A7)

j (q)
(inter)(ω) = gv2

F e2(x0Ax + y0Ay)

4π�c

×
∫ ∞

0

(
1

ω + 2kvF

− 1

ω − 2kvF

)
× (nk(−1) − nk(+1))k dk. (A8)

Note that j (q)
(inter)(ω) → ∞ when

∫ ∞
0 nk(−1)k dk → ∞. There-

fore, the current needs to be renormalized. Applying the
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renormalization Eq. (21), we obtain

j (q)
(intra)(ω) = −gvF e2ω(x0Ax + y0Ay)

4π2�c

×
∫ 2π

0

cos2 θ dθ

ω − vF q cos θ

∫ kF

0
nk(+1)dk

≈ −gvF e2(x0Ax + y0Ay)

4π�c

∫ kF

0
nk(+1)dk, (A9)

j (q)
(inter)(ω) = − gvF e2ω(x0Ax + y0Ay)

8π�c

×
∫ ∞

0

(
1

ω + 2kvF

− 1

ω − 2kvF

)

× (
nk(−1) − nk(+1)

)
dk, (A10)

which again yields the expressions given in Sec. III.
If we choose the carrier distribution limited not only in the

conduction band but also in the valence band, i.e., nk(−1) =
0 for k > kmax;(−1), then for the P -polarized field that can
be defined through both scalar and vector potentials the sum
j (q)

(intra;+1) + j (q)
(intra;(−1)) + j (q)

(inter) is invariant and finite without
regularization with Eq. (21). This corroborates our conclusion
that for massless Dirac fermions the need in renormalization
(21) is due to the bottomless valence band filled with electrons
to infinite energies and wave vectors, which is an artifact of
the model Hamiltonian (1).

APPENDIX B: HOW TO CORRECTLY DEFINE CURRENT
IN A SYSTEM WITH A MASSLESS DIRAC SPECTRUM

The prescription Eq. (21) for renormalization of the
diverging linear current in a system of massless Dirac fermions
can be justified if we consider a system with small deviation
from the massless conical spectrum, for which the current
becomes finite, and then let the deviation go to zero. Of
course, the actual electron spectrum of graphene does deviate
from the massless conical spectrum at high electron energies.
However, it is reasonable to expect that at low enough energies
any correction to the Hamiltonian (1) becomes small, and all
essential physics including the linear response is dominated by
massless fermions. Therefore, it is important, at least from the
methodological perspective, to provide physical justification
of Eq. (21).

Let’s modify the Hamiltonian (1) by adding a quadratic
correction to the massless Dirac spectrum E = s�vF k:

Ĥ0( p̂) = vF σ̂ · p̂ + ε
p̂2

2
· 1̂. (B1)

This Hamiltonian leads to the energy spectrum given by
Eq. (22), whereas the eigenstates Eq. (2) remain the same.
We will also assume that the change in the energy spectrum in
the conduction band is insignificant, since

ε�kF � vF . (B2)

At the same time, the spectrum of Eq. (B1) creates a “bottom”
of the valence band at k = K , where

ε�K = vF . (B3)

Therefore, the integral over k states in the valence band has
now finite limits.

In the presence of an EM field given by the vector potential
A, one needs to replace p̂ ⇒ p̂ + e

c
A in the Hamiltonian:

Ĥ0( p̂) = vF σ̂ ·
(

p̂ + e

c
A
)

+ ε

(
p̂ + e

c
A
)2

2
· 1̂. (B4)

The resulting velocity operator,

v̂ = i

�
[Ĥ ,r̂] = vF σ̂ + ε

(
p̂ + e

c
A
)

· 1̂, (B5)

and the current operator,

ĵ = −ev̂ = −e
[
vF σ̂ + ε

(
p̂ + e

c
A
)

· 1̂
]

(B6)

acquire a component which depends on the vector potential:

δ ĵ = −ε
e2

c
A · 1̂. (B7)

Consider for definiteness an EM field given by the second
of Eq. (6) with Ax = 0, and also keep only the solution in
zeroth order in q/k.

A new, A-dependent component of the current operator δ ĵ
gives rise to an additional component of the linear current (see,
e.g., [24]):

δjy = −εe2Aye
−iωt

2c

∑
k

nk(s=−1) + c.c., (B8)

where

∑
k

nk(s=−1) = g

4π2

∫ 2π

0
dθ

∫ K

0
nk(−1)k dk, (B9)

and the value of K is determined by Eq. (B3). In the limit of
Eq. (B2) we can keep only the contribution of the valence band
to the current component δjy . This gives (in the limit of strong
degeneracy)

δjy = −Aye
−iωt

2c

gvF e2

4π�

∫ K

0
nk(−1)dk + c.c. (B10)

Equation (B10) can be represented as a sum of two terms:

− gvF e2

4π�

Aye
−iωt

2c

∫ K

0
nk(−1)dk

= −gv2
F e2

4π�

Aye
−iωt

2c

∫ K

0

(
1

2kvF

− 1

−2kvF

)

× (nk(−1) − nk(+1))k dk

+ gv2
F e2

4π2�

Aye
−iωt

2c

∫ 2π

0

q cos2 θ cos θ dθ

−vF q cos θ

∫ kF

0
nk(+1)dk,

(B11)

where for a degenerate electron gas nk(+1) = 0 for k > kF . Let
us now compare this current component with the expressions
(A7) and (A8) for the linear current that we derived in
Appendix A for a massless Dirac current ( ĵ = −evF σ̂ ),
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namely,

j (intra)
y = − gv2

F e2

4π2�

Aye
−iωt

2c

∫ 2π

0

q cos2 θ cos θ dθ

ω − vF q cos θ

×
∫ kF

0
nk(+1)dk + c.c., (B12)

j (inter)
y = gv2

F e2

4π�

Aye
−iωt

2c

∫ K

0

(
1

ω + 2kvF

− 1

ω − 2kvF

)

× (nk(−1) − nk(+1))k dk + c.c. (B13)

From comparing (B10) with (B12), (B13), it is obvious
that −δjy = j (intra)

y (ω → 0) + j (inter)
y (ω → 0), i.e., adding this

current component to the total current as j (intra)
y + j (inter)

y + δjy

is completely equivalent to the renormalization given by Eq.
(21) in the limit K → ∞ which corresponds to the limit
ε → 0. Note also that the current component ĵ = −εe p̂ which
we neglected in Eq. (B6) becomes negligible as compared to
j (intra)
y + j (inter)

y in the same limit ε → 0. Actually this term
vanishes since the distributions nk(−1) and nk(+1) don’t depend
on the direction of k.

APPENDIX C: GAUGE TRANSFORMATION PROPERTIES
FOR MASSLESS DIRAC SYSTEMS

We start from the Schrödinger equation

i�
∂�

∂t
= Ĥ (A,ϕ)� (C1)

with the Hamiltonian of Eq. (3). Consider a gauge trans-
formation of the field potentials from (A,ϕ) to ( Ã,ϕ̃). This
transformation is determined by Eqs. (24) through a scalar
function f (r,t). Let �̃ be the solution of Eq. (C1) for Ĥ ( Ã,ϕ̃).
One can see by direct substitution that the spinor � is
transformed in the same way as a scalar state function: �̃ =
e−i e

�c
f � [20] (we consider a particle with negative charge

−e). This transformation conserves the quantum-mechanical
average current j = −evF 〈�|σ̂ |�〉 = −evF 〈�̃|σ̂ |�̃〉.

To obtain gauge transformation rules for the density matrix,
it is convenient to use its coordinate representation as ρ̂(r,r ′)

[24]. Following the standard procedure [20], we obtain

ρ̂(r,r ′) =
∑
mn

ρmn[�m(r)�∗
n(r ′)], (C2)

where the expression [�m(r)�∗
n(r ′)] is a matrix formed by the

elements of spinors �m(r) and �∗
n(r ′). Therefore, the operator

ρ̂(r,r ′) is a matrix with elements dependent on the pair of
arguments (r,r ′):

ρ̂(r,r ′) =
(

ρ11(r,r ′) ρ12(r,r ′)
ρ21(r,r ′) ρ22(r,r ′)

)
. (C3)

The equation of motion for the operator ρ̂(r,r ′) has a standard
form, which follows directly from Eq. (C1):

i�
∂ρ̂(r,r ′)

∂t
= Ĥ ρ̂(r,r ′) − ρ̂(r,r ′)

←−̂
H ′, (C4)

where the operator Ĥ acts only on the arguments r , whereas
Ĥ ′ acts only on r ′, and the arrow above it means acting
from right to left. The quantum-mechanical average of any
operator �̂ can be written in the matrix representation as � =∑

mn �nmρmn, and in the coordinate representation as � =∫
A

d2r
∫
A′ d

2r ′{δ(r − r ′)[�̂ρ̂(r,r ′)]}, where it is assumed that
the operator �̂ acts only on r .

Let ˜̂ρ(r,r ′) be the solution of Eq. (C4) for the Hamiltonian
Ĥ ( Ã,ϕ̃) given by Eq. (3). Then, following Ref. [24], from
Eq. (C4) one can obtain

˜̂ρ(t,r,r ′) = ρ̂(t,r,r ′)e−iu(t,r,r ′),

u(t,r,r ′) = e

�c
[f (t,r) − f (t,r ′)]. (C5)

Taking into account ρmn = 〈�m(r)|ρ̂(r,r ′)|�n(r ′)〉, which
follows from Eq. (C2), we arrive at Eq. (23).

Note that gauge transformation of the density matrix equa-
tion includes an appropriate transformation of the relaxation
operator [24]. The simplest approach which allows one to avoid
complicated transformations is to neglect dissipation first, and
then to replace ω → ω + iγ in the resulting expression for the
dissipationless current. Of course, this approach works only for
the simplest form of the relaxation operator in the relaxation
time approximation.

APPENDIX D: COMPONENTS OF THE SECOND-ORDER NONLINEAR CONDUCTIVITY TENSOR

Here we give analytic expressions for the nonzero components of the second-order nonlinear conductivity tensor, obtained by
integrating Eq. (34) in the limit of strong degeneracy:

σ (2)
xxx(ω1 + ω2; ω1,ω2) = −s(εF )

e3v2
F

2π�2

1

ω2
1ω

2
2(ω1 + ω2)

1(
ω2

1 − 4v2
F k2

F

)(
ω2

2 − 4v2
F k2

F

)(
(ω1 + ω2)2 − 4v2

F k2
F

)
× [−4v4

F k4
F

(
q1ω

3
2(2ω1 + ω2) + q2ω

3
1(ω1 + 2ω2)

) + 16v6
F k6

F (q1ω2(2ω1 + ω2) + q2ω1(ω1 + 2ω2))
]
,

(D1)

σ (2)
xyy(ω1 + ω2; ω1,ω2) = − s(εF )

e3v2
F

2π�2

1

ω2
1ω

2
2(ω1 + ω2)

1(
ω2

1 − 4v2
F k2

F

)(
ω2

2 − 4v2
F k2

F

)(
(ω1 + ω2)2 − 4v2

F k2
F

)
× [

4(vF kF )2ω1ω2(ω1 + ω2)2
(
q1ω

2
2 + q2ω

2
1

) + 4(vF kF )4
(
q1ω

4
2 − (6q1 + 4q2)ω1ω

3
2 − 8(q1 + q2)ω2

1ω
2
2

− (4q1 + 6q2)ω3
1ω2 + q2ω

4
1

) + 16(vF kF )6(q1ω2(2ω1 − ω2) + q2ω1(2ω2 − ω1))
]
, (D2)
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σ (2)
yxy(ω1 + ω2; ω1,ω2) = − s(εF )

e3v2
F

2π�2

1

ω2
1ω

2
2(ω1 + ω2)

1(
ω2

1 − 4v2
F k2

F

)(
ω2

2 − 4v2
F k2

F

)(
(ω1 + ω2)2 − 4v2

F k2
F

)
× [

4(vF kF )2ω2
1ω2(ω1 + ω2)

(
q1ω

2
2 − q2ω1(ω1 + 2ω2)

) + 4(vF kF )4
(
q2ω1(ω1 + 2ω2)3

− q1ω2
(
4ω3

1 + 4ω2
1ω2 + 2ω1ω

2
2 + 3ω3

2

)) + 16(vF kF )6(q1ω2(2ω1 + 3ω2) − q2ω1(ω1 + 2ω2))
]
, (D3)

σ (2)
yyx(ω1 + ω2; ω1,ω2) = − s(εF )

e3v2
F

2π�2

1

ω2
1ω

2
2(ω1 + ω2)

1(
ω2

1 − 4v2
F k2

F

)(
ω2

2 − 4v2
F k2

F

)(
(ω1 + ω2)2 − 4v2

F k2
F

)
× [

4(vF kF )2ω1ω
2
2(ω1 + ω2)

(
q2ω

2
1 − q1ω2(2ω1 + ω2)

) + 4(vF kF )4
(
q1ω2(2ω1 + ω2)3

− q2ω1
(
3ω3

1 + 2ω2
1ω2 + 4ω1ω

2
2 + 4ω3

2

)) + 16(vF kF )6(q2ω1(3ω1 + 2ω2) − q1ω2(2ω1 + ω2))
]
. (D4)

Here s(εF ) = ±1 depending on whether the Fermi level is in the conduction or valence band.

APPENDIX E: QUASICLASSICAL APPROXIMATION

Here we provide the derivation of the quasiclassical
equations of motion which allow one to derive Eqs. (39)
and (40) of the main text in the single-band approximation of
low frequencies and high Fermi energy, when the contribution
of interband transitions can be neglected.

In the absence of external fields (A = 0,ϕ = 0) the solution
of the Schrödinger equation with Hamiltonian (1) for a fixed
energy of a quasiparticle can be written as

� =
(

�1

�2

)
= const × eik·r−i

E(k)
�

t

√
2

(
s

eiθ(k)

)
, (E1)

where s = ±1, E = s�vF |k|, and θ (k) is an angle between
the wave vector k and the x axis. In the presence of the
field, consider the solution of the Schrödinger equation with
Hamiltonian (3) in the WKB approximation. Treating � as a
small parameter, we seek the solution in the form close to (E1):

�(A,ϕ) = e
i
�

S(t,r)

{(
�

(0)
1 (t,r)

�
(0)
2 (t,r)

)
+ �

(
�

(1)
1 (t,r)

�
(1)
2 (t,r)

)
+ �

2 . . .

}
.

(E2)

First consider the terms of zeroth order with respect to �:

(−∂tS + eϕ)�(0)
1 + vF

[(
−∂xS − e

c
Ax

)
+ i

(
∂yS + e

c
Ay

)]
�

(0)
2 = 0,

vF

[(
−∂xS − e

c
Ax

)
− i

(
∂yS + e

c
Ay

)]
�

(0)
1

+ (−∂tS + eϕ)�(0)
2 = 0. (E3)

From (E3) we derive (i) the eikonal equation,

(−∂tS + eϕ)2 = v2
F

(e

c
A + ∇S

)2
, (E4)

and (ii) the relationship between the spinor components,

�
(0)
1

�
(0)
2

= ±
[
cos θ

(e

c
A + ∇S

)
− i sin θ

(e

c
A + ∇S

)]

= ±e−iθ( e
c

A+∇S), (E5)

where θ ( e
c

A + ∇S) is the angle between vector e
c

A + ∇S and
the x axis. Equation (E5) allows one to represent the WKB
solution in the form

�(A,ϕ) = �(t,r)e
i
�

S(t,r)

√
2

(
s

eiθ( e
c

A+∇S)

)
. (E6)

The expression for the factor � can be obtained by requiring
that there exist the nontrivial solution to the next order term
�(�

(1)
1 (t,r)

�
(1)
2 (t,r)

); this approach is used, for example, in order to find

the normal modes in anisotropic media [28]. However, it is
much easier to use the conservation of the probability flux,
which in our case is given by

∂

∂t

(
�∗�

) = −vF ∇ · [�∗σ̂�]. (E7)

From here,

∂|�|2
∂t

= −∇ ·
[

svF

(
e
c

A + ∇S
)∣∣ e

c
A + ∇S

∣∣ |�|2
]
. (E8)

Now consider the solution to the eikonal equation (E4),
which we will interpret as a Hamilton-Jacobi equation [29],
corresponding to the Hamiltonian H (P,r,t):

∂tS + H (P,r,t) = 0, ∇S = P,

H (P,r,t) = −eϕ(r,t)

+ svF

√(
Px + e

c
Ax

)2
+

(
Py + e

c
Ay

)2
.

(E9)

The canonical equations of motion for this Hamiltonian are

ṙ = ∂H (P,r,t)
∂ P

= svF

P + e
c

A∣∣P + e
c

A
∣∣ ,

Ṗ = −∂H (P,r,t)
∂ r

= e∇ϕ − e

c
[ṙ × (∇ × A) + (ṙ · ∇)A]. (E10)

Introducing the kinematic momentum p = P + e
c

A, for which
ṗ = Ṗ + e

c
[ ∂ A

∂t
+ (ṙ · ∇)A], we obtain from Eqs. (E10) the

quasiclassical equations of motion:

ṙ = svF

p
| p| , ṗ = −eE − e

c
(ṙ × B), (E11)
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where E = −∇ϕ − 1
c

∂ A
∂t

and B = ∇ × A. Equations of mo-
tion (E11) correspond to the kinetic equation for quasiparticles:

∂f (r, p,t)

∂t
+ svF

p
| p|

∂f (r, p,t)

∂ r

−e

[
E + svF

c

(
p

| p| × B
)]

∂f (r, p,t)

∂ p
= St[f (r, p,t)],

(E12)

where St[f (r, p,t)] is the collision integral. Quasiclassical
equations (E11) or (E12) were the starting point for evaluation
of both linear and nonlinear optical response in a number of
works; see, e.g. [14–16,30,31]. As we have already discussed
in the previous section, this approach can be justified only
in the limit of low photon frequencies and large Fermi
energies, when the contribution of interband transitions can be
neglected.
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