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We analyze the electronic structure in the three-dimensional (3D) crystal formed by the sp2 hybridized orbitals
(K4 crystal), by the tight-binding approach based on the first-principles calculation. We discover that the bulk
Dirac-cone dispersions are realized in the K4 crystal. In contrast to the graphene, the energy dispersions of the
Dirac cones are isotropic in 3D and the pseudospin S = 1 Dirac cones emerge at the � and H points of the bcc
Brillouin zone, where three bands become degenerate and merge at a single point belonging to the T2 irreducible
representation. In addition, the usual S = 1/2 Dirac cones emerge at the P point. By focusing the hoppings
between the nearest-neighbor sites, we show an analytic form of the tight-binding Hamiltonian with a 4 × 4
matrix, and we give an explicit derivation of the S = 1 and S = 1/2 Dirac-cone dispersions. We also analyze
the effect of the spin-orbit coupling to examine how the degeneracies at Dirac points are lifted. At the S = 1
Dirac points, the spin-orbit coupling lifts the energy level with sixfold degeneracy into two energy levels with
two-dimensional Ē2 and four-dimensional F̄ representations. Remarkably, all the dispersions near the F̄ point
show the linear dependence in the momentum with different velocities. We derive the effective Hamiltonian near
the F̄ point and find that the band contact point is described by the S = 3/2 Weyl point.
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I. INTRODUCTION

Electronic structure of graphene has been a subject of
intensive research over the years [1–4], since it has been
recognized as the most exciting material after the discovery
of the massless Dirac fermions [5,6]. The massless Dirac
fermions have been widely recognized in the condensed-matter
systems, especially in the context of the topological insulators
[7,8]. In the case of graphene, the sp2 hybridized orbitals
build up the honeycomb crystal, and the π electrons exhibit
the Dirac fermion behavior on it. Recently, the 3D analog of
the graphene has also attracted much attention [9,10]. Even
in the 3D diamond structure, the suppression of the density
of states has been observed in the valence band [11] and the
possible realization of the three-dimensional (3D) Dirac cone
has been discussed [9].

From the mathematical point of view, the honeycomb and
the diamond crystals have the common properties, called the
strongly isotropic property [12,13]. The strongly isotropic
property indicates the property that preserves the crystal net
after any permutation of bonds with common end point. The
honeycomb structure is the only two-dimensional (2D) crystal
that possesses the strongly isotropic property. In 3D, there
are only two strongly isotropic crystals: one is the diamond
crystal and the other is the K4 crystal. The K4 crystal is
defined as the standard realization of the maximal topological
crystal over the K4 graph [12,13]. Here K4 represents the
complete graph with four vertices, as shown in Fig. 1(a), and its
crystal structure is shown in Fig. 1(b). Like the 2D honeycomb
crystal, the coordination number of the K4 crystal is three.
The synthesis of the K4 crystal in terms of the carbon atoms
(called the K4 carbon) has not been succeeded so far despite
the several theoretical predictions based on the first-principles
calculations [14,15]. Quite recently, the discovery of the K4

crystal was made where the constituting unit is a large molecule
instead of the carbon atom [16].

The effect of the spin-orbit coupling (SOC) on the Dirac
cones has been attracting great interest owing to the discovery
of the topological insulator [17]. In the case of honeycomb

structure, the degeneracy of the Dirac point is lifted and
the gap appears. On the other hand, in the case of diamond
crystal, the SOC lifts the degeneracy along the X-W line
in the Brillouin zone [9] except for the X point, i.e., the
two bands touch at the X point. Due to the presence of the
inversion (I) and time-reversal (TR) symmetries, each band
is doubly degenerate at general k points and thus the contact
point has fourfold degeneracy. Thus the band touching point
at the X point is the Dirac point, which is described by the
four-band Dirac Hamiltonian. If the I or TR symmetry is
broken, the double degeneracy at general k points is lifted. In
this case, the possibility of the low-symmetry band touchings
has been argued [18,19], where the contact point has twofold
degeneracy. These touching points are referred to as the Weyl
points [20,21]. Recently, the experimental realization of the
Weyl points has been reported [22].

In the present paper, we analyze the band structure of the
K4 crystal by the tight-binding approach. We discover that
three-dimensional Dirac-cone dispersions are realized in the
K4 crystal. In contrast to the graphene, three bands touch at a
single point on the � and H points of the bcc Brillouin zone,
indicating the emergence of pseudospin S = 1 Dirac cone.
In addition, the usual S = 1/2 Dirac cones emerge at the P

point, where the two bands touch at a single point. Since the I
symmetry is broken in the K4 crystal, the energy splitting due
to SOC is peculiar. We show that, at the S = 1 Dirac points,
the SOC lifts the energy level with sixfold degeneracy into two
energy levels with two-dimensional Ē2 and four-dimensional
F̄ irreducible representations. Especially, we find that the
dispersion near the F̄ point is described by the S = 3/2 Weyl
dispersions.

The present paper is organized as follows. In Sec. II, we
recall briefly how the K4 crystal can be realized from the K4

graph and how the strongly isotropic character is retained.
In Sec. III, we construct the tight-binding model for the K4

carbon based on the first-principles calculation by focusing on
the carbon π orbital. In Sec. IV, the tight-binding Hamiltonian
is analyzed and we show explicitly how the pseudospin S = 1
and S = 1/2 Dirac-cone dispersions are derived. Finally, in
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FIG. 1. (a) Complete graph K4 where {A,B,C,D} are the vertices
and {e1,e2,e3,f1,f2,f3} are the oriented edges. (b) The K4 crystal
structure. The numbers in the parentheses represent the fractional
Cartesian coordinates in the cubic conventional unit cell. There are
eight sites in the conventional unit cell. In the primitive unit cell, there
are four sites, A, B, C, and D. The coordination number is three and
the bonds connecting nearest-neighbor sites are represented by the
vectors given in Eq. (1).

Sec. V, the effect of the SOC is analyzed. Section VI is devoted
to the summary and discussions.

II. K4 CRYSTAL

The K4 crystal is realized as the maximal topological
crystal over the K4 graph. The general arguments to obtain
the realization of the crystal from the finite graph are based
on the homology group. Here, we simply follow the algorithm
given in Refs. [12,13] to construct the K4 crystal, without
the mathematical details. In the graph K4 of Fig. 1(a), the
vertices are described by {A,B,C,D} and the edges are
{e1,e2,e3,f1,f2,f3}. First we consider three closed paths
c1 = (e2,f1,ē3), c2 = (e3,f2,ē1), and c3 = (e1,f3,ē2) in the
K4 graph [Fig. 1(a)]. The inner product can be introduced
by 〈e,e′〉 = 1 (if e′ = e), −1 (if e′ = ē), and 0 (otherwise),
where e,e′ = ei,fi . Then we find |c1|2 = |c2|2 = |c3|2 = 3
and 〈ci,cj 〉 = −1 (i �= j ). The vectors connecting the nearest-
neighbor sites (building blocks) for the infinite K4 crystal,
v(ei) and v(fi), can be constructed by taking c1, c2, c3 as
the basis, e.g., v(e1) = a1c1 + a2c2 + a3c3 (ai ∈ R). From
the relations 〈v(e1),c1〉 = 〈e1,c1〉 = 0, 〈v(e1),c2〉 = 〈e1,c2〉 =
−1, and 〈v(e1),c3〉 = 〈e1,c3〉 = +1, we can obtain a1 = 0,
a2 = −1/4, and a3 = +1/4, and thus v(e1) is determined as
v(e1) = −c2/4 + c3/4. From this simple calculation, we can
get the following relations:

v(e1) = − 1
4 c2 + 1

4 c3,

v(e2) = − 1
4 c3 + 1

4 c1,

v(e3) = − 1
4 c1 + 1

4 c2,
(1)

v(f1) = + 1
2 c1 + 1

4 c2 + 1
4 c3,

v(f2) = + 1
2 c2 + 1

4 c3 + 1
4 c1,

v(f3) = + 1
2 c3 + 1

4 c1 + 1
4 c2.

The vectors ±v(ei) and ±v(fi) constitute the building block
of the K4 crystal, e.g., v(e1) is the vector connecting the A and
B sites in Fig. 1(b).

One possible choice of ci is c1 = (+1,−1,−1), c2 =
(−1,+1,−1), and c3 = (−1,−1,+1). The realized K4 crystal
is shown in Fig. 1(b). The numbers in the parentheses represent
the fractional Cartesian coordinates in the cubic conventional
unit cell, where we note that the lattice constant becomes a = 2
by the definition of the building block vectors [Eq. (1)]. From
the crystallographic point of view, the space group of the K4

crystal is I4132 (No. 214) and the primitive vectors are chosen
as t1 = (− 1

2 , 1
2 , 1

2 ), t2 = ( 1
2 ,− 1

2 , 1
2 ), and t3 = ( 1

2 , 1
2 ,− 1

2 ), in the
unit a = 2. There are four sites in the primitive cell and these
four sites are specified as A, B, C, and D, in Fig. 1. The
coordination number is three, as in the 2D graphene.

The K4 crystal has the remarkable mathematical property,
called the strongly isotropic property [12,13], indicating the
property that preserves the crystal net after any permutation
of bonds with common end point. For example, by focusing
of the A site at ( 1

8 , 1
8 , 1

8 ) in Fig. 1(b), we can keep the
crystal net even if we exchange the bonds v(e2) and v(e3)
while the v(e1) bond is fixed. This congruent transformation
can be realized by combination of the rotation about the
twofold rotation axis C2f [23] and the subsequent translation
r → r + t where t = ( 1

4 , 1
4 , 1

4 ). In the usual crystallographic
notation, this transformation is represented by {C2f | 1

2
1
2

1
2 },

which is nothing but one element of the space group I4132.
Here, we note that the translation vector 1

2
1
2

1
2 is given in the unit

of the primitive vectors, i.e., t = 1
2

1
2

1
2 = 1

2 t1 + 1
2 t2 + 1

2 t3 =
( 1

4 , 1
4 , 1

4 ). It is known that the honeycomb and the diamond
crystals have this strongly isotropic property [12,13]. The
honeycomb is the only crystal having the strongly isotropic
property in 2D, and there are only two strongly isotropic
crystals in 3D: one is the diamond crystal and the other is the K4

crystal. In this sense, the diamond crystal and K4 crystal are the
most beautiful crystals in 3D and the K4 crystal can be called
the diamond twin [13]. It has been emphasized [12,13] that
the K4 crystal has chirality as can be seen from the existence
of the 41 screw axis, in contrast to the diamond crystal. Thus
the effect of the SOC on the K4 crystal is different from that
on the diamond crystal due to the lack of the I symmetry. We
argue the effect of the SOC in Sec. V.

III. K4 CARBON

In this section, we construct the tight-binding model for the
K4 carbon in terms of the first-principles calculation.

A. Band structure of the K4 carbon

The stability of the K4 carbon has been discussed theoret-
ically and the metallic behavior was predicted [14,15]. The
optimized bond distance is 1.4–1.5 Å, which is comparable
to that in diamond and graphite. Figure 2(a) shows the band
structure obtained by the first-principles density-functional-
theory (DFT) calculation based on generalized gradient ap-
proximation with the use of the WIEN2K code [24]. The lattice
constant is set as a = 4.063 Å, according to Ref. [14], where
the bond distance for nearest-neighbor sites is d ≈ 1.44 Å.
The Brillouin zone is shown in Fig. 2(b). The band structure
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FIG. 2. (a) Band structure for the K4 carbon obtained from the
first-principles calculation. The band structure by the tight-binding
model is shown by the bold (red) curves. (b) The Brillouin zone for
bcc. The band structures near the H (c) and P (d) points. (e) The
evaluated hopping integrals as a function of the intersite distance.

well reproduce the ones reported in Refs. [14] and [15]. The
four conduction bands in the energy range −3.5 eV < Ek <

6.5 eV are constructed by the carbon p orbitals that stand
perpendicular to the plane formed by the nearest-neighbor
carbon atoms, i.e., by the “π” orbitals. The valence bands in the
energy range −20 eV < Ek � −8 eV are mainly formed by
the carbon s orbitals. The bands at −8 eV � Ek < −5 eV are
constructed by both the s orbitals and the p orbitals elongated
perpendicular to the π orbital, i.e., by the “σ” hybridized
orbitals. We observe two kinds of the nontrivial degenerate
points in the conduction bands. First, at the H (�) point, the
bands are triply degenerate with E = 1.63 eV (−2.48 eV).
The band structure near the H point is explicitly shown in
Fig. 2(c). We find that the bands near the H point exhibit the
linear k dependencies except for the middle band. Due to the
3D isotropic structure, the band structures are isotropic with
the axes kx , ky , and kz. Secondly, a pair of the degenerate two

bands can be observed at the P point, as shown in Fig. 2(d).
We also note that the triply and doubly degenerate points can
also be observed in the valence bands.

B. Tight-binding model of the K4 carbon

In order to analyze the band structure in more detail, we
construct the tight-binding model based on the maximally
localized Wannier functions [25], by targeting the four con-
duction bands in the energy range −3.5 eV < Ek < 6.5 eV.
The Wannier functions contributing these four bands are well
described by the π orbitals. The standing directions of the
π orbitals for the A–D sites can be described by the normal
vectors n(A) = (1,1,1), n(B) = (−1,1,1), n(C) = (1,−1,1),
and n(D) = (1,1,−1). These four π orbitals in the primitive
unit cell construct four conduction bands. The tight-binding
hopping integrals evaluated on the basis of the Wannier
functions [25] are shown in Fig. 2(e). The hopping parameter
for the nearest neighbor sites is given by t1 = −0.782 eV. This
parameter can be contrasted to the one in the graphene [26,27]:
recent evaluation of the hopping parameters for 2D graphene
indicates (ppπ ) ≈ −3.0 eV [27]. The hopping amplitude
depends on the angle between the π orbitals of the neighboring
carbon atoms. In terms of the Slater-Koster parametrization
[28], the nearest-neighbor hopping integral for the K4 carbon
is given by t1 = (ppπ )/3. Thus the parameter of (ppπ ) for the
K4 carbon is consistent with that for the graphene. In addition,
we observe that the amplitudes of the long-distance hoppings
are relatively large. This fact is also consistent with the results
in the graphene [27].

The band structures obtained from the tight-binding approx-
imation are shown by bold (red) curves in Fig. 2(a). We find
the tight-binding model based only on the π orbital perfectly
reproduces the DFT results of the conduction bands. There is
presumably small but nonzero hopping between the π and s

orbitals with different sites. Such an effect would be included
effectively and, as a result, the relatively large long-distance
hopping parameters are obtained. This would be one reason
why the four π -orbital description works well.

IV. DIRAC POINTS IN THE K4 CRYSTAL

In the section, we analyze the � and P points on the basis
of the tight-binding model and show that the degenerate points
at � and P points are described by the pseudospin S = 1
and S = 1/2 Dirac cones, respectively. A generalization of
the Dirac cone structure to posses pseudospin S > 1

2 has
been discussed in the literature [29–31]. In the conventional
S = 1/2 Dirac cone, two bands exhibit linear dependence in
the momentum and touch at a single point. In contrast, in
the S = 1 case, three bands become degenerate and touch
at a single point, where anomalous physical behavior can be
expected [31]. Recently a possible system to emerge the S = 1
Dirac cone has been proposed in terms of the first-principles
calculation [32]. However, the explicit tight-binding model
that exhibits the S = 1 Dirac cone is not obtained, and then
the physical properties have not been clarified yet.

In order to simplify the discussions, we focus on the nearest-
neighbor hopping only. This situation is indeed relevant to
the recently discovered K4 crystal [16], as will be discussed
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FIG. 3. (a) Band structures of the tight-binding model for the K4 crystal. Only the nearest-neighbor hoppings are taken into account.
The Dirac points are indicated by circles. The triple degeneracy at the �5 point is described by the three-dimensional real T2 irreducible
representation, and the double degeneracies at the P2 and P3 points are described by the two-dimensional complex 1F2 and 1F3 irreducible
representations. The P2 and P ′

2 (P3 and P ′
3) are the conjugate pair of the complex representation. (b) The density of states. The case for half

filling n = 1 is shown where n is the filling factor. The Fermi energy coincides with that of the S = 1 Dirac point if n = 2/3 or 4/3. (c) The
S = 1 Dirac cone at the � and H points. (d) The S = 1/2 Dirac cone at the P points.

later. Since there are four sites in the primitive unit cell,
the Hamiltonian can be described as the 4 × 4 matrix in the
orbital basis (ϕA(k),ϕB(k),ϕC(k),ϕD(k)), Here we consider
the s-orbital bands. The tight-binding Hamiltonian is explicitly
given by

Hk = −

⎛
⎜⎜⎜⎜⎝

0 e− i
2 k·v(e1) e− i

2 k·v(e2) e− i
2 k·v(e3)

e
i
2 k·v(e1) 0 e− i

2 k·v(f3) e
i
2 k·v(f2)

e
i
2 k·v(e2) e

i
2 k·v(f3) 0 e− i

2 k·v(f1)

e
i
2 k·v(e3) e− i

2 k·v(f2) e
i
2 k·v(f1) 0

⎞
⎟⎟⎟⎟⎠.

(2)

Owing to the property of completeness of K4, the off-diagonal
components of the matrix become dense. The nearest-neighbor
hopping parameter is set to t = −1. The building block vectors
[Eq. (1)] are explicitly given by v(e1) = 1

2 (0,−1,1), v(e2) =
1
2 (1,0,−1), v(e3) = 1

2 (−1,1,0), v(f1) = 1
2 (0,−1,−1), v(f2) =

1
2 (−1,0,−1), and v(f3) = 1

2 (−1,−1,0). In the s-orbital case,
the sign of the hopping is common. If we consider the π -orbital
case, the sign of the hopping integral can be altered depending
on bonding or antibonding character of the π overlapping.
The signs of the hoppings are determined by those of the inner
product of vectors, i.e., n(B) · n(C) = −1, n(B) · n(D) = −1,
n(C) · n(D) = −1, and become positive otherwise. Thus in the
case of π -orbital case the extra prefactor −1 should be added
for the (2,3), (2,4), (3,2), (3,4), (4,2), (4,3) matrix components.

The band structures obtained from Eq. (2) are shown in
Fig. 3(a). The degenerate dispersion relations near the � and
H points (P and P ′ points) can be described by the S =
1 (S = 1/2) Dirac cone as shown shortly. The S = 1 Dirac
point is at the �5 point with the energy E = +1 where the
bands are triply degenerate. The triple degeneracy at the �5

point is described by the three-dimensional real T2 irreducible
representation [23]. The same profile can be seen at the H

point. The S = 1/2 Dirac points are at P2 and P3 points where
the bands are doubly degenerate at the energy E = ±√

3. The

double degeneracies at P2 and P3 are described by the two-
dimensional complex 1F2 and 1F3 irreducible representations
[23]. Due to the presence of the flat bands near the S = 1 Dirac
points at � and H , the critical enhancement can be observed
at E = ±1 in density of states (DOS), as shown in Fig. 3(c).
In contrast, sufficient suppressions can be seen at E = ±√

3,
reflecting the presence of the S = 1/2 Dirac cones. The same
profile of the DOS can be seen in the 3D hyperkagomé crystal
except for the van Hove singularity owing to flat bands [33].
Note that the DOS does not vanish precisely at E = ±√

3,
since another band across this energy at different position
in k.

A. S = 1 Dirac cone at the � point

Here we derive the effective Hamiltonian near the �

point and show explicitly that its character is described by
pseudospin S = 1 Dirac cone. By setting k = (0,0,0) in
Eq. (2), all the off-diagonal matrix elements become −1, and
then the eigenvalues are −3 (no degeneracy) and +1 (triple
degeneracy) [see Fig. 4(a)]. The energy separation at the �

point can be recognized by regarding the K4 graph [Fig. 1(a)]
as a regular tetrahedron. The eigenfunctions of the regular
tetrahedron can be classified according to the representation of
the point group Td and are composed of the A1 representation
and the T2 representation. In the tight-binding picture, the A1
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FIG. 4. Structure of the Hamiltonian matrix and the correspond-
ing energy diagrams at the � point (a) and the P point (b).

195426-4



THREE-DIMENSIONAL HIGHER-SPIN DIRAC AND WEYL . . . PHYSICAL REVIEW B 94, 195426 (2016)

representation has the energy −3 and the T2 representation
has +1. One of the possible choices of the unitary matrix for
diagonalizing Hk on the � point is given by

U� = 1

2

⎛
⎜⎜⎝

1 e−i π
4 e+i π

2 e+i π
4

1 e−i 3π
4 e−i π

2 e+i 3π
4

1 e+i π
4 e−i π

2 e−i π
4

1 e+i 3π
4 e+i π

2 e−i 3π
4

⎞
⎟⎟⎠. (3)

The first column corresponds to the A1 representation and the
remaining three columns to the T2 representation of the point
group Td. By applying this unitary matrix to the Hamiltonian
(2), and by expanding the momentum up to O(k), we obtain

U
†
�HkU� = Ê� + 1

2

⎛
⎜⎜⎜⎝

0 0 0 0
0 kz

1√
2
k− 0

0 1√
2
k+ 0 1√

2
k−

0 0 1√
2
k+ −kz

⎞
⎟⎟⎟⎠

+O(k2), (4)

where k± ≡ (kx ± iky), and Ê� = diag(−3,1,1,1) is the set
of the energy eigenvalues on the � point. If we focus on the
second, third, and fourth rows and columns in the second term
in Eq. (4), the effective Hamiltonian is given by the 3 × 3
matrix:

Heff = 1
2 k · S, (5)

where S = (Sx,Sy,Sz) is the spin-1 matrix:

Sx =

⎛
⎜⎝

0 1√
2

0
1√
2

0 1√
2

0 1√
2

0

⎞
⎟⎠, Sy =

⎛
⎜⎝

0 −i√
2

0
i√
2

0 −i√
2

0 i√
2

0

⎞
⎟⎠,

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (6)

Thus the electronic structure near the � point is described by
the pseudospin S = 1 Dirac cone. The energy dispersions are
given by

E+
k = 1 + 1

2

√
k2
x + k2

y + k2
z + O(k2),

E0
k = 1 + O(k2),

E−
k = 1 − 1

2

√
k2
x + k2

y + k2
z + O(k2). (7)

The dispersion relations near the H point are described in a
similar manner. The S = 1 Dirac cone structure near the �5

point is shown in Fig. 3(c).

B. S = 1
2 Dirac cone at the P point

Next, we focus on the dispersion relations near the P point.
By setting k = P ≡ (π,π,π ) in Eq. (2), some matrix elements
become imaginary [see Fig. 4(b)] and the eigenvalues are ±√

3
with double degeneracy. We find that the conjugate pair of the
eigenfunctions (ϕA,ϕB,ϕC,ϕD) = (0,1,ω,ω2) and (0,1,ω2,ω),
where ω ≡ exp(i2π/3), have different energies. The degen-
erate pairs can be generated by the C2 transformation of
the regular tetrahedron, e.g., (A,B,C,D) → (C,iD,A,−iB).
Then the full eigenfunctions are (ϕA,ϕB,ϕC,ϕD) = (0,1,ω,ω2)
and (ω,iω2,0,−i) for Ek = +√

3, and (ϕA,ϕB,ϕC,ϕD) =
(0,1,ω2,ω) and (ω2,iω,0,−i) for Ek = −√

3. From the Gram-
Schmidt orthogonalization procedure, one of the choices of the
unitary matrix for diagonalizing Hk on the P point is given by

UP = 1√
6

⎛
⎜⎜⎜⎜⎝

√
3 0 −√

3 0

1
√

2 1
√

2ω2

1
√

2ω2 1
√

2

1
√

2ω 1
√

2ω

⎞
⎟⎟⎟⎟⎠. (8)

The first and second (third and fourth) columns represent
the eigenvectors for the eigenvalue −√

3(+√
3). In order to

analyze the dispersion relation near this point, we apply the
unitary transformation to the Hamiltonian (2). By expanding
it up to the first order in the momentum k, we find

U
†
P HP+kUP = ÊP +1

6

⎛
⎜⎜⎜⎜⎝

kx + ky + kz

√
2(kx + ω2ky + ωkz) kx + ky + kz − 1√

2
(ω2kx + ky + ωkz)

−(kx + ky + kz) − 1√
2
(kx + ωky + ω2kz) −(ω2kx + ωky + kz)

kx + ky + kz

√
2(ω2kx + ky + ωkz)

−(kx + ky + kz)

⎞
⎟⎟⎟⎟⎠ + O(k2),

(9)

where ÊP = diag(−√
3,−√

3,+√
3,+√

3) is the set of the
energy eigenvalues on the P point. Here the quantity k
indicates the momentum centered at the P point. From the
perturbative arguments up to O(ki), we can neglect the off-
diagonal matrix elements connecting the states with different
eigenvalues ±√

3, since the contributions of the dropped
terms are of the order of k2. Thus the Hamiltonian (9)

can be divided into two 2 × 2 Hamiltonians. The effective
Hamiltonian representing lower two bands is given by

H eff
k = 1

6

(
kx + ky + kz

√
2(kx + ω2ky + ωkz)√

2(kx + ωky + ω2kz) −kx − ky − kz

)
.

(10)
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From this Hamiltonian, we immediately find that the energy
dispersion is given by

Eeff
k,± = ± 1

2
√

3

√
k2
x + k2

y + k2
z + O(k2), (11)

which represents the 3D S = 1/2 Dirac cone. The dispersion
relation near the P point is shown in Fig. 3(d). In the case of
the P ′ point, the Dirac cone has opposite chirality, as in the
case of 2D graphene.

In the above analysis, we focused only on the nearest-
neighbor hopping. By taking into account the long-distance
hopping parameters shown in Fig. 2(e), the conduction π

band dispersions can be reproduced [the bold (red) curves
in Fig. 2(a)]. We find that the Dirac cone structures are robust
against the long-distance hoppings. Here we note that, in the
case of the π orbital, the structures at � and H points are
interchanged. Since the long-distance hopping parameters are
relatively large, the band structures are strongly modified.
Especially, the energy level with the A1 representation (�1

point) becomes higher than that of the S = 1/2 Dirac point
at the P2 point in the case of the carbon system. However,
in the case of the recently discovered K4 crystal [16], the
long-distance hopping can be small and this simple treatment
based only on the nearest-neighbor hopping can be justified,
as will be discussed later.

V. EFFECT OF THE SPIN-ORBIT COUPLING

In this section, we analyze the effect of the SOC in the K4

crystal. The effect of the SOC is not common even within the
strongly isotropic crystals. The Dirac points in the 2D graphene
are not robust against the SOC [17]; on the other hand, the
Dirac points can emerge in 3D diamond as a consequence of
the SOC [9]. In contrast to the 2D honeycomb and 3D diamond
crystals, the K4 crystal does not hold the inversion symmetry
[12]. Thus the degeneracy of band at general points is lifted
due to the SOC, and the modification of the band structure
near the Dirac points shows unique properties.

As has been discussed in Refs. [7,9,17], the intrinsic SOC
can be expressed in terms of spin-dependent next-nearest-
neighbor hopping. The explicit Hamiltonian of the SOC is
given by

HSOC = i
8λSO

a2

∑
〈〈ij〉〉

c
†
i s · (

v1
ij × v2

ij

)
cj , (12)

where 〈〈ij 〉〉 represents the summation of the sites over the
next-nearest-neighbor pairs, and v

1,2
ij are the nearest-neighbor

bond vectors traversed between sites i and j . The band
structure of the tight-binding model (2) in the presence of
the SOC term (12) is shown in Fig. 5(a). In the general points
of k, the degeneracy of the bands is lifted due to the SOC since
the K4 crystal does not have the inversion symmetry.

The band structures near the � point show unique proper-
ties. When the SOC is introduced, the sixfold degeneracy at
the �5 point splits into two energy levels of E�7 = +1 − 8λSO

with the two-dimensional �7 (Ē2) representation and E�8 =
+1 + 4λSO with the four-dimensional �8 (F̄ ) representation,
whereas the �1 point turns into the two-dimensional �6 (Ē1)
with the energy Ek = −3. The effective Hamiltonian near the

−4
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4
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FIG. 5. (a) Band structure of the tight-binding model for the K4

crystal with the spin-orbit interaction λSO = 0.05. In the double-
valued representation, the �6 and �7 points are described by the
two-dimensional Ē1 and Ē2 irreducible representation, respectively,
and the �8 point is by the four-dimensional F̄ representation. The P5

and P6 points are the conjugate pair of the one-dimensional 1Ē and
2Ē representation. The triple degeneracy at the P7 points is described
by the three-dimensional T̄ representation. (b) The dispersions near
the �7 and �8 points are shown with fixed kz = 0. In this figure, only
the region kx < 0 is shown.

� point can be obtained by applying the transformation given
by Eq. (3) to the SOC term [Eq. (12)]. Especially near the
S = 1 Dirac point (�5), the SOC induces a perturbation in the
form of a 6 × 6 matrix:

H eff
SOC = 4λSO S · σ , (13)

where σ = (σx,σy,σz) is the 2 × 2 Pauli matrix representing
the electron’s spin. The energy dispersion near the �7 and �8

points is shown in Fig. 5(b). Near the fourfold degenerate �8

point, the band structure exhibits the linear k dependencies.
The effective Hamiltonian near the �8 point can be derived by
considering the situation |k| � |λSO| and is described by a 4 ×
4 matrix. By applying an appropriate unitary transformation
for diagonalizing the SOC term, the effective Hamiltonian is
given by H eff

�8
= 1 + 4λSO + 1

3 k · J , where J = (Jx,Jy,Jz) is
the 4 × 4 spin-3/2 matrix. Therefore, the dispersions near the
�8 point are described by the S = 3/2 Weyl dispersions, where
the dispersions take forms 1 + 4λSO ± 1

2 |k| and 1 + 4λSO ±
1
6 |k|. Incidentally, we can observe S = 1/2 Weyl dispersions
around the �7 point, where the energy dispersions are given
by 1 − 8λSO ± 1

3 |k|. Similar structure can be observed at the
H point.

At the P point, we also observe the unique properties.
The energy splitting on the P points are given by ±√

3 −
6λSO (unique) at the P5 or P6 point and ±√

3 + 2λSO (triply
degenerate) at the P7 point. The P5 and P6 points are described
by the conjugate pair of the one-dimensional complex 1Ē and
2Ē representations. On the other hand, the P7 point is described
by the T̄ representation and would be described by the S = 1
Weyl point. Incidentally, we observe several contact points
with accidental degeneracy at general k points, e.g., along the
�-P and �-N lines. Analyses of physical quantities on this
system are desired for future work.
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VI. SUMMARY

In summary, we have examined the energy dispersion of the
K4 crystal in detail. The tight-binding model has been derived
explicitly where we show the emergence of the pseudospin
S = 1 and S = 1/2 Dirac cones. We have also analyzed the
effect of SOC to examine how the degeneracies at the Dirac
points are lifted. In contrast to the other strongly isotropic
honeycomb and diamond crystals, the K4 crystal lacks the
inversion symmetry, and the lowering of the symmetry is quite
peculiar. We found that, by including the SOC, the S = 1
Dirac point split into the S = 3/2 Weyl point with the four-
dimensional F̄ representation and the S = 1/2 Weyl point with
the two-dimensional Ē2 representation.

Here we note the magnitude of the SOC in the K4 carbon
system. In Sec. V, we have analyzed the SOC based on the
tight-binding model. It is well known that the SOC is small
in the carbon system because of the light atom. We have
performed the first-principles calculation to the K4 carbon
system, including the SOC. We have verified that the energy
splitting given in Fig. 5 can be reproduced from the first-
principles calculation, but the energy splitting of the sixfold
degeneracy at the H point is small ∼10 meV. As has been
discussed in Ref. [9], the replacement of carbon atoms with
heavier atoms enlarges the energy splitting. Further physical
and chemical analyses are necessary for the realization of
S = 3/2 Weyl semimetal in the K4 crystal, i.e., for clarifying
the conditions that the S = 3/2 Weyl point emerges at the
Fermi energy without the other Fermi surfaces.

Finally we briefly discuss the relevance of the present
analysis to the recently synthesized K4 crystal. The first
success in synthesizing the K4 crystal was achieved [16],
where the constituting component is a molecule (called the
NDI-�), instead of the carbon atom. In this material, the
frontier molecular orbitals are extended along the neighboring
molecules, i.e., the intermolecular overlapping is of the σ type.
In addition, the long distance hoppings are not relevant since

the distance between the next-nearest-neighbor molecules is
large (=√

3/8a ∼ 18 Å). Thus the dispersive band structure
is similar to that shown in Fig. 3(a). In addition, the filling
factor n for the NDI-� system was evaluated as n ≈ 1.4 [16],
which is close to n = 4/3. This indicates a possibility that the
Fermi energy lies on the S = 1 Dirac point, i.e., the S = 1
Dirac semimetal. Additionally, nontrivial flat bands have
been pointed out reflecting the peculiar molecular structure
of NDI-� [16]. Further theoretical investigation needed for
analyzing the electronic states in the newly discovered K4

crystal is left for future work.
Note added. We became aware of the paper by Mañes

[34] at the final stage of this work, where the tight-binding
Hamiltonian of a model with the space group I4132 had been
considered explicitly. This is essentially identical to Eq. (2),
where the S = 1/2 Dirac points at the P point and the S = 1
Dirac points at the � and H points had been pointed out. The
similar dispersion relation has been pointed out recently in
the Kitaev spin model on the K4 crystal [35,36], where the
dispersion is for the Majorana fermion. We also became aware
of the recent paper [37], which gave general arguments on the
higher-spin Dirac or Weyl dispersions and classified them by
the space group symmetries.
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[34] J. L. Mañes, Phys. Rev. B 85, 155118 (2012).
[35] M. Hermanns and S. Trebst, Phys. Rev. B 89, 235102 (2014).
[36] K. O’Brien, M. Hermanns, and S. Trebst, Phys. Rev. B 93,

085101 (2016).
[37] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J.

Cava, and B. A. Bernevig, Science 353, aaf5037 (2016).

195426-8

https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1016/j.cpc.2010.08.005
https://doi.org/10.1016/j.cpc.2010.08.005
https://doi.org/10.1016/j.cpc.2010.08.005
https://doi.org/10.1016/j.cpc.2010.08.005
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1103/PhysRevB.87.195450
https://doi.org/10.1103/PhysRevB.87.195450
https://doi.org/10.1103/PhysRevB.87.195450
https://doi.org/10.1103/PhysRevB.87.195450
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1088/1742-6596/334/1/012044
https://doi.org/10.1088/1742-6596/334/1/012044
https://doi.org/10.1088/1742-6596/334/1/012044
https://doi.org/10.1088/1742-6596/334/1/012044
https://doi.org/10.1038/nphys2857
https://doi.org/10.1038/nphys2857
https://doi.org/10.1038/nphys2857
https://doi.org/10.1038/nphys2857
https://doi.org/10.1103/PhysRevB.90.035405
https://doi.org/10.1103/PhysRevB.90.035405
https://doi.org/10.1103/PhysRevB.90.035405
https://doi.org/10.1103/PhysRevB.90.035405
https://doi.org/10.1103/PhysRevB.91.121417
https://doi.org/10.1103/PhysRevB.91.121417
https://doi.org/10.1103/PhysRevB.91.121417
https://doi.org/10.1103/PhysRevB.91.121417
https://doi.org/10.1088/1742-6596/145/1/012013
https://doi.org/10.1088/1742-6596/145/1/012013
https://doi.org/10.1088/1742-6596/145/1/012013
https://doi.org/10.1088/1742-6596/145/1/012013
https://doi.org/10.1103/PhysRevB.85.155118
https://doi.org/10.1103/PhysRevB.85.155118
https://doi.org/10.1103/PhysRevB.85.155118
https://doi.org/10.1103/PhysRevB.85.155118
https://doi.org/10.1103/PhysRevB.89.235102
https://doi.org/10.1103/PhysRevB.89.235102
https://doi.org/10.1103/PhysRevB.89.235102
https://doi.org/10.1103/PhysRevB.89.235102
https://doi.org/10.1103/PhysRevB.93.085101
https://doi.org/10.1103/PhysRevB.93.085101
https://doi.org/10.1103/PhysRevB.93.085101
https://doi.org/10.1103/PhysRevB.93.085101
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1126/science.aaf5037



