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Aharonov-Bohm effect in a helical ring with long-range hopping: Effects of Rashba spin-orbit
interaction and disorder
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We study the Aharonov-Bohm effect in a two-terminal helical ring with long-range hopping in the presence of
Rashba spin-orbit interaction. We explore how the spin polarization behavior changes depending on the applied
magnetic flux and the incoming electron energy. The most interesting feature that we articulate in this system
is that zero-energy crossings appear in the energy spectra at � = 0 and also at integer multiples of half-flux
quantum values (n�0/2, n being an integer) of the applied magnetic flux. We investigate the transport properties
of the ring using Green’s function formalism and find that the zero-energy transmission peaks corresponding to
those zero-energy crossings vanish in the presence of Rashba spin-orbit interaction. We also incorporate static
random disorder in our system and show that the zero-energy crossings and transmission peaks are not immune
to disorder even in the absence of Rashba spin-orbit interaction. The latter prevents the possibility of these helical
states in the ring behaving like topological insulator edge states.
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I. INTRODUCTION

During the past two decades manipulating and controlling
electronic spin, one of the most fundamental degrees of
freedom, has introduced a new paradigm in the field of
quantum condensed-matter physics, especially in spintronics
[1,2]. It has drawn the interest of the scientific community due
to the prospects of application in modern quantum devices.
Recently, various spintronic phenomena like spin switching,
spin filtering, spin splittering, etc., have been proposed using
ferromagnetic leads, external magnetic fields, and so on [3,4].
Internal properties of the system have also been utilized for
maneuvering the spin current in a precise way [5]. Internal
properties like spin-orbit interaction (SOI), especially Rashba
spin-orbit interaction (RSOI) [6,7], which arise due to the
structural inversion asymmetry, yields alternative ways of spin
manipulation [8]. The tunability of RSOI strength by external
gate voltage placed in the vicinity of the sample offers an
additional degree of freedom in this context [9].

A large number of spintronic devices have been proposed
on the basis of quantum interferometers, among which
the simplest one is the ring geometry [10]. The quasi-
one-dimensional Aharonov-Bohm rings are elegant testbeds
for exploring the quantum coherence phenomena [11–17].
The simplicity of its topological geometry has drawn the
attention of researchers due to the potential application in
various nanoelectronic devices. Research activity on these
ring structures has been boosted after the recent advancement
in nanotechnology, which has made it possible to fabricate
metallic as well as semiconductor rings in desired ways
[18–22]. To study the interference effect in such a ring
geometry, Aharonov-Bohm (AB) flux is a key ingredient as
it affects only the phases of the electronic wave functions [23].
In an ordinary mesoscopic ring, AB effect deals with the charge

*paramitad@iopb.res.in
†arijit@iopb.res.in
‡jayan@iopb.res.in

of the electrons, keeping the spin degeneracy intact. Therefore,
breaking the spin degeneracy can be an interesting aspect [24].
This causes one to think about the spin AB effect where the
spin manipulation can be done by AB flux utilizing the spin-
dependent phase factors introduced by SOI. This is a nonlocal
phenomenon [25].

Indeed, this type of spin manipulation by magnetic flux can
be done by using the helical edge states, which is observed
in topologically nontrivial new state of matter [26,27]. At the
boundary of a two-dimensional (2D) topological insulator (TI),
a pair of counterpropagating states with two opposite spins and
protected by time-reversal symmetry appears [28,29]. These
one-dimensional (1D) gapless helical edge states are robust to
static disorder, resulting in the absence of backscattering, and
they cannot be perturbed as long as time-reversal symmetry is
preserved. They were theoretically predicted in quantum spin
Hall insulators [30,31]. Later, Bernevig et al. [32] investigated
the band structures of HgTe/CdTe heterostructures and showed
a transition from topologically trivial to nontrivial states of
matter by means of change in width of the heterostructure.
However, the existence of these 1D edge states was experimen-
tally realized in HgTe/CdTe heterostructrues by König et al.
[33]. This path-breaking observation stimulated the research
in this direction both theoretically [34–37] and experimentally
[38,39]. In order to understand the behavior of these helical
edge states characterized by linear dispersion, various models
have been proposed in literature like the Kane-Mele model
[30,40], Bernevig-Hughes-Zhang (BHZ) model [32], etc.
Parallel to the continuum model, lattice models have also been
proposed to describe this state of matter, being topologically
distinct from all other known states of matter [41]. although it
is difficult to map them in a lattice model since one faces the
problem of Fermion doubling [42].

In a very recent paper Masuda et al. have suggested a
model where one can get rid of the Fermion doubling problem
[43] in a lattice model. They have considered a 1D ring with
long-range hopping that stimulates the 1D edge states of a
2D topological insulator, neglecting the lateral distribution of
wave function in real systems. This long-range hopping model
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was actually introduced by Gebhard and Ruckenstein [44].
Nevertheless, their purpose was to explore the Mott-Hubbard
metal-insulator transition in this model. Masuda et al. have
modified their model to obtain a 1D interferometer with helical
spin current and predicted a way to generate spin-polarized
current by injecting completely spin unpolarized electrons.

This type of 1D model with long-range hopping has already
been used earlier to describe several physical systems, like cold
atoms, ion traps, etc. [45–53], also in biomolecules [54–56].
Very recently, Celardo et al. have studied shielding and
localization phenomena in a paradigmatic model of 1D ring
with long-range hopping [57], whereas manifestation of 1D
edge states by a simple ring geometry is a new one. However,
Masuda et al. [43] have not considered the role of Rashba spin-
orbit interaction, which plays a crucial role in modeling the
quantum spin Hall states. In addition to this, the phenomenon
of quantum interference can be more interesting in the presence
of AB flux. Now, the effect of AB flux in 2D TI ring is already
a well-explored phenomenon [58,59]. Most of the previous
work was done in order to study the circulating current within
the closed boundary. A very few studies have been made to
investigate the transmission or the conductance of electrons in
open systems comprising 1D helical states attached to leads in
the presence of magnetic flux. As an example, Chu et al. have
shown periodic oscillations in magnetoconductance leading to
a possibility of giant magnetoresistance that may be utilized
in practical applications [60].

Motivated by these facts, we explore the spin-dependent
transport phenomena in a 1D ring with long-range hopping
in the presence of AB flux and Rashba SOI. We predict the
existence of zero-energy crossings at zero and integer multiples
of half-flux quantum values of the applied magnetic flux. We
attach two 1D semi-infinite leads to the ring and studied the
transport properties using Green’s function formalism [61].
In the transmission spectra we notice the zero-energy peaks
corresponding to zero-energy states in the energy spectra for
the same flux values. However, the zero-energy crossing as
well as the associated zero-energy peaks corresponding to
the zero energy states no longer exist in the presence of
RSOI. Instead, a gap appears in the energy and corresponding
transmission spectra around the zero-energy value. We also
incorporate static disorder into the system and examine
whether zero-energy crossings are immune to disorder, which
is one of the essential features of 1D helical edge states in 2D
topological insulators. We observe that the zero-energy states
and the peaks get affected by the presence of nonmagnetic
impurity even in the absence of RSOI. They are not robust to
disorder. Hence, these 1D helical states are sensitive to both
RSOI and disorder.

The remainder of this paper is organized as follows. We
describe our model and Hamiltonian in Sec. II and the
Green’s function formalism in Sec. III in order to calculate the
transmission probability of electrons. In Sec. IV we discuss
our numerical results, which include the effects of AB flux,
RSOI, and disorder. Finally, we summarize and conclude in
Sec. V.

II. MODEL

In Fig. 1 we present our geometry in which a one-
dimensional (1D) ring is attached to two semi-infinite 1D

Lead−1 Lead−2Φ

FIG. 1. Schematic diagram of 1D helical ring attached to two 1D
semi-infinite leads, viz., lead 1 and lead 2. Aharonov-Bohm flux �

is applied along the axis of the ring (upward direction). Magenta and
blue circular arrows represent the two counterpropagating current
flows with opposite spins within the ring.

leads, namely, lead 1 and lead 2. The ring has N number
of atomic sites periodically arranged with the lattice spacing
a. We consider N as an odd number and it is necessary
for this model in order to get the linear dispersion relation
mentioned in Ref. [43]. Two circular arrows of magenta
and blue colors indicate the direction of current flow along
clockwise and counterclockwise directions, corresponding to
two opposite spins, respectively. The ring is penetrated by
an Aharonov-Bohm (AB) flux � along its axis (upward
direction). We describe our model by a tight-binding (TB)
Hamiltonian within the noninteracting electron picture.

The Hamiltonian for the entire system, a ring with two
side-attached leads, can be partitioned as

H =
⎛
⎝HL1 HL1R 0

H†
L1R HR HRL2

0 H†
RL2

HL2

⎞
⎠, (1)

where HR, HL1 , and HL2 describe the Hamiltonian for the
ring, lead 1, and lead 2, respectively. HL1(2)R represents the
coupling between the ring and lead 1 (lead 2).

The Hamiltonian for the 1D ring can be written in the
Wannier basis as

HR =
∑
m

εmc†mcm +
∑
m�=n

(tm,nc†mcne
i�m,n + H.c.), (2)

where

c†m = (c†m,↑ c†m,↓), cm =
(

cm,↑
cm,↓

)
. (3)

Here, m, n are the site indices and ↑ (↓) refers to spin index
according to Sz+ and Sz−, respectively, with the z axis along
the direction perpendicular to the plane of the ring. c†mσ (cmσ ) is
the creation (annihilation) operator at mth site for an electron
with spin σ . The onsite energy matrix is

εm = ε

(
1 0
0 1

)
, (4)

where ε is the onsite energy parameter set to zero. tm,n is
the long-range hopping integral between mth and nth sites.
It has two parts corresponding to the bare hopping integral
(i.e., hopping due to bonding) and the hopping due to Rashba
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spin-orbit coupling. We write it as

tm,n = t0
m,n + t′m,n, (5)

where the bare hopping part is given by

t0
m,n = t lm,n

(
1 0
0 −1

)
. (6)

In contrast to an ordinary hopping parameter inside the ring,
we consider an imaginary term for the long-range hopping
integral expressed as [43]

t lm,n = it(−1)m−n

(N/π ) sin [π (m − n)/N]
= t l∗n,m, (7)

with t , a real constant. Also in Eq. (6), the down-spin hopping
integral is taken as negative with respect to that of the up-spin
hopping. This sign reversal for opposite spins along with the
imaginary hopping is responsible for the helical behavior of the
ring. It can also be interpreted as the time-reversal counterpart
as well. On the other hand, the contribution from the Rashba
spin-orbit coupling is given by the hopping term [10,62,63],

t′m,n = −itrso(cos φm,nσ x + sin φm,nσ y) (8)

with

φm,n = (φm + φn)/2, (9)

φm = [2π (m − 1)/N ] being the azimuthal angle for the mth
site. trso is the strength of the hopping integral due to Rashba
spin-orbit coupling. σ x(y) is the Pauli spin matrix. The effect of
magnetic flux is incorporated through the Peierl’s phase factor
�m,n, which can be expressed for the long-range hopping as
[64]

�m,n = 2π |m − n|�
N�0

, (10)

with �0 being the flux quantum.
Similar to the ring, we write the Hamiltonian for the two

1D leads in Wannier basis as

HL1(2) = ε0

∑
m1(2)

b†
m1(2)

bm1(2) + t0
∑
m1(2)

(
b†

m1(2)
bm1(2)+1 + H.c.

)
,

(11)

where ε0 and t0 are the on-site energy and nearest-neighbor
hopping integral for the leads. We have used another notation
for the creation (b†

m1(2) ) and annihilation operators (bm1(2) ) for

the leads. They are expressed in similar way as that of c†m1(2)

and cm1(2) [see Eq. (3)]. The ring-to-lead couplings for the two
leads are described as

HL1(2)R = τ
(
c†mbm1(2) + H.c.

)
. (12)

m and m1(2) are indices corresponding to the neighboring sites
situated at the boundaries of the ring and lead 1 (lead 2). τ is
the coupling strength between the lead and the ring.

III. CALCULATION OF TRANSMISSION PROBABILITY:
GREEN’S FUNCTION FORMALISM

In order to calculate the transmission probability of the
incoming electron through the helical ring we adopt Green’s
function formalism [61], which is summarized below.

First, let us define the single-particle retarded (advanced)
Green’s function for our model (helical ring with two side-
attached leads) as

Gr(a) = (z± I − H)−1, (13)

where z± = (E ± iη) and η → 0+. E is the incoming electron
energy. Similar to the Hamiltonian, we can also partition the
Green’s function for the entire system corresponding to the
different parts of it like

Gr =
⎛
⎝GL1 GL1R 0

G†
L1R GR GRL2

0 G†
RL2

GL2

⎞
⎠. (14)

Now, we map Gr corresponding to the full Hilbert space of
the entire system to the reduced Hilbert space, which consists
of the ring alone. This allows us avoiding the calculation of
the infinite-dimensional Green’s function for the full system
composed of finite-dimensional ring and two semi-infinite
leads. After calculation we have the effective Green’s function
for the isolated ring as follows:

Gr = (
z+ I − HR − �r

L1
− �r

L2

)−1
, (15)

where

�r
L1(2)

= H†
L1(2)R

gr
L1(2)

HL1(2)R. (16)

gr
L1(2)

is the Green’s function for the lead 1 (lead 2) defined as

gr
L1(2)

= (
z+ I − HL1(2)

)−1
. (17)

Thus, dimension of the effective Green’s function is same
as that of the ring alone. Now, it is sufficient to consider
only the isolated ring with two modified boundary sites
characterized by effective site potentials. After the mapping,
we have two terms, �r

L1
and �r

L2
. They are the retarded self-

energies responsible for the lead-1-to-ring and ring-to-lead-2
couplings, respectively. They have nonzero elements only for
the boundary sites where the lead(s) and the ring are connected
to each other. The self-energy for each lead is expressed in
terms of the bare Green’s function of the corresponding lead.
We calculate them considering both the leads as single channel
semi-infinite periodic chains having only nearest neighbor
hopping. Expressions for those self-energies in terms of the
incoming electron energy and the hopping strengths are given
by [61]

�r
Lαmσ,m′σ ′(E)

= τ 2

2t2
0

δmmα
δm′mα

δσσ ′
[
z+ − ε0 − i

√
4t2

0 − (z+ − ε0)2
]
.

(18)

Here, α is the lead index. m and mα are the site indices in the
ring and αth lead, respectively. Note that the self-energies
corresponding to the two leads have both finite real and
imaginary parts contributing to the effective Green’s function.
The real part is responsible for the energy level shifting,
whereas the imaginary part describes the broadening of the
levels. In other words, one can separate out the broadening
matrix parts corresponding to each σ like

�σ
L1(2)

= −2Im
(
�rσ

L1(2)

)
. (19)
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FIG. 2. Upper panel: (a) Full energy spectrum (E-�) of a clean
ring with atomic sites N = 91. Lower panel: The enlarged versions
of the full spectrum around (b) � = 0 and (c) � = �0/2.

Now, in terms of the broadening matrices and the effective
Green’s functions, the transmission function can be found from
the following relation [61],

Tσσ ′(E) = Tr
[
�σ

L1
.Gr .�σ ′

L2
.Ga

]
. (20)

Tσσ ′ represents the transmission probability of the incoming
electron through lead 1 with spin σ as an electron with spin
σ ′ into lead 2. For the advanced part of the effective Green’s
function, one can take the complex conjugate of the expression
written in Eq. (15).

IV. NUMERICAL RESULTS

For numerical calculation, we use the unit where c = h =
e = 1. The hopping parameter t is taken as the unit of energy.
Throughout our calculation we take the ring parameter values
as N = 91, t = 2, a = 1 and for clean system ε = 0; the lead
parameters as ε0 = 0, t0 = 3. The leads are attached to the sites
nL1 and nL2 , respectively with the coupling strength τ = 2.5
for both leads signifying strong lead-to-ring coupling. We set
them as nL1 = 1 and nL2 = 46. Now, we illustrate our results
in three different subsections in order to describe the effects of
magnetic flux, Rashba SOI, and scalar disorder successively.

A. Effect of magnetic flux

In Fig. 2 we plot the energy levels of the ring as a function
of AB flux �. We take an isolated ring having 91 lattice sites
and diagonalize the Hamiltonian to find the energy levels.
Figure 2(a) represents the entire spectrum of the isolated ring.
We zoom in on the spectrum around � = 0 and � = �0/2
and present them in Figs. 2(b) and 2(c), respectively.

The most remarkable feature is that there is a zero-energy
crossing at � = 0. A similar zero-energy crossing in the energy
spectrum of this helical ring model was also articulated in
Ref. [43] in the absence of magnetic flux. This zero-energy
crossing associated with two opposite spin states is analogous
to the linear dispersion relation of the topological insulator
edge states [32,33,40]. An analytic derivation of the dispersion
relation (E vs k) of the isolated ring in the presence of AB flux
is presented in the Appendix.

In addition to � = 0 we get similar zero-energy crossings at
all integer multiples of half-flux quantum values of the applied
AB flux. Due to the crossing we have both positive and negative
slopes of the curves; i.e., both positive and negative group
velocities are possible for the electrons with two opposite
spins and this results in the appearance of counterpropagating
currents characterized by two opposite spin states. To ensure
the current direction corresponding to two spins, one can
calculate the bond current between two sites along any arm
of the ring considering the up- and down-spin electrons [65].
We skip this part as one can easily guess the two opposite signs
of the currents by looking at the signs of the hopping integral
as given in Eq. (6).

To investigate the outcome of the helical states with the
applied magnetic flux we study the transmission probability
of electrons through the ring. We compute the transmission
probability of electrons following Eq. (20) for both up- and
down-spin electrons and show their behaviors in Fig. 3 with
respect to the incoming electron energy E. The maroon and
orange colors represent T↑↑ and T↓↓, i.e., the probabilities
of transmission of the ↑ and ↓ spin electrons without any
spin-flip scattering. Spin flipping is not possible as we have
not included the Rashba spin-orbit interaction so far. Here,
Figs. 3(a), 3(b), and 3(c) correspond to the three different
values of the AB flux � = 0,�0/4, and �0/2, respectively.
We enlarge all three figures around E = 0 and display them in
Figs. 3(d), 3(e), and 3(f), respectively.

In the absence of any flux (� = 0) we note that trans-
mission curve shows oscillatory behavior [see Fig. 3(a)]. The
oscillation is much more prominent in the enlarged version
[see Fig. 3(d)]. Our model ring is attached to two leads. So,
the wave functions corresponding to the incoming electrons
pass through the two arms of the ring. After traveling through
the two arms they again meet at the junction, where the lead 2 is
attached to the ring, either constructively or destructively. This
quantum interference leads to an oscillatory behavior of the
transmission probability. In the oscillation, number of peaks
describing the resonances is equal to the number of energy
levels of the isolated ring. To be mentioned, we consider the
completely unpolarized beam for the incoming electrons.

However, this phenomenon of quantum interference is true
for both the up- and down-spin electrons. The only difference
between them is that they travel along two opposite directions
within the ring. The transmission probabilities corresponding
to two spin states of the electrons are exactly superposed on
each other as the time-reversal symmetry between the ↑ and
↓ spin states is protected. Our result for � = 0 [see Fig. 3(d)]
corroborates the results obtained in Ref. [43] where the
energy dependence of transmission probability of electrons is
reported, although the frequency of the oscillation is different
as it depends on the ring size. However, the most interesting
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FIG. 3. Quantum-mechanical transmission probabilities T↑↑ (orange color) and T↓↓ (maroon color) are plotted as functions of incoming
electron energy E corresponding to a ring with N = 91 for three values of AB flux: (a) � = 0, (b) � = �0/4, and (c) � = �0/2. Panels (d),
(e), and (f) represent the enlarged versions of panels (a), (b), and (c), respectively, around E = 0.

feature of the transmission spectra is that there are zero-energy
peaks for both the spin states and these peaks correspond to
the zero-energy crossing in the energy spectra at � = 0, as
shown in Fig. 2(b).

Now, as soon as we introduce AB flux �, the time-reversal
symmetry between the up- and down-spin states breaks down;
i.e., the symmetry between left-moving up-spin and right-
moving down-spin electrons no longer exists. A phase differ-
ence is introduced between the wave functions corresponding
to the clockwise and counterclockwise propagating electrons
with opposite spins. As a result, in the feature of transmission
probabilities, the oscillations corresponding to T↑↑ and T↓↓
are different from each other by a phase factor [see Fig. 3(b)].
However, the amplitudes of oscillation are not same throughout
the energy window because of the destructive interference
between the wave functions propagating along the two arc
lengths. The removal of the degeneracy between ↑ and ↓ is
much more prominent in Fig. 3(e). This leads to a possibility
of obtaining finite spin polarization depending on the energy
value and applied AB flux. It should be noted that there is
no zero-energy peak in the transmission spectra for this flux
value. This can be understood by looking at the energy spectra
around this flux value as depicted in Fig. 2(a).

Nonetheless, this phenomenon of separation of the trans-
mission curves corresponding to the two different spin states by
a phase difference is true as long as the flux value is different
from the half-flux quantum. To investigate this, in Fig. 3(c)
we plot the probability of ↑ and ↓ spin electron transmission
vs energy E for � = �0/2, choosing all the other parameter
values to be the same as in the previous two cases for other

two flux (�) values. We observe that when � = �0/2, T↑↑
and T↓↓ are again exactly superposed on each other, nullifying
the possibility of getting finite spin polarization. Moreover, we
have a peak at exactly E = 0 and this peak corresponds to the
crossing at zero energy for � = �0/2 as shown in Fig. 2(c).
The persistence of the zero-energy peak corresponds to the
spinor nature of the electrons. However, the appearance of
the zero-energy peaks at particularly these flux values (i.e.,
±�0/2) is completely a topological signature of the helical
ring with the underlying inversion symmetry. They depend
neither on the details (different sizes of the two ring arms)
of the ring nor the position of the attached leads. Note that
there is no Zeeman effect in our case. We only consider a
single channel of the ring. Zeeman splitting does not play any
role because the radius of the ring is less than the radius of
the cyclotron orbit. In our case, only the AB effect is the
effective one.

To analyze the spin polarization in detail we define a
function, namely the spin polarization factor, as [24]

P↑(↓) = T↑↑(↓↓) − T↓↓(↑↑)

T↑↑ + T↓↓
, (21)

where P↑ and P↓ correspond to the two different spin states ↑
and ↓. Their behaviors with respect to the incoming electron
energy are shown in Figs. 4(a) and 4(b), which correspond
to � = �0/4 and �0/2, respectively. The blue and red lines
represent the efficiency factors for ↑ and ↓ spin electrons,
respectively. From Fig. 4(a) we see that both P↑ and P↓ have
oscillatory behaviors dual to each other. Their amplitudes run
between 0.7 and −0.7 approximately, whereas the maximum
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FIG. 4. Spin polarization is shown as a function incident electron
energy E for up-spin (P↑) and down-spin (P↓) electrons with AB flux
(a) � = �0/4 and (b) �0/2 respectively.

allowed values for the amplitudes are ±1. Looking at the
expressions for the efficiency factors we can say that P↑ = 1
indicates that T↓↓ is exactly equal to zero but T↑↑ = 1.
That means we have only ↑ spin electron transmission. The
transmissions of ↓ spin electrons are completely blocked for
that particular energy value. In contrast, when P↓ = 1 we have
exactly the opposite scenario. However, in our case when the
amplitude of the Pσ curve is almost 0.7, i.e., all the energy
values where P↓ = 0.7, we have 70% polarization with ↓
spin being the favorable one, suppressing ↑ spin transmission,
and vice versa. For the rest of the energy values the spin
polarization is less than 70%.

From the oscillations of Pσ (σ may be ↑ or ↓) we
obtain some energy values where transition happens, i.e., the
efficiency factors change their signs. Now, the change in sign of
one efficiency factor, say Pσ , signifies that the transmission of
electrons having opposite spin starts dominating. Note that we
have shown the result for a particular energy range, although
for the entire energy band we get similar features of P↑ and
P↓. Therefore, for a particular flux value the spin polarization
is different for different energy values, or in other words, spin
polarization of the helical ring is energy dependent.

On the other hand, if we tune the flux we get different
behaviors of the efficiency factors for a particular energy
value. To examine this, we calculate the efficiency factors
for � = �0/2. The up- and down-spin electron transmission
again become exactly symmetric to each other, resulting in
vanishing spin polarization at this flux value. This is clear
from Fig. 4(b), where both P↑ and P↓ are vanishingly small
(∼10−4) in magnitude. However, the deviation of the efficiency
value (P↑ or P↓) from exact zero occurs due to the finite size
of the ring.

The most striking feature is that we obtain finite spin
polarization using the long-range hopping model just by
tuning the magnetic flux. If we fix the magnetic flux to a
finite value other than half-flux quantum we get finite spin
polarization by tuning the applied bias. In other words, we can
tune the magnetic flux to have the spin polarization finite or
zero for a particular energy value. This is in contrast to the
behavior of an ordinary periodic ring. In an ordinary ring with

nearest-neighbor hopping, when we apply magnetic flux the
transmission is modified as a result of the quantum interference
of the electronic wave functions traveling along the two arms
of the ring. However, one cannot break the spin degeneracy
just by tuning the applied AB flux. So, the separation between
the up- and down-spin transmissions is not possible [24]. They
are exactly symmetric to each other.

B. Effect of Rashba spin-orbit interaction

In this subsection we investigate the effect of RSOI on
the transport properties of the helical ring with long-range
hopping. Figure 5 displays the energy spectrum (E-�) of
the isolated ring with N = 91 in the presence of RSOI with
strength trso = 1.5. We observe that there is a gap at the central
region (i.e., around � = 0) of the spectrum. In the absence
of RSOI we have a zero-energy crossing at � = 0 and the
crossing no longer exists in the presence of Rashba spin-orbit
interaction. This gap arises due to spin flip scattering, which
makes this helical ring behave like an ordinary insulator at
� = 0. Such a gap may seem to appear due to the destructive
interference caused by the incomplete Rashba spin flipping
along the chain. Also, constructive interference is possible for
the very small size of the ring and this can lead to the closing
of the gap around � = 0. To overcome this effect we have
taken more than 75 sites in the ring. We obtain a wider energy
band and this enhancement can be realized more prominently
by comparing it with Fig. 2. The splitting for outer bands is
higher compared to that of the inner bands. We also enlarge the
spectrum around � = �0/2. We have energy levels at E = 0
corresponding to those for which we expect finite transmission,
but there is no crossing at this flux value similar to the case
of � = 0. In topological insulator or the spin quantum Hall
states we find helical edge states that disperse linearly. In these
systems Rashba spin-orbit interaction is an inherent property.
In our 1D ring with long-range hopping we see that such
Dirac-like crossings do not exist in the spectrum in the presence
of RSOI. When we incorporate Rashba spin-orbit interaction,
all the energy levels get split. This results in a gap in the
spectrum. For finite values of �, we have two contributions to
the phase part, one due to the magnetic flux and another due
to Rashba spin-orbit interaction. There may be compensation
of the phase due to one by the other, resulting in a shifting of
energy levels. Therefore, we lose the zero-energy crossing at
the half flux quantum values also.

A minute asymmetry (∼0.05%) appears around E = 0 in
Fig. 5(b). This asymmetry is fully due to the finite-size effect of
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FIG. 5. Left column (a): Full energy spectrum (E-�) of a clean
ring (N = 91) in the presence of RSOI (trso = 1.5). Right column
(b): Part of the spectrum of Fig. 5(a) enlarged around � = �0/2.
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FIG. 6. Plot of transmission probabilities ((a) T↑↑, (b) T↑↓, (c)
T↓↑, and (d) T↓↓) as a function of incoming electron energy E for a
ring with N = 91 in presence of RSOI (trso = 1.5) and � = �0/4.

the ring, which causes an overall shifting of the energy spectra
from the zero-energy value. It does not depend on the flux
value. The particle-hole symmetry is preserved in our system
even in the presence of RSOI.

Now, we study the transmission phenomena in the presence
of RSOI. In Fig. 6 we show all four possible spin transmission
probabilities as a function of injecting electron energy E in the
presence of magnetic flux � = �0/4. Figures 6(a), 6(b), 6(c),
and 6(d) correspond to T↑↑ (orange lines), T↑↓ (green lines),
T↓↑ (violet lines), and T↓↓ (maroon lines) respectively.
Now, we see that the probability of ↑ and ↓ spin electron
transmissions without any spin flipping are comparable in
magnitude but they are not exactly equal to each other. There
are central gaps around E = 0 in the both spectra of T↑↑ and
T↓↓. With the increase of Rashba hopping strength, these gap
widths increase. On the other hand, due to the presence of
RSOI we have finite spin-flip transmission probability for
both up- and down-spin electrons as shown in Figs. 6(b)
and 6(c) respectively. Note that the magnitude of spin-flip
transmission probability is much smaller compared to the
spin-conserving transmission probabilities. Also, there is a
very small probability of transmission of electrons at E = 0
for this flux value.

RSOI actually behaves like an effective magnetic field,
which depends on the momenta of the electrons. It causes
a phase difference between the electronic wave functions
corresponding to the two spin states traveling along opposite
directions. This induced phase difference modifies the quan-
tum interference phenomenon both constructively as well as
destructively. As a consequence, we get different magnitudes
of the transmission probabilities for any particular energy
value. It is evident when we compare Figs. 3(a)–3(c) and Fig. 6.
For � = �0/2, we have already seen from the energy spectra
that there are energy levels available at E = 0. This is reflected
in the transmission spectra accordingly. We have finite spin-flip
transmission at this energy value. In Fig. 7 we display the
four transmission probabilities of electrons through the ring,
keeping all the parameter values same as in Fig. 6. It appears
that the central gaps of the spectra of T↑↑ and T↓↓ disappear
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FIG. 7. Quantum-mechanical transmission probabilities (a) T↑↑,
(b) T↑↑, (c) T↑↑, and (d) T↓↓ are shown as functions of incoming
electron energy E for � = �0/2. The values of other parameters of
the ring are kept the same as in Fig. 6.

for � = �0/2. If we observe carefully, then we notice that
there are dips at E = 0 in the spectra of electron transmission
without spin flipping. If we change the RSOI strength there
may be finite spin transmission at this energy value in place
of a central gap. We can say that the zero-energy peak no
longer exists when � = �0/2 also. Additionally, T↑↑ and T↓↓
become exactly symmetric to each other. On the other hand,
spin-flip electron transmission is finite throughout the energy
window. Therefore, in the presence of RSOI zero-energy peaks
associated with the zero-energy crossings are absent for any
value of magnetic flux.

From all the figures of the transmission probabilities in
the presence of RSOI we can argue that the possibility of
getting finite spin polarization is extremely small. We do not
plot the spin polarization here. On the contrary, in the case
of an ordinary ring one can design a spin-filter device based
on the spin polarization just by tuning the RSOI alone [24].
Note that the small asymmetry around E = 0 in each plot of
the transmission spectra appears because of the asymmetry
in the energy spectra originates due to the finite size of the
discrete model.

C. Effect of disorder

The helical states obtained at the edges of a 2D topological
insulator are robust to nonmagnetic impurity [28,29,31]. Here
we investigate whether the electron flows corresponding to the
opposite spins traveling in opposite directions along each arm
of the ring get affected by static disorder or not. For this, we
introduce static scalar random disorder into the system. This
type of disorder does not affect the spin state of electrons. We
choose the on-site potential energies of the ring randomly from
a box distribution function within the range (−W/4,W/4)
describing the disorder strength W . In Fig. 8, we show the full
energy spectrum, i.e., E vs � both in the presence [Fig. 8(a)]
and absence [Fig. 8(c)] of RSOI. The enlarged versions around
� = �0/2 are presented in Figs. 8(b) and 8(d) respectively.
The full spectrum of the isolated disordered ring looks very
similar to that obtained in the absence of disorder, but both in
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FIG. 8. Left panel: Plot of energy spectra (E-�) for the disor-
dered ring (N = 91) with disorder strength W = 3 in the presence of
RSOI trso = 1.5 (a) and in the absence of RSOI trso = 0 (c). Right
panel: Illustrations of panels (a) and (c) around E = 0 are presented
in panels (b) and (d) respectively.

the presence and absence of RSOI as compared with Figs. 5(a)
and 2(a), respectively. The disorder strength is taken as W = 3.
Similar to the case of a clean system, we have also a central gap
around � = 0 in the presence of RSOI. There is no such zero-
energy crossing at � = 0 in the presence of static disorder also.
To examine the spectra at half-flux quantum values we enlarge
the full spectrum around � = �0/2 [see Fig. 8(b)] and observe
the absence of zero-energy crossings too. Comparing Fig. 8(a)
with Fig. 5(a), we observe that the differences between the
two figures are very small. The differences will be much more
prominent with higher disorder strength. On the other hand, in
the absence of RSOI, the zero-energy crossing gets shifted due
to the disorder and the amount of shift depends on the disorder
strength [see Fig. 8(d)]. That means the zero-energy crossings
that we obtain in our helical ring spectra are not immune to
disorder. Note that we consider 60 out of 91 sites of the ring
as disordered.

In order to examine the transmission characteristics of the
electrons in the presence of static random disorder we plot
disorder averaged transmission probabilities, T↑↑ and T↓↓, in
Figs. 9(a) and 9(c) and their enlarged (around E = 0) versions
in Figs. 9(b) and 9(d) respectively. Here, green and magenta
colors correspond to W = 1 and W = 3, respectively. We
consider trso = 0. In this analysis, 2/3 of the total number
of sites of the ring are taken as disordered sites and the
average is taken over 100 random disorder configurations.
We notice that with the enhancement of disorder strength,
transmission increases up to a certain value of energy and then
decreases. Now, in an ordinary periodic ring with nearest-
neighbor hopping, transmission always decreases as soon as
we introduce disorder. As the disorder strength is greater,
the transmission probability is lower. Now, manifestation of
Anderson-type localization in 1D disordered systems is very
well known [66]. The presence of random site potentials cause
localization of the electronic eigenstates, which are basically
extended in the absence of disorder. With the enhancement of
the disorder strength, the number of localized states increases.
As a result transmission probability reduces. The reduction is
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FIG. 9. Behaviors of average transmission probabilities (a) T↑↑
and (c) T↓↓ are displayed as a function of incoming electron energy
E for a disordered ring (N = 91) with � = �0/4 in the absence of
RSOI (trso = 0). Panels (b) and (d) represent the enlarged diagrams
of panels (a) and (c), respectively. The green and magenta colors
correspond to the disorder strength W = 1 and W = 3, respectively.
We consider that 60 sites of the ring are disordered and the result is
averaged over 100 disorder configurations.

more pronounced when the disorder strength becomes higher
than the hopping integral. Specifically, when W 	 t , the Bloch
waves are weakly scattered by the random potential. On the
other hand, for the condition W 
 t , the electronic states get
localized and they fall off as e−r/ξ , with ξ being the localization
length. The system starts behaving like an insulator [67].

In contrast to the short-range hopping, when we consider
long-range hopping, localization phenomenon cannot domi-
nate the electrons to transmit extendedly due to the presence of
higher order hoppings. Long-range hopping basically induces
an infinite number of resonances [57]. As a consequence,
localization cannot become very effective. Even extended
states can be obtained in the presence of long-range correlated
disordered system [47,48]. From Fig. 9, we observe that
with the increase of the disorder strength W the transmission
increases up to a certain energy value. Then it decreases
with the further increase of disorder strength. We cannot
predetermine the behavior of the transmission amplitudes.
Also, we see that there is no peak at a zero-energy value
similar to the case of a clean system, as presented in Fig. 3(e).
If we further increase the disorder strength, then transmission
decreases for all the energy values due to localization of the
electronic wave functions.

We also study the effect of disorder on the electron
transmission in a helical ring with long-range hopping for
other finite values of the AB flux. For illustration, when
we tune the magnetic flux from �0/4 to �0/2 we get a
similar effect of disorder on the transmission probability.
The latter means that in the presence of long-range hopping,
whatever the value of magnetic flux may be, we cannot predict
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FIG. 10. Plots of transmission probabilities (a) T↑↑ and (c) T↓↓
as a function of incoming electron energy E for a disordered ring
are depicted for � = �0/2 in the absence of RSOI (trso = 0).
Panels (b) and (d) represent the enlarged diagrams of panels (a)
and (c), respectively. The green and magenta colors indicate the
results corresponding to the disorder strength W = 1 and W = 3,
respectively. Other parameters are fixed to the values same as in
Fig. 9.

whether the transmission through the disordered ring would
decrease or increase unless we apply very strong disorder. In
Figs. 10(a) and 10(c) we present T↑↑ and T↓↓, respectively,
whereas Figs. 10(b) and 10(d) correspond to their enlarged
versions around E = 0. To be noted, the zero-energy peak for
� = �0/2 remains as it was when W < t . The peak height
decreases with the increase of disorder strength. Also, the peak
positions get shifted with the rise of the disorder strength. In
this figure, we get very slight movement of the peak. If we
further increase W the shift will be much more prominent.
Moreover, the plots of T↑↑ and T↓↓ are exactly similar to each
other like the phenomenon that happened in the absence of
disorder for � = �0/2.

So far, RSOI has not been taken into consideration in this
subsection while calculating the transmission probabilities in
the presence of disorder. In Fig. 11 we show the results in
the presence of RSOI (trso = 1.5) and AB flux � = �0/4.
Figures 11(a), 11(b), 11(c), and 11(d) correspond to T↑↑, T↑↓,
T↓↑, and T↓↓, respectively. The green and magenta colors
have the same meaning as in the previous two figures. In
the presence of RSOI, we have finite spin-flip transmission
probabilities for both T↑↓ and T↓↑ due to the finite possibility
of spin flipping of electrons. Now, from Fig. 11 we notice that
in the disordered helical ring when we increase the disorder
strength all the four transmission probabilities decrease in
the presence of AB flux. This phenomenon is very similar
to the case of a periodic ring with only nearest-neighbor
hopping [13]. From the literature, we know that RSOI itself
may give rise to localization of electronic wave functions.
This localization phenomenon can be manifested as the spin
precession due to the Rashba field alone [68]. The overall effect
of AB flux and RSOI is the reduction of the transmission of
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FIG. 11. Quantum-mechanical transmission probabilities (a) T↑↑,
(b) T↑↓, (c) T↓↑, and (d) T↓↓ vs incoming electron energy E are shown
for a disordered ring (N = 91) in the presence of RSOI (trso = 1.5)
and AB flux (� = �0/4). The green and magenta colors correspond
to disorder strengths W = 1 and W = 3, respectively. The rest of the
parameter values are kept the same as in Fig. 9.

electrons. In the presence of static disorder, the central gap
appearing in the spectra is robust to disorder. Gap widths do
not change with the increase of disorder strength.

Also, we check our results for � = �0/2 which is illus-
trated in Fig. 12. For this value of AB flux, transmission
probabilities decrease, similar to the case of � = �0/4. For
� = �0/2, the gap disappears as in the case of absence of
disorder.

Therefore, we can say that the zero-energy crossings and
the zero-energy transmission peaks at � = 0 and half-flux
quantum values are not robust to nonmagnetic impurity as
evident from the energy spectra as well as the transmission
spectra of the helical ring in the presence of RSOI.
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FIG. 12. Behavior of transmission probabilities (a) T↑↑, (b) T↑↓,
(c) T↓↑, and (d) T↓↓ are shown as functions of incoming electron
energy E for the same disordered ring as taken in Fig. 11 but with
AB flux (� = �0/2). The green and magenta colors represent the
results for the disorder strengths W = 1 and W = 3, respectively.
Other conditions are kept the same as in Fig. 9.
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We would like to emphasize that in order to study the effect
of disorder on the transport properties of the helical ring we
have chosen 2/3 sites of the ring as disordered. Our results are
valid for other disorder configurations even in the presence of
a single impurity. To visualize the prominent effect of disorder
we incorporate more than a single impurity, as in our model we
consider only a single propagating mode or channel [69–71].

V. SUMMARY AND CONCLUSIONS

To summarize, we have explored the spin-dependent trans-
mission phenomena in a 1D ring with long-range hopping.
In order to introduce the time-reversal counterpart, we have
considered different signs of the hopping corresponding to
the two opposite spins. The functional form of the hopping
has allowed us to manage the periodicity very nicely. We
have applied AB flux along the axis of the ring. Our model
is described in a tight-binding framework. Using Green’s
function technique, we have calculated the transmission
probabilities of the electrons through the ring and shown the
possibility of getting finite spin polarization by tuning AB
flux only. The polarization also depends on the energy of the
incoming electron.

Two counterpropagating states with opposite spins, called
helical states, carry the current throughout the ring. These
helical states are very similar to the 1D edge states of a
2D topological insulator. They are characterized by linear
dispersion relations. Similar crossings are also present in our
helical ring model energy spectra. In a topological insulator,
Rashba spin-orbit interaction plays an important role. Also,
the helical edge states are immune to nonmagnetic impurity.
To verify whether the counterpropagating edge states obtained
in our case are protected by topology, we have investigated
the electron transport properties in the presence of Rashba
spin-orbit interaction and static disorder. The helical states
obtained in our model are sensitive to individual as well as
combined effects of RSOI and disorder. RSOI destroys the
zero-energy state and a gap appears around E = 0, whereas
the presence of static disorder within the system results in
shifting of those zero-energy states as well as the reduction in
magnitude of the zero-energy transmission peak. Indeed, they
also get affected by the presence of both RSOI and disorder.
Therefore, we conclude that the two counterpropagating states
of the ring do not mimic the topological insulator edge states
as the zero-energy transmission peaks as well as zero-energy
crossings in the spectra are not robust to static random disorder,
unlike the edge states of topological insulators.

Finally, we have done a model calculation with some
parameter values. For example, we have taken the hopping
parameter within the ring as t = 2 eV for bare hopping integral
and for Rashba trso = 1.5 eV. Our result is valid as long
as trso < t . For this Rashba value we also do not need to
worry about the Rashba decay length towards the inside of the
ring (tangential direction). It will not affect our main result,
depending on the aspect ratio (width/radius) of the ring [72].
We have chosen τ in order to study the strong coupling regime
between the ring and the leads. One can also concentrate
on the weak-coupling regime for exploring the transmission
probability. In that case, our main result will remain invariant;
only the peak widths will change. With the change of the

other parameter values, say, t or t0, our results will change
quantitatively, keeping the qualitative nature consistent.

As far as the practical realization of our model is concerned,
a quantum ring may be fabricated at the interface of two
semiconducting materials possessing significant RSOI. For
instance, in the InAs semiconductor, the Rashba parameter
α ∼ 2 × 10−11 eV m [73]. The strength of hopping due to
Rashba is related to the Rashba parameter as α/(2δ), where δ is
the lattice constant [62]. If we take δ ∼ 5 nm then trso ∼ 0.2 eV,
whereas for the above-mentioned lattice constant the nearest
neighbor hopping integral is ∼ 2 eV [74]. The magnitude of
the external magnetic field can be B ∼ 3.2 mT for a ring of
radius r ∼ 0.2 μm [62]. For our analysis, we have taken the
parameter values, particularly trso, to be higher in magnitude.
However, for all other values of Rashba hopping strength,
the quantitative values of our results will change, keeping the
qualitative nature unchanged as long as trso < t .
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APPENDIX: ANALYTICAL TREATMENT OF THE
DISPERSION RELATION WITH THE AB FLUX

The energy dispersion relation for the helical ring can be
obtained analytically as follows.

Let us first consider the situation where there is no
AB flux or Rashba spin-orbit interaction. For this simplest
case we have no off-diagonal term in the hopping matrix.
We can decouple matrix for the two spin states and derive the
relation for each spin of the electron separately. The long-range
hopping between mth and nth sites in the absence of AB flux
and Rashba spin-orbit interaction is given by (for a particular
σ , say, +1)

tm,n = it(−1)m−n 1

(N/π ) sin [π (m − n)/N ]
. (A1)

Now, we start from the Schrödinger equation and obtain the
following difference equation:

Eψn = −it
∑
m�=n

(−1)m−n 1

(N/π ) sin [π (m − n)/N]
ψm. (A2)

As the ring is periodic, we take Bloch wave solution
(ψm ∼ eikma) and get

E = it
∑
m�=n

(−1)m−n 1

(N/π ) sin [π (m − n)/N ]
eik(m−n)a.

(A3)
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Applying the periodic boundary condition, we have

k = 2πl

Na
, (A4)

where l is an integer and it runs within the range

− (N − 1)

2
� l <

(N − 1)

2
. (A5)

By simplifying Eq. (A3) we get the dispersion relation as

E = tka. (A6)

Similarly we can find the E − k relation for the other spin state
σ = −1, for which we get a similar equation with a negative
sign. Therefore, for any σ it is given by

E = σ tka, (A7)

where σ = ±1. This linear dispersion relation was primarily
obtained Refs. [43,44]. It is completely in contrast to that
obtained in an ordinary ring with nearest-neighbor hopping,
where we get cosine function in the dispersion relation [13].
The linear function is discontinuous at the Brillouin zone
boundary, keeping the periodicity of 2π/a. This allows us
to get rid of the Fermion doubling problem, which generally
arises in other discrete models of helical edge states having
continuous dispersion relation [13]. For continuous function
we have two endpoints of the Brillouin zone that are identical
to each other.

This linear dispersion relation of the helical ring also holds
in the presence of a magnetic field. In the presence of AB flux
we have

E = σ t

(
ka + 2π�

N�0

)
. (A8)

Here, a question may arise. The energy spectra we have
shown in this paper is more complicated than linear behavior.
Our numerical spectra exactly match with those obtained
by analytical calculation without any simplification. Without
simplification we have the energy dispersion relation as

E =
(N−1)/2∑

m=1

(−1)m
2t sin

[
m

(
ka + 2π�

N�0

)]
(N/π ) sin(mπ/N )

. (A9)

Additionally, in the presence of Rashba spin-orbit interaction
we have additional off-diagonal terms in the hopping matrices.
We have a matrix form of the difference equation,

E Iψm =
∑

n

(
t lm,n −itrsoe

−iφm,n

itrsoe
iφm,n −t lm,n

)
ψn. (A10)

Now again we assume the Bloch wave form for the wave
function and solve it. Finally we arrive at the expression

E = ±
√

ξ (k)2 + ξ ′(k)2 . (A11)

where the form of ξ (k) is exactly same as written in the right-
hand side of Eq. (A9) and that for ξ ′(k) is given by

ξ ′(k) = 2trso

(N−1)/2∑
m=1

sin

[
m

(
π + ka − 2π�

N�0

)]
. (A12)

We show Eq. (A11), which is exactly equivalent to the
numerical one.
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[2] I. Žutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323
(2004).

[3] D. Frustaglia, M. Hentschel, and K. Richter, Phys. Rev. Lett. 87,
256602 (2001).

[4] T. Koga, J. Nitta, H. Takayanagi, and S. Datta, Phys. Rev. Lett.
88, 126601 (2002).
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