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Theory of multiexciton dynamics in molecular chains

Luxia Wang*

Department of Physics, University of Science and Technology Beijing, 100083 Beijing, China

Volkhard May†

Institute of Physics, Humboldt-University at Berlin, Newtonstraße 15, D-12489 Berlin, Germany
(Received 15 August 2016; revised manuscript received 11 October 2016; published 10 November 2016)

Ultrafast and strong optical excitation of a molecular system is considered which is formed by a regular
one-dimensional arrangement of identical molecules. As it is typical for zinc chlorine-type molecules the transition
energy from the ground state to the first excited singlet state is assumed to be smaller than the energy difference
between the first excited state and the following one. This enables the creation of many excitons without their
immediate quenching due to exciton-exciton annihilation. As a first step into the field of dense Frenkel-exciton
systems the present approach stays at a mean-field type of description and ignores vibrational contributions.
The resulting nonlinear kinetic equations mix Rabi-type oscillations with those caused by energy transfer and
suggest an excitation-dependent narrowing of the exciton band. The indication of this effect in the framework of
a two-color pump-probe experiment and of the detection of photon emission is discussed.
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I. INTRODUCTION

Although investigated for decades it is still of interest to
uncover details of excitation energy transfer (EET) in dye ag-
gregates, conjugated polymers or supramolecular complexes.
The technological importance of EET in photovoltaic cells
or light emitting diodes may be the major explanation for the
ongoing research (see, for example, the recent overviews [1–3]
and Ref. [4]). So-called multiexciton effects which come into
play if stronger optical excitation is applied may be another
reason for the continuing work. Such studies are of more
fundamental character and are related in most cases to exciton-
exciton annihilation (recent work is described in Refs. [5–10]).
Stronger optical excitation of molecular systems is also of
particular interest if the molecules coat a metal nanoparticle.
Subsequent plasmon excitation may cause what is described in
literature as the SPASER effect [11,12]. Interestingly, theory
and simulation of multiexciton phenomena in the molecular
system are not of such a degree of elaboration as the description
of respective processes in semiconductor nanocrystals and
quantum dots (see the somewhat older work of Refs. [13–16]
on multiexciton effects). Following our recent attempts in
Refs. [17,18] we suggest a theory here which is ready to
describe the dynamics of multiple electronic excitations in
molecular systems.

We assume that Eeg is the energy difference between
the ground state (S0 state) and the first excited singlet state
(S1 state). Moreover, Efg shall label the energy difference
between the S0 state and the higher lying level (S2 state) of the
considered molecules. Exciton-exciton annihilation proceeds
if 2Eeg comes into resonance to a transition into the S2 state,
i.e., Efg ≈ 2Eeg . Considering vibrational excitations, too, this
requirement is fulfilled for many types of molecules. Here,
however, we will consider molecular species where 2Eeg is
out of resonance to a higher transition. For example, the zinc
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chlorine molecules studied in [19] fulfill 2Eeg < Efg . As a
consequence, excited state absorption from a molecule already
excited into its first excited state with the same amount of en-
ergy does not take place. And, exciton-exciton annihilation is
not possible. Instead the simultaneous excitation of molecules
into their first excited state efficiently shall take place. This
will be the subject of the subsequent considerations.

Excited state dynamics and excitation-dependent emission
spectra will be presented in the following for one-dimensional
(1D) molecular systems (nanowires) which have been in-
tensively studied in the literature. Femtosecond pump-probe
spectroscopy could be applied to thin films of the quasi-
one-dimensional organic semiconductor 3,4,9,10-perylene
tetracarboxylic dianhydride (PTCDA) [20]. Long-range ex-
citon migration in individual perylene bisimide J-aggregates
has been reported in Ref. [21]. Similar experiments on single
perylene-based H-aggregates were described in Ref. [22].
Femtosecond hot exciton emission was detected for the
quasi-one-dimensional π -conjugated organic rigid-rod quan-
tum nanowire of methyl-substituted ladder-type poly(para-
phenylenes) [8]. Reference [23] describes experiments on
EET in cyclic structures of π -conjugated materials covering
several monomers. The quoted experimental work motivates
the restriction to molecular chains which will consist of up to
25 monomers (cf. also the scheme in Fig. 1).

A consequent quantum theory of a strongly excited molecu-
lar system but coupled to a metal nanoparticle has been offered
recently in [17,24,25]. This theory handles the dynamics of the
strongly excited state of some tens of molecules interacting
with the dipole plasmons of a spherical nanoparticle in an
exact manner. Moreover, an approximate description which
is similar to the one used hereafter and presented in [18]
was able to describe the molecule-plasmon system with
up to 100 molecules (cf. Ref. [24]). It coincides with the
exact approach for lower numbers of molecules (up to 20).
This observation encouraged us to use the same approach
but without the presence of a metal nanoparticle to study
multiexciton effects in a molecular chain. All equations of
motion used in the following have been already presented in
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FIG. 1. Scheme of a linear arrangement of identical molecules
with transition dipole moment perpendicular to the chain axis
(H-aggregate configuration). Optical excitation (orange arrow) may
move the molecules into their excited state (yellow sphere).

Ref. [18]. Here, we consider special molecules with 2Eeg <

Efg where exciton-exciton annihilation is of less importance,
but study the simultaneous excitation of many molecules into
their first excited state beyond a rate-equation-type description
and by the inclusion of possible formation of delocalized
exciton states. However, the present description ignores the
direct consideration of two-exciton correlation. In this sense
it represents a type of mean-field theory for the treatment of
multiple excitations. Those are accounted for by a nonlinear
dependence on the molecular excited state population. We will
concentrate on the change of Frenkel-exciton-type states with
the strength of ultrafast optical excitation.

The paper is organized as follows. The subsequent Sec. II
introduces the model and the used equations of motion to
study ultrafast excitation. Photoinduced EET dynamics are
considered in Sec. III. A possible spectroscopic detection of
the suggested change of the exciton spectrum with excitation
strength is discussed in Sec. IV and in the Appendix. Some
conclusions are drawn in Sec. V.

II. MODEL AND BASIC KINETIC EQUATIONS

Photoinduced EET kinetics are investigated for a complex
of Nmol molecules for which the ground state |ϕmg〉 with energy
Emg and the first excited state |ϕme〉 with energy Eme are
considered (m counts the individual molecules). The overall
Hamiltonian including ultrafast laser pulse excitation is written
as

H (t) = Hexc + Hfield(t). (1)

It covers the standard exciton Hamiltonian,

Hexc =
∑
m

EmB+
mBm +

∑
m,n

JmnB
+
mBn. (2)

Here, the ground-state energy has been set equal to zero, and
we abbreviated Eme − Emg by Em. The B+

m are transition op-
erators B+

m = |ϕme〉〈ϕmg| moving molecule m from its ground
state to its first excited state. Be also aware of the important
relation B+

mBm + BmB+
m = 1 (completeness relation for the

two-level system). The energy transfer (excitonic) coupling
has been denoted by Jmn. It is used in dipole approximation
(justified by the considered values �rmol of intermolecule
distances),

Jmn = κmndmdn/R
3
mn. (3)

The transition dipole moment of molecule m has been written
as dm = dmem, and Rmn = Rmnnmn is the distance vector
connecting the centers of mass of the two molecules. It
results in the following orientation factor κmn = [emen] −
3[emnmn][nmnen]. The excited states which are covered by
the given description are the single excitations of different
molecules. A state with N∗ excited molecules simply reads

|ψN∗ 〉 = B+
1 ...B+

N∗ |φg〉. (4)

Here, |φg〉 is the electronic ground state of the whole molecular
system (a good approximation would be |φg〉 = ∏

m |ϕmg〉).
The coupling to the laser pulse takes the form,

Hfield(t) = −E(t) ·
∑
m

dmB+
m + H.c.. (5)

The electric-field strength,

E(t) = nEE(t)e−iω0t + c.c., (6)

refers to a single pulse with unit vector of field polarization
nE , with carrier frequency ω0, and with pulse envelope,

E(t) = E0 exp
(−4 ln 2(t − tp)2/τ 2

p

)
. (7)

We introduced τp as the full width at half maximum (FWHM)
of the pulse. To simplify the notation we abbreviate

Rm(t) = −E(t) · dm = −nE · dmE(t)e−iω0t + c.c.. (8)

Equations of motion

As demonstrated, for example, in Ref. [18] kinetic equa-
tions can be derived by considering time-dependent expec-
tation values of different arrangements of the operators B+

m

and Bn. Therefore, we introduce the arbitrary operator Ô. Its
expectation value O(t) = 〈Ô〉 = tr{ρ̂(t)Ô} is defined by the
reduced density operator ρ̂(t) which should obey the following
quantum master equation:

∂

∂t
ρ̂(t) = − i

�
[H (t),ρ̂(t)]− − Dρ̂(t). (9)

For the sake of simplicity we chose a description where dissi-
pation exclusively appears via a decay of the excited molecular
state. The action of the related dissipative superoperator takes
the form,

Dρ̂(t) =
∑
m

km

2
([B+

mBm,ρ̂(t)]+ − 2Bmρ̂(t)B+
m ), (10)

where km denotes the decay rate referring to molecule m. In
the concrete computations we assume the related molecular
lifetime in the nanosecond region (decay of excited state
population). However, the single molecule excitation dephas-
ing (decay of ground-state excited state off-diagonal density
matrix elements) has been fixed below 1 ps. Such a model of
dissipation also implies the absence of exciton relaxation due
to emission and absorption of vibrational quanta.

Following the quantum master equation we may write

∂

∂t
〈Ô〉 = tr

{
∂

∂t
ρ̂(t)Ô

}

= i

�
〈[H (t),Ô]−〉 − 〈D̃Ô〉. (11)
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The modified dissipative superoperator follows as

D̃Ô =
∑
m

km

2
([B+

mBm,Ô]+ − 2B+
mÔBm). (12)

Noting the general type of equations of motion (11) we easily
derive equations for different types of Ô. Identifying this
operator first with B+

m we obtain (for details see [18])

∂

∂t
〈B+

m 〉 = i

�
Em〈B+

m 〉 + i

�

∑
k

Jkm〈B+
k (1 − 2B+

mBm)〉 + i

�
R∗

m〈(1 − 2B+
mBm)〉 − km

2
〈B+

m 〉. (13)

In a next step we consider the case Ô = B+
mBm and arrive at

∂

∂t
〈B+

mBm〉 = i

�

∑
k

(Jkm〈B+
k Bm〉 − Jmk〈B+

mBk〉) + i

�
R∗

m〈Bm〉 − i

�
Rm〈B+

m 〉 − km〈B+
mBm〉. (14)

According to the derived equation, next, we have to consider Ô = B+
mBn (m �= n),

∂

∂t
〈B+

mBn〉 = i

�
(Em − En)〈B+

mBn〉 + i

�

∑
k

Jkm〈(1 − 2B+
mBm)B+

k Bn〉 − i

�

∑
k

Jnk〈B+
mBk(1 − 2B+

n Bn)〉

+ i

�
R∗

m〈(1 − 2B+
mBm)Bn〉 − i

�
Rn〈B+

m (1 − 2B+
n Bn)〉 − km + kn

2
〈B+

mBn〉. (15)

Obviously, the three types of equations do not form a closed
set for 〈B+

m 〉, 〈B+
mBm〉, and 〈B+

mBn〉. Expectation values with
three and four transition operators appear accounting for the
correlation of two excitations, for example. We will ignore
such higher correlations in the following and focus on the
most simple but nontrivial case of nonlinear kinetic equations
describing EET. Therefore, a decoupling scheme is used
where the operator expression of type 1 − 2B+

mBm whenever it
appears is replaced by its expectation value 〈1 − 2B+

mBm〉 [27].
This expectation value coincides with the so-called population
inversion Pmg − Pme between the ground and the excited
state of molecule m. It controls energy transfer among the
molecules if more than a single excitation is present in the
system (see also below).

While carrying out this decoupling it also would be of
interest how to arrive at the standard Förster-theory of EET.
In order to get this approximate description it suffices to
compute 〈B+

mBn〉 in the lowest order in Jmn and insert the
result into the equation for 〈B+

mBm〉. If, simultaneously, the
expectation values 〈1 − 2B+

mBm〉 have been set equal to
1 and the terms ∼ Rm are neglected we have obtained a
standard rate equation. However, it includes a rather crude
version of the EET rates, what is caused by the simple
model of dissipation used here (cf. also the discussion in
[18]).

To present the equations of motion derived according to
the suggested decoupling scheme we introduce a number of
abbreviations. The transition amplitude is written as

βm = 〈B+
m 〉. (16)

The molecular excited state population is

Pm = 〈B+
mBm〉, (17)

and we introduce

Wmn = (1 − δm,n)〈B+
mBn〉, (18)

which is completely off-diagonal with respect to the
two molecular indices. Furthermore, we set ωm = Em/�,
ω̃m = ωm + ikm/2, jmn = Jmn/�, rm = Rm/�, and ω̃mn =
ω̃m − ω̃∗

n. It results in the following set of equations of
motion:

∂

∂t
βm = iω̃mβm + i

∑
k

jkm(1 − 2Pm)βk + ir∗
m(1 − 2Pm),

(19)

∂

∂t
Pm = − 1

τm

Pm + 2Im
∑

n

jmnWmn + 2Imrmβm, (20)

and

∂

∂t
Wmn = iω̃mnWmn − ijnm(Pm − Pn)

+ i
∑
k �=n

jkm(1−2Pm)Wkn − i
∑
k �=m

jnk(1−2Pn)Wmk

+ ir∗
m(1 − 2Pm)β∗

n − irn(1 − 2Pn)βm. (21)

To obtain the last equation we noticed 〈B+
k Bn〉 = δk,nPn +

(1 − δk,n)Wkn. Now, we have a closed system for βm, Pm,
and Wmn. Note also that the term −kmPm has been replaced by
1/τm × Pm. Therefore, km/2 is considered as a pure dephasing
rate while τm represents the molecular excited state lifetime
located in the ns region (we introduce a common quantity τmol

identical for all molecules).
To arrive at the final working equations we just

carry out the so-called rotating wave approximation
(RWA) which removes from the kinetic equation terms
oscillating with ω0 or multiples of it. We set rm(t) =
− exp(−iω0t) × �m(t) + c.c. with �m(t) = n · dmE(t)/�,
and introduce βm(t) = exp(iω0t) × bm(t).
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Then, the RWA gives

∂

∂t
bm = i(ω̃m − ω0)bm + i

∑
n

jnm(1 − 2Pm)bn − i�∗
m(1 − 2Pm), (22)

∂

∂t
Pm(t) = − 1

τm

Pm(t) + 2Im
∑

n

jmnWmn(t) − 2�m(t)Imbm(t), (23)

and
∂

∂t
Wmn(t) = iω̃mnWmn(t) − ijnm(Pm(t) − Pn(t)) + i

∑
k �=n

jkm(1 − 2Pm(t))Wkn(t) − i
∑
k �=m

jnk(1 − 2Pn(t))Wmk(t)

−i�∗
m(t)(1 − 2Pm(t))b∗

n(t) + i�n(t)(1 − 2Pn(t))bm(t). (24)

Since the system is in its ground state before optical exci-
tation the equations are solved in using the following initial
conditions:

bm(0) = Pm(0) = Wmn(0) = 0. (25)

III. PHOTOINDUCED EXCITATION ENERGY DYNAMICS

In the following photoinduced excitation energy kinetics
in a regular and linear chain of molecules will be discussed.
We do not focus on a particular type of molecule or polymer
but choose typical values of the various parameters which are
slightly varied (cf. Table I). The molecular excitation energy
En = Emol should be identical for all molecules in a chain
of up to Nmol = 25 molecules. The transition dipole moments
dmol are also all identical and take the value of 8 D. Moreover,
we assume that the field polarization nE is always parallel to
the actual dipole orientation.

In order to vary the excitonic coupling and thus the exciton
spectrum we change the distance �mol among the molecules
introducing the values 1.2, 1.5, and 2.5 nm. The nearest
neighbor excitonic coupling J (�mol) amounts to the following
values. Choosing an H-aggregate configuration we obtain
J (1.2 nm) ≈ 23 meV, J (1.5 nm) ≈ 12 meV, and J (2.5 nm) ≈
2.6 meV. In the case of a J-aggregate the sign changes
and the absolute value doubles. Focusing on a linear chain
with nearest neighbor coupling only, the exciton energies
follow as Eα − Emol = 2J cos α with α = πj/(Nmol + 1) (j =
1, . . . ,Nmol) and the whole exciton spectrum covers the range
between Emol − 2J and Emol + 2J .

TABLE I. Used parameters.

Nmol 10–25
Emol 2.6 eV
dmol 8 D
�kmol 3 meV
τmol 1 ns
�mol 1.2, 1.5, 2.5 nm
ω0 Varied around Emol/�

E0 106–108 V/m
τp 20 fs to 2 ps

A. Preliminary considerations

Before presenting the results of our numerical computations
we consider some simple reference cases where an analysis
helps to understand the following simulation results. An
essential quantity to judge the degree of excitation would be
the total excited state population,

Ptot(t) =
∑
m

Pm(t). (26)

Its upper limit is Nmol which is reached if all molecules are
in their excited state with probability 1. While we have in
mind the investigation of multiple excitations, standard exciton
theory considers the singly excited state of the molecular
system. The most general type of a singly excited state would
be |φ1〉 = ∑

m c(m)B+
m |φg〉.

The singly excited eigenstate of Hexc is the single exciton
state |α〉 = ∑

m cα(m)B+
m |φg〉 with energy Eα = ��α . The

most general type of time-dependent singly excited state can
be expanded by the exciton states. It results the formation of
an excitonic wave packet,

|φ1(t)〉 = U (t)|φ1(0)〉 =
∑

α

Aαe−i�αt |α〉. (27)

We use this state to compute the time dependence of Wmn,
Eq. (18), and obtain

Wmn(t)=〈φ1(t)|B+
mBn|φ1(t)〉=

∑
α,β

c∗
α(m)cβ(n)A∗

αAβei�αβ t .

(28)

Accordingly, Wmn(t) [and also Pm(t)] oscillates with the
different excitonic transition frequencies �αβ = �α − �β .
A Fourier analysis of Wmn(t) or Pm(t) would indicate this.
Therefore, one should consider the equation for Wmn in the case
of weak excitation (Pm � 1) where we can remove all terms
proportional to Pm. Now we expect that the solution reproduces
the above given expression. However, in the general case jkm is
replaced by jkm(1 − 2Pm) and jnk by jnk(1 − 2Pn). Effectively,
the magnitude of the excitonic coupling is reduced if the
excitation density is increased.

Finally, weak optical excitation is considered by a direct
solution of the time-dependent Schrödinger equation defined
by H (t), Eq. (1). To stay at the weak excitation limit the
solution is derived in the first order with respect to the exciting
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field included in Hfield(t), Eq. (5),

|ψ(t)〉 = U (t,t0)|ψ(t0)〉

≈ Uexc(t − t0)

{
1 − i

�

∫ t

t0

dτ U+
exc(τ − t0)

×Hfield(τ )Uexc(τ − t0)

}
|φg〉. (29)

The initial state is the molecular system ground state. The
time-evolution operator of the exciton system takes the form
Uexc(t) = exp(−iHexct/�). The expression in the curly bracket
of the above equation represents the first-order expansion of
the external field induced S operator. We expand the time-
dependent wave function with respect to exciton states,

〈α|ψ(t)〉 = Aα(t)

= − i

�

∫ t

t0

dτ e−i�α (t−τ )〈α|Hfield(τ )|φg〉

≈ i

�

∫ t

t0

dτ e−i�α (t−τ )dαE(τ )e−iω0τ . (30)

The τ integral can be easily computed in the limit t → ∞
and t0 → −∞ [note also τ − tp → τ and Eq. (7) for the field
envelope]:

Aα(t → ∞) = i

�

√
πτ 2

p /2dαE0e
−i�αt+i(�α−ω0)tp

× e−τ 2
p (�α−ω0)2/8. (31)

Besides the dependence on the exciton transition dipole
moments dα = dα · nE the magnitude of the expansion coeffi-
cients Aα is mainly determined by exp[−τ 2

p (�α − ω0)2/8]. If
ω0 coincides with a particular exciton level the factor equals 1;
exp[−τ 2

p (�α − ω0)2/8] immediately becomes smaller than 1
if the pulse duration τp is large and if ω0 deviates a little bit from
the actual exciton level. Large means that τp is much larger
than the inverse of the frequency width of the exciton band
(τp � 1/�αβ ). If the pulse is short exp[−τ 2

p (�α − ω0)2/8]
stays close to 1 although ω0 may deviate from �α . Different
exciton levels are excited simultaneously. An excitonic wave
packet is formed. Respective examples are discussed in the
subsequent section.

B. Excitation energy dynamics

We consider the temporal behavior of the molecular excited
state populations after laser pulse excitation. To have reference
data, Fig. 2 displays the behavior of an isolated molecule not
coupled to other molecules. The molecule is excited by a 20-fs
long pulse and with different values of the field amplitude. As
long as the latter is sufficiently low the excited state population
Pm follows the laser pulse and stays at its final value (remember
that the excited state lifetime amounts to 1 ns). For larger
field strength one or two Rabi oscillations appear covering a
complete excitation of the molecule (Pm ≈ 1) and a subsequent
induced depopulation (the oscillation of Pm slows down with
increasing pulse duration).

The just discussed data for a pulse with τp = 20 fs shall
be confronted with those of Fig. 3. Here, the Pm of a chain of
10 molecules are drawn for the three different values of the

0 50 100 150
Time (fs)

0.0

0.2

0.4

0.6

0.8

1.0

P
op

ul
at

io
n

FIG. 2. τp = 20 fs laser-pulse-induced excited state population of
an isolated molecule (resonant excitation �ω0 = Emol). Black solid
line, E0 = 5 × 107V/m; red dashed line, E0 = 108V/m; green chain
dotted line, E0 = 5 × 108V/m; and blue dotted line, E0 = 109V/m.

intermolecular distance, i.e., the excitonic coupling is changed.
The chosen field strength corresponds to the black curve in the
upper panel of Fig. 2 indicating that no Rabi oscillations will
appear. Instead, the oscillations of the excited state populations
visible in all panels of Fig. 3 are the result of EET (the
oscillation period gets larger with increasing intermolecular
distance, i.e., decreasing coupling). Because of the regular
structure of the chain we observe symmetric populations
Pm = PNmol+1−m. During laser-pulse excitation all molecules
get excited (Pm ≈ 0.06). Afterward EET from the terminal
sites of the chain to the center set in leading to the peak value of
P5 = P6. We quote the so-called coherent transfer time tcoh =
π�/J (J denotes the nearest neighbor excitonic coupling with
respective values presented beforehand). Related to the actual
value of �mol we get tcoh(1.2 nm) ≈ 88 fs, tcoh(1.5 nm) ≈
176 fs, and tcoh(2.5 nm) ≈ 807 fs. Such oscillation periods can
be identified in the three panels of Fig. 3. Finally, dephasing
results in an equal distribution of excitation of all molecules.
These steady-state values P (ss)

m of the excited state populations
increase slightly with increasing �mol.

This can be understood as follows. The resulting decrease
of J decreases the width of the exciton band. Since we chose
�ω0 = Emol we excite at the center of the exciton band with a
full width at half maximum of ≈80 meV (corresponding to the
20-fs pulse duration). Accordingly, the excited state population
increases if the exciton band is shrunk.

Figures 4 and 5 demonstrate the effect of the pulse duration.
To stay comparable we took the same value of the pulse
area Ē = ∫

dt E(t) = E0
√

π/4 ln 2 × τp. Figure 4 displays
the effect of a 100-fs long excitation and Fig. 5 shows data for
τp = 1 ps. Both figures correspond to �mol = 1.2 nm. As long
as the pulse duration is comparable to the coherent transfer
time tcoh (88 fs here), EET among the different molecules
results in oscillations of the excited state populations (Fig. 4).
For larger pulse durations the Pm continuously move to their
steady-state values P (ss)

m (Fig. 5). For a given value of �mol

the P (ss)
m decrease with increasing pulse duration. Again, the

decreasing spectral width of the pulse with increasing τp

localizes excitation more and more at the center of the exciton
band. Since oscillator strength is localized at the upper level in
the considered H aggregate, we notice decreasing values of the
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FIG. 3. Laser-pulse-induced energy transfer dynamics in a chain
of 10 molecules (H-aggregate configuration, τp = 20 fs, E0 = 5 ×
107 V/m, �ω0 = Emol). Upper panel, �mol = 1.2 nm; middle panel,
�mol = 1.5 nm; lower panel, �mol = 2.5 nm. Black solid line, P1 =
P10; red dashed line, P2 = P9; green chain dotted line, P3 = P8; blue
dotted line, P4 = P7; violet chain double dotted line, P5 = P6.

P (ss)
m . However, if we compare molecular chains with different

�mol the increase of the intermolecular distance decreases
J . The resulting shrinkage of the exciton band increases the
excitation for a fixed pulse duration.

Next, we turn to the case of higher field strengths to see how
Rabi oscillations interfere with population oscillations due to
EET. Figure 6 displays the case of τp = 20 fs and, again,
a chain of 10 molecules with �mol = 1.2 nm is considered.
Therefore, these results have to be confronted with those shown
in the upper panel of Fig. 3. Choosing E0 = 108 V/m only the
overall population is increased compared to Fig. 3. However, a
value of E0 = 5 × 108 V/m induces a Rabi oscillation which
is followed by less pronounced population oscillations. The
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FIG. 4. τp = 100 fs laser-pulse-induced energy transfer dynam-
ics in a chain of 10 molecules (H-aggregate configuration, �mol =
1.2 nm, E0 = 107 V/m). Black solid line, P1 = P10; red dashed line,
P2 = P9; green chain dotted line, P3 = P8; blue dotted line, P4 = P7;
violet chain double dotted line, P5 = P6.

strong and simultaneous increase of all Pm near a value of
1 somewhat suppresses these oscillations. The effect of an
increasing pulse duration is shown in the subsequent Fig. 7.
Again, if τp > tcoh (lower panel) any population oscillation
disappears.

IV. OPTICAL RESPONSE

The basic equations for bm(t), Pm(t), and Wmn(t) contain
the terms ∼2Pn as nonlinearities. These terms decrease the
energy transfer coupling Jmn and we can expect a change of the
exciton spectrum. In the framework of the present description
the spectral changes cannot be calculated directly by solving
an eigenvalue equation. We suggest an alternative way to find
signatures of these spectral changes, finally in the detection of
the emission spectrum or the transient absorption of a pump-
probe experiment.

This alternative way uses changes of the absorption of an
exciting laser pulse (pump beam) if the exciton spectrum
changes. Since we concentrate on a sub-ps excitation the

0 500 1000 1500 2000 2500
Time (fs)

0

0.1

0.2

0.3

0.4

P
op

ul
at

io
n(

×
10

-3
)

FIG. 5. τp = 1 ps laser-pulse-induced energy transfer dynamics
in a chain of 10 molecules (H-aggregate configuration, �mol =
1.2 nm, E0 = 106 V/m). Black solid line, P1 = P10; red dashed line,
P2 = P9; green chain dotted line, P3 = P8; blue dotted line, P4 = P7;
violet chain double dotted line, P5 = P6.
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FIG. 6. Laser-pulse-induced energy transfer dynamics in a chain
of 10 molecules (H-aggregate configuration, �mol = 1.2 nm, τp = 20
fs). Upper panel, E0 = 108 V/m; lower panel, E0 = 5 × 108 V/m.

spectral changes shall be detected via an intermediate steady
state of the molecular excited state populations P (ss)

m which
are formed in a time region of 1–100 ps. If we draw the
P (ss)

m which are identical for all molecules versus the exciting
photon energy �ω0 large values are expected if �ω0 matches
an exciton energy Eα . If this is repeated for different pulse
intensities the changing exciton spectrum should become
visible.

We first calculate the steady-state populations versus �ω0

and for different field-strengths E0 to later on explain the
relation to emission and transient absorption spectra. To make
the total degree of excitation also visible we do not discuss
the individual populations P (ss)

m but the total excited state
population,

P
(ss)
tot =

∑
m

P (ss)
m , (32)

of the molecular complex.
Figure 8 shows respective results. We present curves

for a chain of 10 molecules either in a H- or J-aggregate
configuration (computations for 25 molecules gave similar
results). P

(ss)
tot drawn versus photon energy of the exciting

laser pulse displays different peaks which change their spectral
position when increasing the laser pulse intensity. As it has to
be expected the peaks are located above Emol = 2.6 eV for the
H-aggregate configurations and below Emol for the J-aggregate
configurations (there are more peaks for the longer chain).
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FIG. 7. Laser-pulse-induced energy transfer dynamics in a chain
of 10 molecules (H-aggregate configuration, �mol = 1.2 nm). Upper
panel, τp = 50 fs, E0 = 2 × 108 V/m; middle panel, τp = 100 fs,
E0 = 108 V/m; lower panel, τp = 500 fs, E0 = 2 × 107 V/m,

Increasing the laser-pulse field strength the peaks of the
H-aggregate configuration (upper panel in Fig. 8) move to
lower energies. The behavior is opposite for the chain with
J-aggregate configuration. Here, peaks above Emol are also
visible which move downwards in energy. This indicates a
compression of the whole exciton band which has to be
expected if the energy transfer couplings Jmn are effectively
reduced.

As described in detail in the Appendix the transient
absorption signal as well as the emission intensity become
proportional to the P (ss)

m and in the present case (of a system
of identical molecules) proportional to P

(ss)
tot . So drawing the

probe pulse signal Spr or the photon emission intensity Iemi

versus the photon energy �ω0 of the exciting laser pulse and
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FIG. 8. Steady-state value P
(ss)
tot of the total excitation of a 10

molecule chain versus photon energy �ω0 of the exciting laser
pulse (pulse duration τp = 2 ps, molecular distance �mol = 1.2 nm).
Upper panel, H-aggregate configuration; lower panel, J-aggregate
configuration. Variation of the laser pulse field strength. Black
solid line, E0 = 5 × 106 V/m; red dashed line, E0 = 107 V/m;
green chain-dotted line, E0 = 2 × 107 V/m; blue dotted line, E0 =
5 × 107 V/m.

for different field strengths, it should result in similar curves
as drawn in Fig. 8.

One would also expect that the emission line shape Iemi if
drawn versus the energy �ω of the emitted photons, directly
displays the changed exciton spectrum. However, as detailed
in the Appendix, this is not the case. The completely relaxed
exciton state and the random character of photon emission
avoids this. In contrast, we have to note the coherent character
of optical excitation also included in the equation of motion
for Wmn = 〈B+

mBn〉. This guarantees that the excitation process
notices the intensity-dependent change of the exciton spectrum
as displayed in Fig. 8.

V. CONCLUSIONS

The nonlinear response of a regular 1D molecular system
on ultrafast and strong optical excitation has been discussed.
To avoid exciton-exciton annihilation as a dominant quenching
process we considered a system where the ground-state–first-
excited-state transition energy is smaller than the first-excited-
state–second-excited-state transition energy. Now, resonant
optical excitation may result in the creation of many excitons.
To investigate such dense Frenkel-exciton systems we applied
a reference approximation leading to a mean-field description

and neglected vibrational contributions. An interference of
Rabi-type oscillations with oscillations caused by excitation
energy transfer dominates the temporal behavior after laser
pulse excitation. If the total degree of excitation is analyzed
versus the energy of exciting photons a shrinkage of the
exciton spectrum with increasing excitation intensity appears.
We demonstrated a possible detection of this effect in the
framework of a two-color pump-probe experiment and the
measurement of photon emission. Of course, the importance of
the described behavior can be only judged if an assessment of
the used mean-field description has been carried out. Improved
decouplings of the hierarchical system of equations of motion
are under investigation.
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APPENDIX A: TRANSIENT ABSORPTION SPECTRUM

We consider the probe-pulse transient absorption within a
two-color pump-probe experiment and focus on the sequential
regime without any temporal overlap of the pump and the probe
pulse. This corresponds to the detection of the steady-state
situation of the excitonic system after optical excitation with
the laser pulse introduced in Eqs. (5) and (6). The excitation
(pumping) appears at carrier frequency ω0 and with field
envelope E(t). To distinguish both quantities from those
belonging to the probe pulse we denote the probe pulse
frequency as ωpr and the respective envelope as Epr(t). While
the photon energy of the pump pulse is close to Em that of the
probe pulse shall be in resonance to Em = Emf − Eme �= Em.
So, the population of the first excited state of the molecules
can be probed via excited state absorption.

Following the standard scheme of determining transient
absorption spectra (see [16] and references therein) we
calculate the probe-pulse transient absorption signal according
to (note the application of the slowly varying amplitude
approximation)

Spr(t) = 2V ωprIm[E∗
pr(t)Ppr(t)]. (A1)

If integrated with respect to time it gives the energy gain the
molecular system experiences due to the complete probe-field
action (V denotes the sample volume). Since the probe
pulse shall act after an (intermediate) steady state has been
established due to the pump pulse action, the probe-pulse-
induced polarization Ppr(t) is computed in a linear response
approach [28],

Ppr(t) =
∫

dt̄ eiωpr(t−t̄)Rpr(t,t̄)Epr(t̄). (A2)

The response function is defined with respect to the pump-
pulse-induced excited state. It is accounted for by the steady-
state form ρ̂(ss) of the density operator. Moreover, the response
function depends on the time difference only and takes the
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form,

Rpr(t) = i

�
θ (t)tr{μ̂U(t)[μ̂,ρ̂(ss)]−}. (A3)

The dipole operator μ̂ now covers contributions due to the
higher excited state ϕmf according to

μ̂f =
∑
m

pmD+
m + H.c.. (A4)

We restricted ourselves to the transition between ϕme and ϕmf

with the related transition dipole moment pm and transition
operator D+

m = |ϕmf 〉〈ϕme|. Since pump and probe frequency
are out of resonance the response function Rpr can be computed
in restricting μ̂ to μ̂f . The time dependence of Rpr is caused by
the time-evolution superoperator U(t) which is the solution of
a quantum master equation. In contrast to the quantum master
equation (9) used beforehand, here, we can ignore any external
field contribution, but have to include in the unitary part the
additional Hamiltonian,

Hf =
∑
m

EmD+
mDm. (A5)

The dissipative superoperator, Eq. (10), is extended by

Df ρ̂(t) =
∑
m

rm

2
([D+

mDm,ρ̂(t)]+ − 2Dmρ̂(t)D+
m). (A6)

It includes finite lifetimes 1/rm of the higher excited state. In
a next step we define

σ̂ (t) = U(t)[μ̂,ρ̂(ss)]−, (A7)

and denote the probe-pulse response function as

Rpr(t) = i

�
θ (t)

∑
m

(pmtr{D+
mσ̂ (t)} + p∗

mtr{Dmσ̂ (t)}). (A8)

Some algebra gives the initial value according to

tr{D+
mσ̂ (0)} = p∗

mtr{ρ̂(ss)(D+
mDm − DmD+

m)} = −p∗
mP (ss)

m .

(A9)

We took into consideration that D+
mDm − DmD+

m =
|ϕmf 〉〈ϕmf | − |ϕme〉〈ϕme| and that ρ̂(ss) only contributes
to the steady-state population P (ss)

m of the first excited
state.

Since any coupling among the higher excited states and
among the higher excited and first excited states are absent it
simply follows

tr{D+
mσ̂ (t)} = −ei�̃mtp∗

mP (ss)
me . (A10)

We used �̃m = Em/� + irm/2. Note also that tr{Dmσ̂ (0)}
follows as the negative and conjugated complex version of
the expression given beforehand. According to the assumption
of a regular chain of molecules any site dependence vanishes
and we arrive at

Rpr(t) = − i

�
θ (t)|p|2(ei�̃t − c.c.)P (ss)

tot , (A11)

with the total excitation P
(ss)
tot , Eq. (32). Obviously, the total

probe pulse signal Spr is proportional to P
(ss)
tot .

APPENDIX B: THE EMISSION SPECTRUM

Photoemission from excited molecular states has been
discussed by us beforehand at several places (note our earlier
work in [26,29]). The emission spectrum is defined as the
number of photons with frequency ω emitted per time,

F (ω; t) = V ω2

(2πc)3

∑
λ

∫
do Rλ(ω; t). (B1)

The expression incorporates the rate Rλ(ω; t) = Rλk(t) de-
termining the number of photons emitted per time into the
state with polarization λ and wave vector k (ω = c|k|; V is
the quantization volume and the solid angle integration has
been abbreviated by

∫
do). For further use we introduce the

line-shape function Iemi according to F (ω; t) = 4ω3/3πc3
� ×

Iemi(ω; t). A second-order computation of Iemi with respect
to the molecule-photon coupling, a concentration on resonant
contributions, and a separation of the two time-dependency
results in [26,29],

Iemi(ω; t) = Re
∑
m,n

dmd∗
n

∫ ∞

0
dτ e−iωτ tr{B+

m (U(τ )Bnρ̂(t))}.

(B2)

Here, U(τ ) is the time-evolution superoperator which gen-
erates the initially introduced density operator equation (9),
but is independent of the exciting laser pulse. Thus, we do
not consider any interference effect between optical excitation
accounted for when computing the density operator ρ̂(t) and
photon emission spectrum generated by U(τ ).

Next, we focus on the steady-state version ρ̂(ss) of the
density operator, which is reached at a time after the laser
pulse action is over and after the system has been relaxed. To
compute the respective emission spectrum we introduce

β̄m(τ ; n) = tr{B+
mσ̂n(τ )} = 〈B+

m 〉σ (n), (B3)

with

σ̂n(τ ) = U(τ )Bnρ̂
(ss). (B4)

The index σ (n) at the bracket indicates the averaging with σ̂n

instead of ρ̂. The initial value of β̄m can be written as

β̄m(0; n) = 〈B+
mBn〉 = tr{ρ̂(ss)B+

mBn}
= δm,nP

(ss)
m + (1 − δm,n)W (ss)

mn = P
(ss)
tot /Nmol. (B5)

The off-diagonal quantities W (ss)
mn vanish and the whole ex-

pression becomes proportional to the total degree of excitation
P

(ss)
tot , Eq. (32). This indicates immediately Iemi ∼ P

(ss)
tot .

Next, we note that β̄m is identical to βm except the density
operator used for averaging and the initial values. Considering
the equation of motion for β̄m,

∂

∂τ
β̄m(τ ; n) = − i

�
〈[Hexc,B

+
m ]−〉σ (n) − 〈D̃B+

m 〉σ (n),

(B6)

one can establish the same system of subsequent equations
as in the case where one starts with βm. Since we consider
a time region where optical excitation is over (and where a
steady state in the molecular system has been established) the
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Hamiltonian is reduced to the time-independent part Hexc. We
further introduce the functions,

P̄m = 〈B+
mBm〉σ (n), (B7)

and

W̄mn = (1 − δm,n)〈B+
mBn〉σ (n), (B8)

which together with β̄m obey the same equations of motion
as βm, Pm, and Wmn except that optical excitation is absent
(rm = 0). Therefore, we arrive at

∂

∂τ
β̄m = iω̃mβ̄m + i

∑
k

jkm(1 − 2P̄m)β̄k, (B9)

∂

∂τ
P̄m = −kmP̄m + 2Im

∑
n

jmnW̄mn, (B10)

and
∂

∂τ
W̄mn = iω̃mnW̄mn − ijnm(P̄m − P̄n)

+ i
∑
k �=n

jkm(1 − 2P̄m)W̄kn

− i
∑
k �=m

jnk(1 − 2P̄n)W̄mk. (B11)

To avoid the presence of fast oscillations we change to
b̄m(τ ; n) = exp(−iω0τ ) × β̄m(τ ; n). The related equations of
motion take the form,

∂

∂t
b̄m = i(ω̃m − ω0)b̄m + i

∑
n

jnm(1 − 2P̄m)b̄n, (B12)

and the (time-independent) emission lineshape follows as

Iemi(ω) = |dmol|2Re
∫ ∞

0
dτ e−i(ω−ω0)τ

∑
m,n

b̄m(τ ; n). (B13)

Note the consideration of identical molecules which results
in the replacement of [dmd∗

n] by |dmol|2. Finally we quote all
types of initial values,

P̄m(0; n) = tr{ρ̂(ss)B+
mBmBn} = (1 − δm,n)tr{ρ̂(ss)B+

mBmBn}
≈ (1 − δm,n)P (ss)

m β(ss)∗
n , (B14)

and

W̄mm′ (0; n) = (1 − δm,m′ )tr{ρ̂(ss)B+
mBm′Bn}

≈ (1 − δm,m′ )(1 − δm′,n)W (ss)
mm′β

(ss)∗
n . (B15)

They are all proportional to β(ss)∗
n . Since this quantity equals

zero, P̄m and W̄mm′ also equal zero at finite time. As a
consequence, the emission lineshape becomes independent
on the excitation strength because Eq. (B9) always has to be
solved with P̄m = 0

Such a result indicates that the completely relaxed steady
state is unable to display the excitation-dependent shrinkage
of the exciton spectrum. When considering photon emission it
is determined by β̄m with the initial value proportional to P (ss)

m .
In contrast, the formation of P

(ss)
tot includes coherent excitation

of the pump pulse which guarantees spectrum shrinkage.
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