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Quantitative analysis of sideband coupling in photoinduced force microscopy
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We present a theoretical and experimental analysis of the cantilever motions detected in photoinduced force
microscopy (PiFM) using the sideband coupling detection scheme. In sideband coupling, the cantilever dynamics
are probed at a combination frequency of a fundamental mechanical eigenmode and the modulation frequency of
the laser beam. Using this detection mode, we develop a method for reconstructing the modulated photoinduced
force gradient from experimental parameters in a quantitative manner. We show evidence, both theoretically
and experimentally, that the sideband coupling detection mode provides PiFM images with superior contrast
compared to images obtained when detecting the cantilever motions directly at the laser modulation frequency.
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I. INTRODUCTION

The capability of cantilever-based atomic force microscopy
(AFM) to probe pN-level local forces strongly relies on
the resonant mechanical motion of the cantilever beam.
By detecting the tip-sample interactions at a fundamental
eigenfrequency of the cantilever, the force-induced mechanical
motions are amplified, which allows for a sensitive registration
of forces that are at play at the nanoscale [1]. Conventional
AFM methods typically use the first mechanical resonance of
the cantilever beam for mapping the topography of the sample.
However, the cantilever system exhibits multiple mechanical
eigenmodes, and the frequencies of these modes (f0i , with
i = 1,2, · · · ) can, in principle, be used as detection channels
for probing cantilever motion.

The principle of multifrequency AFM is based on the notion
that multiple frequency channels can be used simultaneously,
opening up the possibility to examine different tip-sample
interactions at the same time [2]. By detecting the ampli-
tude and phase of multiple eigenmodes, the experiment can
be optimized to detect, for instance, local variations in the
contact difference potential [3–5] along with local mechan-
ical measurements of material stiffness and damping [6,7].
Another example is photoinduced force microscopy (PiFM),
which uses one cantilever eigenmode for registering sample
topography and a second mechanical eigenmode for detecting
photoinduced forces in the tip-sample junction [8–16].

In each of the frequency channels, the force-induced motion
can be extracted by modulating the local force at a modulation
frequency fm and by tuning fm close to an eigenmode
frequency of the cantilever system, i.e., fm ≈ f0i . This form
of amplitude modulation detection can be labeled as the
direct mode, because the extracted demodulated amplitude
is directly related to the local force. An alternative detection
scheme is the so-called sideband coupling mode, in which
case fm is mixed with fi , which is a carrier frequency, and
the combination frequency fm ± fi is detected (see Fig. 1).
Unlike the direct mode, the sideband coupling mode in
amplitude modulation detection is sensitive to the gradient of
the force. Since the force gradient is often a more sensitive
function of the tip-sample distance, the sideband coupling
detection can produce images with sharper contrast in the

amplitude modulation AFM, compared to the direct detection
mode.

Sideband coupling has been used extensively in Kelvin
probe force (KPFM) microscopy [5] and in PiFM [8,9].
In both modalities, the sideband coupling scheme has been
shown to yield images with improved contrast relative to
direct mode detection. The sideband coupling scheme relies
on the presence of a nonlinearity in the oscillating motion to
enable the generation of combination frequencies. The current
description of sideband coupling postulates that the origin
of the nonlinearity is the force gradient in the tip-sample
junction. To connect the amplitude at the sideband frequencies
to the forces in the tip-sample junction, a detailed description
of the force and the cantilever dynamics is required. Such
descriptions are specific to the interactions at play in the
junction and require a careful analysis before quantitative
parameters can be extracted from the detected cantilever
motions.

In this paper, we develop a quantitative theory of sideband
coupling for probing force gradients detected in PiFM, in
the context of multifrequency AFM. Previous theoretical
descriptions of the PiFM response focused on signals detected
in the direct mode [10], making it possible to deduce
quantitative photoinduced forces from the cantilever motions.
Here, we expand this approach to include signals detected
in the sideband coupling mode, which shows a markedly
different response relative to the direct mode. We compare
the contrast seen in sideband coupling and direct detection
modes in PiFM and explain the origins of the observed
differences.

II. THEORY OF SIDEBAND COUPLING

A. Sideband coupling theory in multifrequency
atomic force microscopy

The motional dynamics of a continuous beam system
(cantilever-tip system) is described by the Euler-Bernoulli
model. The motion of the tip apex can be approximated
by a point-mass model and described by the superposition
of its eigenmodes [17,18]. Because the higher eigenmodes
contribute negligibly to the cantilever motion [19], for our
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FIG. 1. Sideband coupling mechanism.

discussion here, we may assume that only the fundamental
(i = 1) and the second mechanical resonance (i = 2) of the
beam system are significant. The dynamics of the cantilever in
two degrees of freedom can be described by [21]:

mz̈ + b1ż + k1z = F (t ; z(t)) (1)

mz̈ + b2ż + k2z = F (t ; z(t)) (2)

where m is the mass of the cantilever, F (t ; z(t)) is the total
external force including a tip-sample interaction force, and ki

and bi are the ith spring constant and damping coefficient of
the cantilever, respectively. The sideband motion is induced
by coupling the modulated force gradient (fm) with the carrier
frequency (fi). The instantaneous tip-sample distance is rep-
resented by z(t) � zc + z1(t) + zm(t) + zs(t) + O(ε) where
zc is the equilibrium position, z1 is the coordinate of the
carrier motion of the fundamental eigenmode, zm describes
the motion due to the modulated force, and zs is the relevant
coordinate for sideband-coupled motion (see Fig. 2). The
motion of zm and zs can be described as the superposition of
eigenmodes at their respective frequencies, given as zm(ωm) ≈∑2

i=1 zi(ωm) and zs(ωs± ) ≈ ∑2
i=1 zi(ωs± ). Assuming that the

motion is sinusoidal, the instantaneous tip-sample distance is
given as

z(t) ≈ zc + z1(t) + zm(t) + zs(t) + O(ε) (3)

with

z1(t) ≈ A1 sin(ω1t + θ1)

zm(t) ≈ Am1 sin
(
ωmt + θm1

) + Am2 sin
(
ωmt + θm2

)
zs(t) ≈ As1 sin

(
ωs± t + θs1

) + As2 sin
(
ωs± t + θs2

)
where ωs± = ωm ± ω1. Ami

and θmi
are the amplitude and

phase that are driven by the photoinduced force acting on
the fundamental and second eigenmodes; Asi

and θsi
are

the amplitude and phase driven by the interaction responsi-

Sample

Z

Z1+ Zm
Zc

+ Zs

FIG. 2. Dynamic motion of a cantilever.

ble for coupling the eigenmodes. Substituting Eq. (3) into
Eqs. (1) and (2) by multiplying both sides of the resulting
equation by sin(ωj t + θj ) and cos(ωj t + θj ), followed by an
integration over the oscillation period, the following general
relations for the amplitude and phase of the motions are
obtained:

(
ki − mω2

j

)Aj

2
= 1

T

∫
0

T

F (t ; z(t)) sin(ωj t + θj )dt (4)

biωjAj

2
= 1

T

∫
0

T

F (t ; z(t)) cos(ωj t + θj )dt (5)

where i = 1,2, j = 1,mi,si±. Equations (4) and (5) are
the general expressions of our sideband coupling theory in
multifrequency atomic force microscopy. If the form of F (t)
is known, the amplitudes A1,Ami

,Asi± and the phase shifts
θ1,θmi

,θsi± can be calculated through numerical integration.
In the next subsection, we will consider the small oscillation
limit and apply the sideband coupling theory to the case where
photoinduced forces are detected.

B. Small oscillation limit

Under the assumption that the oscillation is sufficiently
small, Eqs. (4) and (5) can be analytically solved by regarding
the sideband motion zs as a perturbation. Note that this
small oscillation approximation is equivalent to the first-
order approximation to the general motion of the cantilever
system [20]. The total external force can be expanded at the
equilibrium position zc as follows:

F (t ; z(t)) ≈ F (zc) +
(

∂F

∂z

)
zc

(z − zc) + . . . . (6)

We assume that the higher order coupling terms (second
order and higher) can be ignored in the small oscillation
limit. In PiFM with sideband mode detection, we modulate
the fundamental eigenmode of the cantilever for tracking the
topography and modulate the optical force at the angular
frequency ωm. Therefore, the total external force can be written
as:

F (t ; z(t)) = F1 cos(ω1t) + Fint (z) + FDC
pif (z)

+FAC
pif (z) cos(ωmt + θpif), (7)

where F1 is the driving force for the fundamental resonance,
and Fint is a mechanical tip-sample interaction force that can
be generally described as the sum of a conservative and a
nonconservative force: Fint(z) = Fc(z) − �(z)ż [21]. Such a
form of the force provides a good description of the energy
dissipation of the cantilever [22,23]. In the small oscillation
limit, nonvelocity dependent effects, such has the hysteresis
effect, can be assumed to be small [24]. The photoinduced
force contributes the third and fourth term on the righthand side
of Eq. (7), and is given as FDC

pif + FAC
pif cos(ωmt + θpif) [25].

The origin of the sideband signal derives from the product of
the carrier motion and the modulated force. Inserting Eq. (3)
and Eq. (7) into Eq. (6), then the external force induced by
sideband is explicitly obtained as follows from the second
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term of Eq. (6):

Fside =
(

∂F

∂z

)
zc

z1(t)

=
(

∂FAC
pif

∂z

)
zc

cos(ωmt + θpif)A1 sin(ω1t + θ1)

= ±
(

∂FAC
pif

∂z

)
zc

A1

2
sin(ωs± t + θpif ± θ1)

= F (ωs+) + F (ωs−), (8)

where ωs± = ωm ± ω1 are the sum and difference frequencies
at which the sideband coupled signal is detected. In the
remainder of this paper, we will choose ωs− for our sideband
detection. By setting the sideband frequency to coincide with
the second resonance frequency, ωs ≡ ωs− = ω2, the sideband
motion is amplified by the second eigenmode. For abbreviated
notation, we will write the gradient of the photoinduced force

as kAC
pif = (

∂FAC
pif

∂z
)zc

.
When we consider the sideband motion as a perturbed

motion, by substituting Eq. (6) into the integral forms of
Eqs. (4) and (5), the integral can be evaluated over the period
T = 2πp1/ω1 = 2πps/ωs = 2πpm/ωm in which the motion
z(t) is periodic. The intermediate steps in this calculation are
explained in the Appendix. In the resulting equations, the force
gradient acts as a perturbation that alters the amplitude and
frequency of the carrier motion. For the unperturbed solution,
the following general relations for the amplitude and the phase
of the carrier and the sideband motion are obtained:

A1(ω1) = G1(ω1)F1 (9)

As(ωs) = G2(ωs)
kAC

pif (zc)

2
A1 (10)

with the transfer function

Gi(ωj ) = 1√
m2

(
ω′2

i − ω2
j

)2 + (b′
iωj )2

, (11)

where ω′
i =

√
(ki − ( ∂F̄c

∂z
)
zc

)/m accounts for the frequency

shift induced by the force gradient, F̄c = Fc + FDC
pif is the ef-

fective conservative force, and b′
i = bi + �(zc) is an effective

damping parameter. Equation (9) is the unperturbed solution of
the carrier motion. Equation (10) is the first order perturbation
solution due to the presence of the modulated force. Note
that the expressions (9) and (10) are similar to the equations
found in prior work [5]. Here we advance previous work by
including damping explicitly in the transfer function and by
using amplitude and phase information of the first eigenmode
for calculating the transfer function of the cantilever’s second
eigenmode.

The amplitude of the sideband motion As is proportional
to the force gradient of the photoinduced force rather than to
the photoinduced force itself. For comparison, the amplitude of
the photoinduced force, which is probed in the direct detection
mode, is given as [10]:

Ad (ω2) = G2(ω2)FAC
pif (zc). (12)

Because the detected amplitude in the direct mode is directly
related to FAC

pif , the signal contains both localized (attractive)
and nonlocalized (repulsive) force contributions [14]. On the
other hand, the sideband mode is related to the force gradient of
the photoinduced force, kAC

pif . Therefore, since the gradient of
localized force contributions is much higher than the gradient
of the slowly varying nonlocalized forces, the sideband is
much more sensitive to localized tip-sample interactions. The
reduced spatial scale at which these interactions are prominent
gives rise to a high spatial resolution and improved contrast
compared to what is seen in the direct detection mode. We
will compare contrast attained in the sideband and direct
mode in Sec. V based on both simulation and experimental
results. In the next section, we will develop a method for re-
constructing the modulated force gradient from the cantilever
motion.

C. Reconstruction of distance-dependent force

The amplitude and phase of the carrier motion detected
in the sideband mode are experimentally accessible quan-
tities. We next describe an analytical method to relate the
experimental observables to the force gradients present in
the tip-sample junction. Evaluating the integrals in Eqs. (4)
and (5) and using Eq. (6), the force gradients of the pho-
toinduced force and the mechanical interaction force can be
expressed as:

k̄c(z) = − F1

A1(z)
sin θ1(z) + (

k1 − mω2
1

)
(13)

�(z) = F1

A1(z)ω1
cos θ1(z) − b1 (14)

∣∣kAC
pif (z)

∣∣ = As(z)

A1(z)

2

G2(ωs)
(15)

with b′
2 = b2 + �(z), k̄c(z) = ( ∂F̄c

∂z
)zc

and ω′
2 =√

(k2 − ( ∂F̄c

∂z
)
z
)/m where F̄c = Fc + FDC

pif . The intermediate
steps in deducing these equations can be found in the
Appendix. The formalism outlined by Eqs. (13)–(15) makes
it possible to reconstruct the distance dependent force
gradient of the mechanical and photoinduced force from the
experimentally accessible parameters A1,As , and θ1. Note
that Eq. (15) describes, in general, any applied force gradient
that introduces sideband motion in the cantilever system at
the sideband frequency fs± = fm ± f1. Note also that we
have assumed that the effective force gradient acts on both the
first and the second mode of the cantilever.

III. AMPLITUDE-DISTANCE SIMULATIONS

We first study the general trends of the cantilever dynamics
in the presence of both mechanical and photoinduced forces
by using Eqs. (9) and (10). For this purpose, it is required
to choose a functional form for the forces Fint and Fpif .
There are numerous formulations for conservative (Fc) and
nonconservative (Fnc) forces [1,26–28]. In this simulation,
we will consider the simplest case in which the mechan-
ical tip-sample interaction force can be described by an
attractive van der Waals type conservative force and the
photoinduced forces are the attractive localized gradient force
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Fg and the repulsive scattering force Fsc [10] are modeled
as:

Fint(z) = −HR

6z2
(16)

Fpif(z) = − β

z4
+ Fsc, (17)

where H is the Hamaker constant, R is the tip radius, and z is
the distance between the tip’s apex and the sample surface. The
magnitude of the photoinduced gradient force depends on the
β parameter, which is defined as β = 3 Re{α∗

t αp}E2
0z/2πε0,

where E0z is the z component of the incident field, and αt and
αp are the complex polarizability of the tip and the molecule,
respectively [29]. The scattering force Fsc is regarded as a
constant in the near-field region.

Figure 3 shows the distance dependent (a) amplitude
and (b) phase curves of the fundamental resonance and the
amplitude of the sideband mode (c) with the chosen simulation
parameters [30]. Simulations are shown for two settings of the
photoinduced force, where the β parameter for the red solid
curve is ten times higher than for the black solid curve. In
Fig. 3(d), the gradient of the photoinduced force is plotted for
the two different settings of the β parameter, using Eq. (17) for
the functional form of the distance-dependent force. The green
squares (β) and blue dots (10β) represent the reconstructed
force gradient by using Eq. (15) with the plotted A1,As , and
θ1, respectively. As is clear from the figure, the overlap of the
reconstructed force gradient with the calculated force gradient
is excellent, underlining that the reconstruction formalism
accurately reproduces the active force. Note that, unlike direct
mode detection [10], the sideband coupling detection mode is
not sensitive to the constant scattering force, which is reflected
in the absence of scattering force effects in the distance
dependence of kpif .

When the tip approaches the sample surface, the amplitude
at the carrier frequency decreases because the gradient of
the conservative force increases, which leads to a change
in the frequency shift ω′

i [Fig. 3(a)]. When the localized
force is increased by 10 times (red solid line), the gradient
of the DC component of the photoinduced force (FDC

pif )
also contributes to ω′

i , and the amplitude (and phase) at the
carrier frequency are further reduced at shorter tip-sample
distances [Figs. 3(a) and 3(b)]. This effect is related to the
optical force artifact known in scattering near-field optical
microscopy [31,32].

Unlike the amplitude at the carrier frequency (A1), the
amplitude at the sideband frequency (As) is sensitive to the
modulated force gradient of the photoinduced force, kAC

pif . In
Fig. 3(c), As is seen to go through a maximum as the tip
approaches the sample. For the black solid line, the maximum
appears near z ≈ 1 nm for the chosen beta prefactor [30].
The magnitude and the width of the peak is dependent on
β, which in turn is related to the effective polarizabilities of
the tip and the sample. By increasing the localized force by
10 times (red solid line), the AC force gradient enhances the
magnitude and width of the peak in the amplitude-distance
curve. In addition, the maximum of the curve has shifted to z ≈
1.4 nm. The simulation thus shows that As is very sensitive to
kAC

pif .

FIG. 3. (a) Amplitude and (b) phase curves of the fundamental
resonance. (c) Amplitude of the sideband mode and (d) modulated
photoinduced force gradient with respect to tip-sample distance and
the beta prefactors: β (black solid line) and 10 β (red solid line). The
reconstructed force gradients obtained with Eq. (15), and by using
the above A1,As and θ1, are plotted with green squares (β) and blue
circular (10 β) dots. [30].

IV. EXPERIMENT

A. Sample materials

Two test samples are used in this study. The first sam-
ple consists of gold nanowires patterned on a 0.17 mm
thick borosilicate coverslip. The nanowires are fabricated
by the lithographically patterned nanowire electrodeposition
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FIG. 4. Sketch of the photoinduced force microscope.

technique [33]. The resulting nanowires exhibit an average
width of 120 nm and an average height of 40 nm, whereas the
length of the nanowires extends over millimeters. The second
sample is a borosilicate coverslip with deposited nanoclusters
of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (SiNc)
(Sigma-Aldrich). The samples are prepared by spincasting a
concentrated solution of SiNc in toluene onto a plasma-cleaned
coverslip. After evaporation of the solvent, a distribution of
nanoscale SiNc aggregates is seen, varying in size from several
micrometers to less than 10 nm in diameter.

B. Light source

The experiments are carried out with a femtosecond light
source (MaiTai, Spectra-Physics), which delivers a 80 MHz,
200 fs pulse train. The average power of the laser beam at the
sample plane is around 50 μW to 90 μW at 809 nm wavelength
for both samples. The laser light is amplitude modulated
by an acousto-optic modulator at a frequency fm = fs + f1

with fs = f02. The beam, which is linearly (x) polarized, is
expanded with a beam expander to a diameter of ∼5 mm and
steered to an optical microscope. A schematic of the optical
layout is given in Fig. 4.

C. Atomic force microscope

A custom-modified atomic force microscope (Molecular
Vista–VistaScope) is used for the PiFM experiments. A sim-
plified scheme of the force detection is included in Fig. 4. The
system consists of an inverted optical microscope equipped
with a NA = 1.40 oil immersion objective, a sample stage

scanner, an AFM scan head and transmission and reflection
optics for sample inspection. The incident laser light is focused
by the microscope objective to produce a diffraction-limited
focal spot at the sample plane. The focal field thus produced
contains significant portions of y-polarized and z-polarized
light. To optimize the PiFM contrast, the tip is positioned at
the location of maximum z-polarized light in the focal spot,
making the measurement sensitive to the z-directed localized
forces [14].

We have measured the free oscillation resonance curve (am-
plitude versus frequency) and the DC deflection to calibrate
the sensitivity of the cantilever and fitted the free oscillation
carrier amplitude by using Eq. (9), which is obtained at
10μm above the sample without applying the laser beam.
We measured the sensitivity as 5.13 mV/nm and the free
oscillation amplitude A01 as 194.66 mV. This yields a cali-
brated free oscillation amplitude of 194.66/5.13 = 38 nm. By
fitting the free oscillation resonance curve, we also extracted
the other mechanical parameters of the cantilever such as
its quality factor. PiFM experiments are carried out with a
30 nm diameter gold coated silicon tip (ACLGG, App-
Nano Inc.). The measured mechanical properties of this
cantilever are k1 = 48 N/m, f01 = 177.7 kHz, Q1 = 676,
k2 = 1992.3 N/m, f02 = 1094.6 kHz, and Q2 = 654.

The topographic and photoinduced force images are ac-
quired simultaneously. This is achieved by demodulating the
tip response at f01 to retrieve the topography image and at fs to
retrieve the photoinduced force image. The laser modulation
frequency was set to fm = fs + f1 for photoinduced force
measurements, coinciding the sideband (difference) frequency
with the second mechanical resonance of the cantilever fs =
f02 to amplify the As signal. Because the demodulation
frequency is at a relatively high frequency (1094.6 kHz),
thermal noise contributions play only a minor role.

The minimum detectable force and the thermal noise
amplitude of each eigenmode of a cantilever are given
as Fmini

= √
4kikBT B/Qiω0i and Ni = √

4kBT QiB/ω0iki ,
where B is the bandwidth of a measurement and i is the ith
eigenmode [34]. For the second resonance with B = 100 Hz
and T = 300 K, the minimum detectable force and the thermal
noise amplitude are 1.03 × 10−13 N and 1.45 × 10−12 m for
the fundamental resonance and 8.57 × 10−13 N and 2.81 ×
10−13 m for the second mechanical resonance, respectively.

V. CONTRAST ANALYSIS OF SIDEBAND
COUPLING IN PIFM

We next apply the developed formalism to experimentally
obtained amplitude-distance measurements and show that
quantitative force information can be extracted from signals
detected through the sideband coupling scheme. We first
inspect the gold nanowire sample, where we measure the
distance-dependent PiFM signal between the gold-coated tip
and the gold surface of the nanowire. The bare glass surface
next to the nanowire is used as a reference. Figure 5 shows
the (a) amplitude and the (b) phase of the fundamental
resonance of the cantilever when operated at a free oscillation
amplitude A01 = 38 nm, recorded when the tip is parked over
the glass (black) and gold nanowire (red). The blue region is the
hard contact region where the cantilever beam is mechanically

195407-5



JAHNG, KIM, LEE, AND POTMA PHYSICAL REVIEW B 94, 195407 (2016)

glass
Au

glass
Au

glass
Au

0

20

40
A

(n
m

)
1

A
(p

m
)

s

0 20
Tip-sample distance (nm)

(a)

(b)

0

5

3010

10
(c)

5

10

0

k
(p

N
/n

m
)

pi
f

40

θ 1
(d

eg
re

e)

0

-90

90

(d) glass
Fit of glass
Au
Fit of Au

FIG. 5. (a) Amplitude and (b) phase curves of the fundamental
resonance. (c) Amplitude of the sideband mode with respect to
tip-sample distance. Black square dots correspond to the glass
surface and the red circular dots denote the measurement on gold.
(d) Reconstructed force gradients obtained with Eq. (15), by using
the above A1,As , and θ1, are plotted as black square (glass) and red
circular (gold) dots. The curves are fitted by the gradient of Eq. (17)
for glass (green solid line) and gold (blue solid line).

bent. The latter region corresponds to the hard contact
mode where the thermal expansion force is an important
contributor to the measurement [35]. Here, we are mainly con-
cerned with the region accessible with the noncontact/tapping
mode of the AFM, a region where photoinduced forces are

important. As is evident from the figure, the difference between
the curves obtained over the glass and the gold surface is
very small. These observations corroborate the trends seen
in the simulations of Figs. 3(a) and 3(b), emphasizing that
the photoinduced force effects are minimal in the A1 and θ1

detection channels.
On the other hand, the As detection channel clearly shows a

difference between the measurement for glass and for gold, as
evidenced in Fig. 5(c). For the measurement performed over
the gold surface, the sideband amplitude is maximized at a
distance of z ≈ 7.5 nm from the material, while falling off for
larger tip-sample distances. When the same measurement is
conducted over glass, the amplitude at the sideband frequency
is significantly less, showing a shallow maximum near z ≈
2 nm. These general features are similar to what is predicted
by the theory calculations presented in Fig. 3(c). The increased
As for gold is expected because gold exhibits a much higher
polarizability than glass, corresponding to a higher β value.

In order to extract quantitative information from the
sideband amplitude distance curve, we use our reconstruction
formalism to compute the field gradient (kAC

pif ). The results are
shown in Fig. 5(d). The blue and green solid lines are fits
based on the gradient of the force presented in Eq. (17) using
the β prefactor as a fitting parameter. Using this approach,
we find β as 4.7 × 10−41 N m4 for gold and 5.2 × 10−42 N m4

for glass. The beta value depends on the field enhancement,
material polarizability, and the total beam intensity. The
different β values thus reflect the difference in the effective
polarizability of the materials under the tip, with a higher
effective polarizability for gold relative to glass.

As discussed above, the sideband coupling detection mode
is sensitive to the gradient of the photoinduced force, whereas
the direct mode is sensitive to the photoinduced force itself.
This implies that PiFM images taken in the sideband coupling
mode may appear very different from the images obtained
in the direct mode. A direct comparison is presented in
Fig. 6, which shows a measurement on SiNc nanoclusters on
glass. In panel (a), the PiFM response from a nanocluster is
shown as a function of laser intensity for both the sideband
coupling mode (pink squares) and the direct mode (black
dots). For this measurement, the tip was parked 10 nm above
a selected nanocluster. We observe a marked difference in
the laser intensity dependence between the two detection
modes. A higher laser intensity corresponds to a higher β

value and thus to a higher FAC
pif . Using the expression of the

photoinduced force, Eq. (17), we can simulate the amplitude of
the sideband coupling mode and the direct mode by employing
equations (10) and (12), respectively.

The most notable difference between the curves is that
the curve for the sideband coupling mode goes through a
maximum, while the curve for the direct mode saturates at
higher intensities of the laser light. This difference is explained
by the different expressions for As and Ad . For a given
magnitude of the photoinduced force, Ad is proportional to
the AC force through the transfer function which is inversely
proportional to the DC force gradient. The expression for Ad

depends on β as C1β/
√

C2β2 + C3, which is simplified from
Eq. (12) and where Ci are constants. This functional form
shows that Ad saturates in the limit of high β values. However,
the sideband amplitude As shows a more complex dependence
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FIG. 6. (a) Laser intensity dependence of the sideband coupled
mode and the direct mode. Experimental sideband coupled signal is
indicated by black square dots and the simulation based on Eq. (10)
by the red solid line. Experimental direct modulation signal is shown
by the green circular dots and simulation based on Eq. (12) by the
blue solid line. The tip-sample distance is ∼10 nm. Images of SiNc
clusters are shown for the topography (b) and (e), PiFM sideband
(c) and (f), and PiFM direct modulation (d) and (g). The tip-sample
distance is 10 nm (top row) and 26 nm (bottom row).

on β. As can be simplified and rewritten in terms of β as
c1β/

√
c2β4 + c3β2 + c4, where ci are constants. This form

shows that As exhibits a maximum as a function of β. The
result of the simulation is shown by the solid lines in Fig. 6(a),
which reproduces the experimentally obtained data very well.

Figure 6(a) also contains clues toward the expected dif-
ferences in PiFM images, detected in either the sideband
coupling mode or the direct mode. It can be seen that for
smaller β values (lower laser power), the slope of the PiFM
response in the sideband coupling mode is steeper than in
the direct mode. This steeper β dependence translates into an
enhanced sensitivity of the sideband coupling mode. We thus
expect to see higher contrast in sideband coupling detected
PiFM images. Figure 6(b) shows a topography image of a
SiNc nanocluster. The corresponding images obtained with the
modulation frequency set to fm = fs + f01, where fs = f02

(sideband frequency), and to fm = f02 (direct frequency) are
shown in panels (c) and (d), respectively. The images are
obtained at a tip-sample distance of 10 nm. It can be seen that
the contrast in the sideband coupling mode is indeed noticeably
better, with sharper defined features especially at the edges of
the nanocluster.

Besides the steeper β dependence, the sideband coupling
also suppresses contributions originating from the scattering

force. Since the scattering force is largely insensitive to the
polarizability of the sample (molecule), it gives rise to a
background signal that reduces the contrast in PiFM images.
The effect of the scattering force can be significant at larger
tip-sample distances, where the magnitude of the gradient
force is reduced. In Fig. 6(e), the topography of another SiNc
nanocluster is shown, along with the corresponding PiFM
images obtained in the sideband coupling mode (f) and the
direct mode (g), now recorded at a tip-sample distance of
26 nm. It is evident that the contrast in panel (g) is com-
promised. The much lower gradient force is overwhelmed
by the constant scattering force, producing an image with
limited contrast. In the sideband coupling mode, however, the
scattering force is suppressed, and the gradient force, though
weak, can still be discerned. This example illustrates that the
sideband coupling mode offers enhanced sensitivity to the
gradient force in scenarios where the scattering force may
otherwise dominate the PiFM response.

VI. DISCUSSION AND CONCLUSION

The existence of cantilever motions at sideband frequen-
cies implies the presence of nonlinearities that enable the
mixing two frequencies at which the system is driven. The
cantilever beam is inherently nonlinear and is thus capable of
synthesizing motions at frequencies that are combinations of
input frequencies [17,18,36,37]. However, the manifestation
of sideband motions is evident only when the beam is driven
at large oscillation amplitudes, typically over a few hundred
nanometers. For much smaller oscillation amplitudes, such
as used in PiFM imaging applications with relatively stiff
cantilever beams, the intrinsic nonlinearity of the system does
not generate significant sideband motions. In this limit, the
probe is considered a linear harmonic oscillator [18,20], and
intrinsic nonlinearities can be ignored. In the linear oscillator
regime, the origin of nonlinearities is found in the force
interactions experienced by the cantilevered tip [38,39]. In
particular, the presence of a force gradient offers a mechanism
for mixing two driving frequencies, generating a response at
the respective sum and difference frequencies. The amplitude
of the sideband oscillation thus scales with the magnitude of
the force gradient experienced by the tip.

The sensitivity of the sideband oscillations to the force
gradients in the tip-sample junction has been long recognized
and utilized in Kelvin probe force microscopy and recently in
PiFM microscopy. In PiFM, where the sample is illuminated
with a modulated laser beam, the sideband coupling detection
scheme sensitively probes the field gradient of the optically
induced force in the tip-sample junction. The photoinduced
force contributes both a gradient force and a scattering force,
and since the tip-sample interactions are reflected mostly in
the gradient force, rejection of the scattering force is of great
relevance. By suppressing the scattering force, the sideband
coupling detection scheme displays a unique sensitivity to
the sample’s polarizability, enabling spectroscopic imaging
of nanoscopic entities [14]. Although the favorable attributes
of sideband coupling detection are known [8,9], a general
theoretical description explaining the origin of the PiFM imag-
ing contrast in this mode has not been previously discussed.
The work discussed here presents a fully consistent theoretical

195407-7



JAHNG, KIM, LEE, AND POTMA PHYSICAL REVIEW B 94, 195407 (2016)

framework for quantitatively analyzing and predicting PiFM
signals detected in the sideband coupling mode.

Our description considers the cantilever motions at multiple
frequencies and interprets their amplitudes in the context
of mechanical and optical forces and their gradients in the
tip-sample junction. The formalism considers the mixing
between oscillations at all the relevant driving frequencies, and
our theory confirms that the sideband frequencies observed in
PiFM find their origin in the gradient of the photoinduced
force. By tuning the sideband mixing frequency to a me-
chanical resonance of the cantilever system, the amplitude at
the sideband frequencies can be significantly amplified, thus
enhancing the sensitivity of the technique to the modulated
gradient of Fpif or kAC

pif for short.
A second attribute of the formalism developed here is that

quantitative values for kAC
pif can be extracted from experimental

measurements of the oscillation amplitudes of the cantilever
at the sideband frequency. Using A1, θ1, and As as input
parameters, we predict values for kAC

pif that coincide with rea-
sonable estimates of the photoinduced forces in the junction.
For instance, the reconstruction method enables us to directly
compare the theoretically predicted distance dependence of
kAC

pif with experimentally obtained tip-sample distance mea-
surements [Fig. 5(d)]. This ability renders sideband detected
PiFM a quantitative imaging technique.

All the main signatures in the distance dependence of
the amplitude and phase at the fundamental and sideband
frequencies, obtained from experiments, are reproduced in
the sideband coupling theory discussed in this paper. In
particular, we find a characteristic maximum of the sideband
amplitude as a function of tip-sample distance, which depends
on the magnitude of β, the prefactor included in kAC

pif . Another
experimental observable, the PiFM amplitude as a function of
β, obtained by increasing the laser intensity, is also correctly
predicted by our theory. We find that the β dependence
of the amplitude detected in the sideband coupled mode
is markedly different from the amplitude registered in the
direct mode. In the low intensity limit, which coincides with
typical experimental conditions, we observe that the sideband
amplitude displays a higher sensitivity to β compared to the
amplitude in the direct mode. This enhanced sensitivity is a
key factor that explains why images obtained in the sideband
coupling mode appear sharper and with more detail.

Sideband coupling detection is not limited to PiFM or
Kelvin probe microscopy. The sideband principle has also
been applied to enhance the contrast in bimodal AFM to probe
sample elasticity and damping [38]. In frequency modulated
Kelvin probe microscopy, sideband coupling detection has
been used in a multifrequency AFM approach to extract the
contact potential as well as the topography [3,40]. The theory
developed in this work is general and can be applied to the latter
examples of sideband detected AFM as well. We expect that
beyond its use in PiFM, the current theory and reconstruction
method may aid other scan probe techniques in extracting
quantitative information from experiments.
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APPENDIX: MODELING DETAILS

In the experiment, the sideband frequency is set to match
the frequency of the second mechanical resonance of the
cantilever system. To simplify the calculation, we choose
ωs− for the sideband detection by setting it as ωs = ωs− =
ωm − ω1 = ω2 ≈ 6.27ω1. Because ωs− is far removed from the
first mechanical resonance, we can approximate the amplitude
of the sideband mode as As ≈ As2− 	 As1− . By considering
the above approximation, the integral equations for the carrier
and sideband motions are rewritten as:

(
k1 − mω2

1

)A1

2
= 1

T

∫
0

T

F (t) sin(ω1t + θ1)dt (A1)

b1ω1A1

2
= 1

T

∫
0

T

F (t) cos(ω1t + θ1)dt (A2)

(
k2 − mω2

s

)As

2
= 1

T

∫
0

T

F (t) sin(ωst + θs)dt (A3)

b2ωsAs

2
= 1

T

∫
0

T

F (t) cos(ωst + θs)dt. (A4)

The carrier motion can be obtained by calculating Eqs. (A1)
and (A2). The sideband motion can be obtained by calculating
Eqs. (A3) and (A4). The integration can be performed over the
period T = 2πp1/ω1 = 2πps/ωs = 2πpm/ωm in which the
signal z(t) is periodic. The eigenmode frequencies, ω1, ωs , and
ωm, are required to be commensurable; i.e., ω1/ωs = p1/ps ,
ω1/ωm = p1/pm and ωs/ωm = ps/pm, where p1, pm, and ps

are integers. This is always possible with high accuracy such
as p1 = 15,ps = 94 and pm = 109 for ωs = ω2 = 6.27ω1 and
ωm = 7.27ω1. The physical meaning of p1,ps , and pm is to
increase the measuring time. The total force in PiFM is given
as

F (t ; z(t)) = F1 cos(ω1t) + Fint + FDC
pif (z)

+FAC
pif (z) cos(ωmt + θm) (A5)

where Fint = Fc(z) − �(z)ż. With a small oscillation approxi-
mation, the total force can be expanded as:

F (t ; z(t)) ≈ F (zc) +
(

∂F

∂z

)
zc

(z − zc) + · · · (A6)

where z(t) ≈ zc + z1(t) + zm(t) + zs(t). Substituting Eq. (A5)
into Eq. (A6), by considering the higher order terms are
sufficiently small, the total force terms are rewritten as:

F1 cos(ω1t) = F1 cos(ω1t) (A7)

Fc(z) ≈ Fc(zc) +
(

∂Fc

∂z

)
zc

(z1 + zm + zs) (A8)

�(z)ż ≈
(

�(zc) +
(

∂�(z)

∂z

)
zc

(z1 + zm + zs)

)
ż (A9)

FDC
pif (z) ≈ FDC

pif (zc) +
(

∂FDC
pif

∂z

)
zc

(z1 + zm + zs) (A10)
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FAC
pif (z) cos(ωmt + θm) ≈ FAC

pif (zc) cos(ωmt + θm)

+
(

∂FAC
pif

∂z

)
zc

(z1 + zm + zs) cos(ωmt + θm). (A11)

When we set ωs = ωm − ω1 = ω2, the second term in
Eq. (A11) gives the coupled response between the motions
through the modulated photoinduced force gradient. The
sideband force is explicitly derived from this coupled response
as below:(

∂FAC
pif

∂z

)
zc

cos(ωmt + θm)z1

=
(

∂FAC
pif

∂z

)
zc

cos(ωmt + θm)A1 sin(ω1t + θ1)

=
(

∂FAC
pif

∂z

)
zc

A1

2
sin((ωm + ω1)t + θm + θ1)

−
(

∂FAC
pif

∂z

)
zc

A1

2
sin(ωst + θm − θ1) (A12)

where ωs ≡ ωm − ω1. The first term in Eq. (A12) is the right
sideband force ωs+ and the second term is the left sideband
force ωs− . Because we will choose the left sideband for our
detection, the sideband frequency is given as ωs ≡ ωs− = ω2.
When we consider the sideband motion as a perturbation, the
total motion can be described as:

z(t) ≈ z(0) + z(1) + · · · (A13)

z(0) = z1 + zm (A14)

z(1) = zs. (A15)

In the small oscillation limit, the higher order perturbation
terms can be ignored. Then, the total force can be separated as
the unperturbed and the first order perturbed forces which are
given as:

F (z) ≈ F (z(0)) + F (z(1)) (A16)

F (z(0)) = F1 cos(ω1t) + Fc(z(0)) − �(z(0))ż(0) + FDC
pif (z(0))

(A17)

F (z(1)) = Fc(z(1)) − �(z(1))ż(1) + FDC
pif (z(1))

+FAC
pif (z(0)) cos(ωmt + θm). (A18)

The integral equations for the unperturbed carrier motion are
described as:

(
k1 − mω2

1

)A1

2
= 1

T

∫
0

T

F (z(0)) sin(ω1t + θ1)dt (A19)

b1ω1A1

2
= 1

T

∫
0

T

F (z(0)) cos(ω1t + θ1)dt. (A20)

By calculating the above integrals over the period T =
2πp1/ω1 = 2πps/ωs = 2πpm/ωm, the unperturbed solutions

for the carrier motion are found as:(
k1 − k̄c − mω2

1

)
A1 = F1 sin θ1 (A21)

(b1 + �)ω1A1 = F1 cos θ1 (A22)

where k̄c = ∂F̄c

∂z
|zc

and F̄c = Fc + FDC
pif . By squaring and

summing up Eqs. (A21) and (A22), we obtain the unperturbed
amplitude of the carrier motion as:

A1 = F1√
m2

(
ω′2

1 − ω2
1

) + b′2
1 ω2

1

(A23)

with b′
1 = b1 + �(z) and ω′

1 =
√

(k1 − k̄c)/m. In order to
write the expressions that follow in a more compact form, it is
useful to define a transfer function as:

Gi(ωj ) = 1√
m2

(
ω′2

i − ω2
j

)2 + (b′
iωj )2

(A24)

with b′
i = bi + �(z) and ω′

i =
√

(ki − k̄c)/m where i = 1,2
and j = 1,m,s. Using the transfer function and Eqs. (A21)
and (A22), the following relations are found:

A1(ω1) = G1(ω1)F1 (A25)

θ1(ω1) = tan−1 m
(
ω′2

1 − ω2
1

)
b′

1ω1
(A26)

k̄c(zc) = − F1

A1
sin θ1 + (

k1 − mω2
1

)
(A27)

�(zc) = F1

A1ω1
cos θ1 − b1. (A28)

The sideband motion can be obtained by substituting
Eq. (A18) into the equations of motion Eqs. (A3) and (A4).
The integral equations for the sideband motion are found as:

(
k2 − mω2

s

)As

2
= 1

T

∫
0

T

F (z(1)) sin(ωst + θs)dt (A29)

b2ωsAs

2
= 1

T

∫
0

T

F (z(1)) cos(ωst + θs)dt. (A30)

By calculating the above integrals over the period T =
2πp1/ω1 = 2πps/ωs = 2πpm/ωm, the sideband motion is
found as:

(
k2 − k̄c − mω2

s

)
As = −kAC

pif

2
A1 cos(θs − (θm − θ1)) (A31)

(b2 + �)ωsAs = kAC
pif

2
sin(θs − (θm − θ1)) (A32)

where kAC
pif (z) = ∂Fpif

∂z
|zc

. We obtain the sideband motion from
Eqs. (A31) and (A32) as:

As(ωs) = G2(ωs)
kAC

pif (zc)

2
A1 (A33)

θs(ωs) = − cot−1 m
(
ω′2

2 − ω2
s

)
b′

2ωm

+ θm − θ1 (A34)

∣∣kAC
pif (zc)

∣∣ = As(zc)

A1(zc)

2

G2(ωs)
. (A35)
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