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Magnetotransport signatures of the proximity exchange and spin-orbit couplings in graphene
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Graphene on an insulating ferromagnetic substrate—ferromagnetic insulator or ferromagnetic metal with a
tunnel barrier—is expected to exhibit large exchange and spin-orbit couplings due to proximity effects. We use a
realistic transport model of charge-disorder scattering and solve the linearized Boltzmann equation numerically
exactly for the anisotropic Fermi contours of modified Dirac electrons to find magnetotransport signatures of
these proximity effects: proximity anisotropic magnetoresistance, inverse spin-galvanic effect, and the planar
Hall resistivity. We establish the corresponding anisotropies due to the exchange and spin-orbit couplings, with
respect to the magnetization orientation. We also present parameter maps guiding towards optimal regimes for
observing transport magnetoanisotropies in proximity graphene.
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I. INTRODUCTION

Dirac electrons in pristine graphene have weak spin-orbit
coupling [1] and no magnetic moments, limiting prospects for
spintronics [2]. This can be partly remedied by functionalizing
graphene with adatoms and admolecules, which can induce
sizable local magnetic moments and spin-orbit coupling,
leading to marked spin transport fingerprints [3–8]. A
more systematic and, important, spatially uniform way to
induce spin properties in graphene is by proximity effects.
Being essentially a surface (or two), graphene can “borrow”
properties from its substrates. Placing graphene on a slab of
a ferromagnetic insulator, or a ferromagnetic metal with a
tunnel barrier, is expected to induce giant proximity exchange
as well as spin-orbit coupling in the Dirac electron band
structure. This is supported by first-principles calculations
[9–14] as well as by recent experiments on graphene on
yttrium iron garnet [15–17], and graphene on EuS [18]. In
effect, proximity graphene on ferromagnetic substrates should
be an ultimately thin ferromagnetic layer, with giant spin-orbit
coupling, forming a perfect playground for both spintronics
experiment and theory [19].

An important question is: What transport ramifications can
we expect in such a magnetic graphene with strong spin-orbit
coupling? On one hand, in ferromagnetic metals the exchange
coupling is typically much greater than spin-orbit coupling. On
the other hand, in semiconductor heterostructures, which are
the best case studies for structure-induced spin-orbit coupling
in its transport signatures [20,21], there is no ferromagnetic
exchange and spin splitting can be due to the Zeeman
interaction which is, for realistic values of magnetic field,
much weaker than spin-orbit coupling. Proximity graphene
should be intermediate between those two extremes: the
proximity exchange and spin-orbit couplings are expected
to be similar, on the order of 1–10 meV [9,10,22]. Perhaps
the main effect of the interplay of exchange and spin-orbit
couplings—magnetotransport anisotropies—should be well
pronounced and make for useful, experimentally testable
signatures of the spin proximity effects.
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In this paper we solve numerically exactly a realistic
Boltzmann transport model, with long-range charge scatterers,
for Dirac electrons in the presence of proximity exchange
and spin-orbit couplings. With the knowledge of the exact
nonequilibrium distribution functions, we avoid limits of
different relaxation time approximations in dealing with
anisotropic systems [23]. We start with the anisotropic band
structure, as in Fig. 1, and explore its ramifications in trans-
port. Specifically, we introduce and calculate the proximity
anisotropic magnetoresistance as an analog of the anisotropic
lateral magnetoresistance in ferromagnetic metal/insulator
slabs [24], characterizing interfacial spin-orbit fields. We also
present magnetoanisotropies of the planar Hall effect and
inverse spin-galvanic effect. Finally, we give parameter maps
indicating regions of large transport magnetoanisotropies.

II. MODEL

Dirac electrons in graphene in the presence of proximity
exchange and spin-orbit couplings are described by the
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FIG. 1. Scheme of magnetoanisotropic transport experiment in
proximity graphene. Polar (θ ) and azimuthal (φ) angles define the
magnetization orientation with respect to the applied electric field.
(a) Linear energy dispersion of pristine graphene can be modified
by (b) (intrinsic and Bychkov-Rashba) spin-orbit coupling or (c)
exchange field, both leading to spin splitting. (d) The interplay of
the two interactions makes the bands anisotropic with respect to the
magnetization orientation, here shown as out-of-plane and in-plane.
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FIG. 2. Fermi contours and spin texture (left), and the band
structure along kx (middle) and ky (right) for different directions
of the exchange field. The direction of the exchange field is indicated
by the large arrows; small arrows give the spin projections. (a) The
out-of-plane (OOP) exchange field separates two spin subbands,
while the Bychkov-Rashba field leads to a distinctive spin texture
depending on the z projection of the real spin, which interacts
with exchange field. (b) The in-plane (IP) exchange field splits the
bands, but also deforms the Fermi circles. We used EF = 100 meV,
λI = 0 meV, λBR = 10 meV, and λex = 25 meV.

minimal Hamiltonian [19]

H = H0 + HI + HBR + Hex. (1)

Here pristine graphene Hamiltonian is H0 = �vF (τzσxkx +
σyky) with pseudospin (sublattice) Pauli matrices σσσ and
τz = ±1 for K and K ′ points. The Fermi velocity is vF =
(3/2)ta0/� ≈ 8.6 × 107 cm/s for t = 2.7 eV and the inter-
atomic distance of carbons in graphene a0 = 1.42 Å [25].
The proximity intrinsiclike spin-orbit coupling is given by the
Hamiltonian HI = −λI + λI τzσzsz, with parameter λI and
(true) spin Pauli matrices s. The intrinsic coupling opens
a gap of 2λI . The Bychkov-Rashba Hamiltonian HBR =
λBR(τzσxsy − σysx), with parameter λBR describes the prox-
imity spin splitting due to spin-orbit coupling and lack of space
inversion symmetry. Finally, the spin-dependent hybridization
with the ferromagnet leads to a proximity exchange Hex =
λexm · s with parameter λex and magnetization orientation m.

There are two important magnetic configurations to con-
sider: out-of-plane and in-plane magnetizations, depicted in
Fig. 2 (see also Fig. 1). In the out-of-plane case the spin up
and spin down bands are spin split, but the band structure (and
thus Fermi contour) remains isotropic. On the other hand, in
the in-plane case the band structure is markedly anisotropic,
with the Fermi contours shifted relative to each other.

To investigate electrical transport, we solve the linearized
Boltzmann equation for the above model, assuming spatial
homogeneity. In the presence of a longitudinal electric field
E, the nonequilibrium distribution function is f = f0 + δf ,
where f0 is the equilibrium Fermi-Dirac function. We use
the ansatz δf = −e(−∂f0/∂E)u · E and consider long-range
Coulomb scattering, which is the established model for
resistivity in graphene [26]. The unknown vector u is found

by solving the integral equation (obtained from the Boltzmann
equation in linear order in E)

v(k) = 2πni(�vF rs)
2

×
∮

EF

dk′

|∇k′Ek′ |
F (k,k′)
q2ε(q)2

[u(k) − u(k′)], (2)

where Ek is the energy corresponding to wave vector k,
v(k) is the group velocity, ni is the concentration of scat-
terers, the effective fine structure constant rs ≈ 0.8 [27], and
F (k,k′) = |�(k)†�(k′)|2 is the overlap between the incident
(k) and scattered (k′) states �. For example, for pristine
graphene F (k,k′) = (1 + cos θkk′)/2. For simplicity, spin and
pseudospin indices are implicit in the momentum labels k. The
integral is over the Fermi contour of Fermi energy EF , and the
transferred momentum is q = |k − k′|. The dielectric function
ε is calculated from the random phase approximation [27–29]

ε(q)

=
{1+ qs

q
, if q � 2kF ,

1+πrs

2 + qs

q
− qs

√
q2−4k2

F

2q2 −rs sin−1
( 2kF

q

)
, if q > 2kF ,

(3)

where qs = 4kF rs . The Fermi wave vector kF is taken from
the pristine graphene case corresponding to a given electron
density. The integral equation, Eq. (2), is solved numerically
exactly [30], taking the energy spectrum and eigenstates of
the effective Hamiltonian, Eq. (1). Knowing vectors u for the
Fermi contour momenta k, the conductivity tensor is obtained
from

σij = e2

h

∫
dk
2π

�viuj δ(Ek − EF ). (4)

III. RESULTS AND DISCUSSION

We plot the calculated longitudinal conductivity of
graphene as a function of carrier density n, with and without
proximity effects, in Fig. 3(a). We use ni = 80 × 1010 cm−2 as
a representative density of long-range scatterers. The carrier
density, unlike in pristine graphene, depends not only on
the Fermi level but also on the strength of the proximity
interactions λI and λex,

n(EF ) = 2 × 1

2π

[
E2

F + 2EF λI + λ2
ex

]/
(�vF )2. (5)

The factor 2 takes into account the valley degeneracy. The
carrier density is independent of λBR and the direction of
the magnetization. In all the plots we fix the carrier density,
instead of the Fermi level. The conductivity for three different
combinations of parameters is shown in Fig. 3(a). The linear
dependence on n is well reproduced. While λBR and λex bring
about relatively insignificant changes (�2.5%), the presence of
λI = 10 meV lowers the conductivity by about ∼10% at a fixed
carrier density. Thus, in terms of modifying the magnitude of
the conductivity, the proximity effects (unless not inducing
additional scattering, which would need to be investigated
case-by-case) are rather weak, being more pronounced with
the inclusion of the intrinsic spin-orbit coupling, than with the
Bychkov-Rashba and exchange effects. However, as we will
see shortly, the anisotropic effects are quite pronounced.
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FIG. 3. (a) Calculated longitudinal conductivity as a function of
carrier density, for pristine and proximity graphene. For proximity
graphene we show the conductivity in the presence of Bychkov-
Rashba and exchange couplings only, and in the presence of
intrinsic spin-orbit coupling only (units in meV). (b) Inverse spin-
galvanic effect (scheme in the left inset) in proximity graphene.
Spin density induced (and normalized) by electric field (which
is along the x axis) with respect to the exchange interaction,
when the magnetization is out-of-plane (OOP) and in-plane (IP).
In-plane magnetization can be either parallel (along the x axis)
or perpendicular (along the y axis) to the electric field E. In
the right inset, the angle dependance of Sy(φ) is shown in the
polar plot with �Sy = Sy − Smin

y , for the electric field E = 1 V/cm,
and for λex = 10 meV in percentage with respect to Smax

y =
Sy(E||M). The carrier density in this plot is n = 1012 cm−2 and
λI = 0 meV, λBR = 20 meV.

When current flows in the presence of a Bychkov-Rashba
field, a spin density transverse to the current appears as a
demonstration of the inverse spin-galvanic effect [31–33].
The inverse spin-galvanic effect is the counterpart of the
spin-galvanic effect [34–36], which links nonequilibrium spin
density S and electric current j by jα = ∑

β QαβSβ , where Q
is a second-rank pseudotensor, and α,β = x,y are coordinate
indices. In the inverse spin-galvanic effect, the external electric
field that generates steady current shifts the Fermi contour of
the separate spin subbands with the helical spin texture due
to the Bychkov-Rashba spin-orbit interaction, creating extra
population with one spin and reducing the population with the
opposite spin. This leads to a homogeneous spin polarization
and it is also expected to happen in graphene [37,38]. The
nonequilibrium spin density caused by the electric field can be
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FIG. 4. (a) Calculated proximity induced anisotropic magne-
toresistance (PAMR) and (b) planar Hall resistivity are shown
when the exchange field is in-plane (θ = π/2) for λBR = 20 meV.
PAMR quantifies the longitudinal magnetoresistance as a function of
magnetization orientation φ. The interplay of spin-orbit coupling and
exchange field leads to a net anisotropic resistivity with C2v symmetry
while the off-diagonal elements of the resistivity tensor are nonzero.
Other parameters are n = 1012 cm−2, λI = 0 meV, λex = 10 meV.
The insets are polar plot representations.

calculated as

S =
∫

dk
(2π )2

δf (k)s(k), (6)

where s(k) is the spin (represented by Pauli matrices s)
expectation value of the state k. For our proximity model in
the presence of long-range Coulomb scatterers, the calculated
inverse spin-galvanic effect is shown in Fig. 3(b) as a function
of exchange coupling. With increasing magnetization the
induced transverse spin is reduced, as the exchange coupling
aligns the spins and deforms the rotational spin texture of
the Bychkov-Rashba field. The spin densities can be giant.
In fields of 1 V/μm, which are still achievable in graphene,
the spin density could reach 1011 cm−2, corresponding to
about 10% of spin polarization. The largest induced spin
accumulation is in the out-of-plane configuration for large
exchange. The magnetoanisotropy of the inverse spin-galvanic
effect can be very large, as seen in Fig. 3(b). The presence
of the current-induced spin accumulation, as well as its
magnetoanisotropy, could be detected in the same proximity
structure, by measuring the transverse voltage, as in nonlocal
spin injection [2].
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FIG. 5. Parameter maps of PAMR (θ = π/2, φ = π/2). (a) PAMR as a function of λBR and λI , for a fixed λex = 10 meV. (b) PAMR as a
function of λBR and λex, for λI = 0 meV. In both maps the carrier density is 1012 cm−2.

To quantify the transport magnetoanisotropy, we introduce
proximity induced anisotropic magnetoresistance (PAMR) as
a ratio of the resistivities R (or conductivities σ ) for a given
magnetization orientation (θ,φ) (see Fig. 1),

PAMR[E] = R(θ,φ) − R(θ,0)

R(θ,0)
= σxx(θ,0) − σxx(θ,φ)

σxx(θ,φ)
, (7)

analogously to the tunneling anisotropic magnetoresistance
effect [39–41]. PAMR refers to the changes in the longitudinal
magnetoresistance as the magnetization direction varies with
respect to the direction of the external electric field that drives
the current. When the magnetization is out-of-plane (θ = 0),
the broken time-reversal symmetry and strong spin-orbit cou-
pling can lead to the novel quantum anomalous Hall effect [10],
or crystalline magnetoanisotropy [24]. However, here we focus
on the regime in which PAMR is most pronounced (θ = π/2).
As shown in Fig. 4(a), PAMR exhibits a C2v symmetry due
to the interplay between the Bychkov-Rashba and exchange
interactions. The expected magnitudes of PAMR are about
1%, similar to what is observed in ferromagnetic metals [24].
The anisotropic resistivity tensor has nonzero off-diagonal
elements due to the presence of exchange and spin-orbit
couplings. This leads to the planar Hall effect, shown in
Fig. 4(b). The magnitude of the planar Hall effect could reach
up to 4 � which is greater than the typical values studied in
metallic ferromagnetic systems [42].

What values can PAMR reach for a reasonable range of
proximity parameters? Figure 5 shows two parameter maps,
one with the Bychkov-Rashba and intrinsic, the other with the
Bychkov-Rashba and exchange couplings. We see two distinct
features. (i) First, in Fig. 5(a) a horizontal line around λBR ∼
λex ≈ 10 meV separates two regions. For λBR � 10 meV,
increasing λI increases PAMR. For λBR � 10 meV, PAMR
initially increases with increasing λI , reaching a maximum of

about 1% around λI ∼ 7 meV, beyond which PAMR decreases.
(ii) Second, in Fig. 5(b) the line λBR = λex marks a sharp
crossover between weak and strong PAMR. However, this
crossover is not uniform. PAMR is largest for large values
of both λex and λBR slightly greater than λex. The reason why
this region gives the largest PAMR (more than 1%) is that
in this parameter range there is a band crossing between the
strongly spin-orbit coupled subbands.

IV. CONCLUSION

In summary, we used a realistic transport model to pre-
dict magnetotransport anisotropies in graphene with proxim-
ity exchange and spin-orbit couplings. We predict marked
anisotropies in the magnetoresistance, with similar values
as reached in ferromagnetic metal junctions and slabs. The
calculated PAMR depends strongly on the spin-orbit coupling
and exchange parameters. We also calculated the magne-
toanisotropies of the planar Hall and inverse spin-galvanic
effects. Our systematic investigation over the wide range
of parameter set, and the quantitative analysis on magne-
toanisotropies in graphene provide practical guidance for
experimental demonstration of the aforementioned signatures
of magnetotransport. All these magnetoanisotropies should be
a sensitive tool to probe proximity effects in graphene that lead
to a significant advance toward the graphene spintronics.
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