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Positive quantum magnetoresistance in tilted magnetic field
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Transport properties of highly mobile 2D electrons are studied in symmetric GaAs quantum wells placed in
titled magnetic fields. Quantum positive magnetoresistance (QPMR) is observed in magnetic fields perpendicular
to the 2D layer. Application of in-plane magnetic field produces a dramatic decrease of the QPMR. This
decrease correlates strongly with the reduction of the amplitude of Shubnikov–de Haas resistance oscillations
due to modification of the electron spectrum via enhanced Zeeman splitting. Surprisingly no quantization of
the spectrum is detected when the Zeeman energy exceeds half of the cyclotron energy suggesting an abrupt
transformation of the electron dynamics. Observed angular evolution of QPMR implies strong mixing between
spin subbands. Theoretical estimations indicate that in the presence of spin-orbital interaction the elastic impurity
scattering provides significant contribution to the spin mixing in GaAs quantum wells at high filling factors.
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I. INTRODUCTION

The orbital quantization of electron motion in magnetic
fields generates a great variety of fascinating transport
phenomena observed in condensed materials. Shubnikov–de
Haas (SdH) resistance oscillations [1] and the quantum Hall
effect (QHE) [2] are famous examples. Spin degrees of
freedom enrich the electron response [3,4]. In two-dimensional
(2D) electron systems the orbital quantization is due to the
component of the magnetic field, B⊥, which is perpendicular
to the 2D layer [5] whereas the spin degrees of freedom are
affected mostly by the total magnetic field B [6]. An increase of
the in-plane magnetic field produces, thus, an enhancement of
the spin splitting (Zeeman effect), �Z = μgB, with respect to
the cyclotron energy, �C = �ωc. Here μ is the Bohr magneton,
g is the g factor, ωc = eB⊥/m = eB cos(α)/m is the cyclotron
frequency, m is the electron effective mass, and α is the angle
between magnetic field �B and the normal �n to the 2D layer. At
a critical angle αc corresponding to the condition

�Z = �C

2
⇔ cos(αc) = gm

m0
, (1)

where parameter m0 is mass of the free electron, quantum
levels are equally separated by �ωc/2 and the amplitude of
the fundamental harmonic of SdH oscillations, ASdH , is zero.
This property is the basis of a powerful transport method
(coincidence method) for the study of the spin degrees of
freedom of 2D electrons [3,6].

In GaAs quantum wells the critical angle αc is large, αc ≈
85◦–87◦, due to a small effective electron mass [7–10]. At low
temperatures, kT � �c, the coincidence method yields the
g factor, which is considerably larger than the one obtained
from electron spin resonance [11,12]. An even stronger spin
gap is found in measurements of the activation temperature
dependence of the magnetoresistance [7,8]. The enhancement
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of the spin splitting is attributed to effects of electron-electron
interaction of 2D electrons [3]. At low temperatures and high
filling factors the spin splitting is found to be proportional to
B⊥ [8,13,14], which agrees with theoretical evaluations of the
contribution of the e-e interaction to the spin gap, when only
one quantum level is partially filled [15].

The enhancement of the spin splitting is found above a
sample-dependent critical magnetic field Bc [8,9,16]. This
effect has been attributed to the suppression of the contri-
butions of the e-e interaction to the spin splitting by a static
disorder [17]. With an increase of the temperature from the mK
range to a few kelvins the g-factor enhancement (Bc) is found
to be decreasing (increasing) considerably, which is attributed
to a reduction of the contribution of the e-e interaction to the
spin splitting due to thermal fluctuations [8].

At high temperatures, kT � �C,�Z there are many
partially populated Landau levels participating in transport
and one may expect a quantitatively different value of the
e-e enhanced spin splitting in comparison with the one at
kT � �C,�Z . We note that the spin splitting has not been
investigated experimentally in the quantized spectrum at high
temperatures since the coincidence method relies on SdH
oscillations, which are absent (exponentially suppressed) in
the high-temperature regime [1]. Recent developments [18]
open a possibility to study spin effects in electron systems with
a quantized spectrum at high temperatures: kT � �C,�Z .

This paper presents an experimental investigation of the
quantum positive magnetoresistance (QPMR) at high temper-
atures kT � �C,�Z and SdH resistance oscillations in GaAs
symmetric quantum wells placed in tilted quantizing magnetic
fields. The experiments indicate that angular variations of the
QPMR and the SdH amplitude strongly correlate yielding
essentially the same g factor: g ≈ 0.97 ± 0.08. This g-factor
value is close to the one obtained in experiments done at much
lower temperatures [7–10].

At a fixed B⊥ > 0.3 T the angular evolution of QPMR
demonstrates a resistance maximum at α ≈ 62◦, revealing an
unexpected decrease of the spin splitting with the in-plane
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magnetic fields while the overall angular evolution of QPMR
demonstrates B/B⊥ scaling at �Z/�C < 1/2 (α < 86◦). At
α > 86◦ the QPMR does not return as expected indicating
an absence of the quantized electron spectrum in the high-
temperature and large-parallel-field regime. A complementary
study of quantal heating [19–21] at different angles confirms
this observation.

In contrast to SdH oscillations the angular evolution of
QPMR implies a significant mixing between spin-up and
spin-down subbands due to quadratic dependence of the con-
ductivity on DOS [see Eq. (4)]. When the spin and momentum
of the electrons are independent, the nonmagnetic impurities
cannot mix the electronic states with opposite spins. On the
other hand in the presence of spin-orbit coupling, the spin and
momentum of electrons are not independent. In contrast to
the Zeeman splitting the spin-orbit interaction depends on the
energy (velocity) of electrons and does not decrease at small
magnetic fields [22,23]. As we show below, even at a small
spin-orbit coupling local nonmagnetic impurities may lead to a
scattering between different subsets of quantum levels leading
to the spin mixing at high filling factors.

II. EXPERIMENTAL SETUP

Studied GaAs quantum wells were grown by molecular
beam epitaxy on a semi-insulating (001) GaAs substrate.
The material was fabricated from a selectively doped GaAs
single quantum well of width d = 13 nm sandwiched between
AlAs/GaAs superlattice barriers. The studied samples were
etched in the shape of a Hall bar. The width and the length
of the measured part of the samples are W = 50 μm and L =
250 μm. AuGe eutectic was used to provide electric contacts to
the 2D electron gas. Two samples were studied at temperature
4.2 K in magnetic fields up to 9 T applied in situ at different
angles α relative to the normal to 2D layers and perpendicular
to the applied current. The angle α has been evaluated
using Hall voltage VH = B⊥/(enT ), which is proportional
to the perpendicular component, B⊥ = B cos(α), of the total
magnetic field B. The total electron density of samples,
nT ≈ 8.6 × 1011 cm−2, was evaluated from the Hall measure-
ments taken at α = 0◦ in classically strong magnetic fields
[24]. An average electron mobility μ ≈ 1.6 × 106 cm2/V s
was obtained from nT and the zero-field resistivity. Sample
resistance was measured using the four-point probe method.
We applied a 133 Hz ac excitation Iac = 1 μA through the
current contacts and measured the longitudinal (in the direction
of the electric current, x direction) and Hall ac (along y

direction) voltages (V ac
xx and V ac

H ) using two lock-in amplifiers
with 10 M� input impedances. The measurements were done
in the linear regime in which the voltages are proportional to
the applied current.

III. RESULTS AND DISCUSSION

Figure 1 presents the dissipative resistivity, ρxx(B⊥), at dif-
ferent angles α between the magnetic field, �B, and the normal
to the 2D layer, �n. In perpendicular magnetic fields below
0.11 T the resistance is nearly (within ∼0.6) independent of
B⊥. This is the regime of classical (Drude) magnetoresistance,
which is expected to be independent of B⊥ [24].

FIG. 1. Dependence of the longitudinal resistance ρxx on the
magnetic field perpendicular to the 2D sample obtained at different
angles α between the total magnetic field �B and the normal to the
2D layer. From the top curve to the bottom one angles are 0, 76.2,
78.6, 81.2, 82.6, 83.13, 84, and 85.9 degrees. The inset enlarges
the area at small magnetic fields indicating that the dependencies at
different angles diverge from approximately the same magnetic field
B∗ ≈ 0.11 T corresponding to the beginning of Landau quantization
of the electron spectrum at α = 0◦.

At α = 0◦ and B⊥ > 0.11 T the magnetoresistance demon-
strates a steep (exponential in 1/B⊥) monotonic increase
combined with SdH oscillations in B⊥ > 0.45 T. This increase
is attributed [18] to the quantum positive magnetoresistance
(QPMR) due to Landau quantization [25]. At angles α < 65◦
and B⊥ > 0.33 T the magnetoresistance exhibits an additional
few percent increase with the angle (not shown). At α > 65◦
the QPMR decreases significantly with the angle. Figure 1
demonstrates this decrease for angles between 76.2 and 85.9
degrees. The inset to the figure shows that the angular
variation of QPMR is approximately uniform with B⊥ and
starts at the same perpendicular magnetic field B∗ ≈ 0.11 T,
which separates the classical and quantum regimes of electron
transport [18,25]. The later indicates that the Landau level
width (or the quantum scattering time τq ) is nearly independent
of angle α. This is confirmed by more detailed comparison [see
Fig. 3(d)]. At angles α > 86◦ the QPMR demonstrates a weak
recovery (not shown), which is discussed later.

At B⊥ > 0.45 T, Fig. 1 shows SdH oscillations. In contrast
to QPMR the angular evolution of SdH oscillations has been
intensively studied [7,8,10]. The presented experiments show
strong correlation between angular evolutions of SdH oscilla-
tions and QPMR. Before the detailed discussion and compar-
ison of the dependencies, we present a model, which captures
the strong angular correlations of these two phenomena.

A. Model of SdH oscillations and quantum positive
magnetoresistance

A microscopic description of both SdH oscillations and
QPMR in perpendicular magnetic fields (at α = 0◦) is pre-
sented in Ref. [25] neglecting any spin-related effects, in
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particular the Zeeman term. As indicated in the Introduction
the account of the Zeeman splitting for SdH oscillations is
a developed procedure [3,6,8]. In contrast the spin-related
effects in the QPMR have not been studied yet.

Below we present a model that utilizes the similarity of
QPMR and magneto-intersubband (MISO) resistance oscil-
lations [26–30]. The model considers two subbands with
the energy spectrum evolving in accordance with Landau
quantization and split predominantly by the Zeeman effect
[6]. A scattering-assisted mixing between different subbands
is postulated to provide the observed correlation between the
angular evolutions of SdH oscillations and QPMR. Within
the presented model the absence of the scattering between
subbands would lead to the absence of an angular evolution
of the QPMR associated with the Zeeman effect in contrast
to the angular dependence of SdH oscillations. The origin of
the mixing requires further investigations. A mixing between
different spin subbands has been reported in Si-MOSFETs
[31]. The experiments show a sizable contribution of the
product of the spin-up and spin-down density of states to
SdH resistance oscillations. Furthermore investigations of the
resistivity tensor in tilted magnetic fields have revealed an
independence of the Hall coefficient on the spin subband
populations while the electron mobility in each spin subband
was substantially affected by the in-plane magnetic field [32].
This behavior has been interpreted by a mixing between spin
subbands due to an electron-electron interaction [33]. We note
also that in the presence of a spin-orbit coupling, different
subbands could be mixed by a local impurity scattering. An
investigation of this possibility is presented in Sec. III D.

In the simplest case of small quantizing magnetic fields
ωcτq < 1 the main contribution to both SdH oscillation and
QPMR comes from the fundamental harmonic of quantum os-
cillations of the density of states (DOS) corresponding to spin-
up and spin-down subbands. The total DOS, ν(ε), reads [3]

ν(ε) = ν0

[
1 − δ cos

(
2π (ε − �Z/2)

�ωc

)

− δ cos

(
2π (ε + �Z/2)

�ωc

)]

= ν0

[
1 − 2δ cos

(
2πε

�ωc

)
cos

(
π�Z

�ωc

)]
, (2)

where δ = exp(−π/ωcτq) is the Dingle factor, ν0 is the total
DOS at zero magnetic field, and τq is the quantum scattering
time, which is considered to be the same in both spin subbands.

The 2D conductivity σ is obtained from the following
relation:

σ (B) =
∫

dεσ (ε)

(
−∂f

∂ε

)
= 〈σ (ε)〉. (3)

The integral is an average of the conductivity σ (ε) taken
essentially for energies ε inside the temperature interval kT

near Fermi energy, where f (ε) is the electron distribution
function at the temperature T [3]. The brackets represent this
integral below.

The following expression approximates the conductivity
σ (ε) at small quantizing magnetic fields:

σ (ε,B⊥,�Z) = σD(B⊥)ν̃(ε,B⊥,�Z)2, (4)

FIG. 2. Dependence of normalized amplitude of SdH oscilla-
tions, Anorm

SdH = ASdH /4δA(T ), on cos(π�Z/�C) with g = 0.97. The
dependence corresponds to Eq. (5) relating the angular evolution
of SdH amplitude to the angular variation of the ratio between
Zeeman and cyclotron energies: �Z/�C = mg/(2m0 cos α). The
inset presents normalized SdH resistance oscillations in reciprocal
magnetic fields at angles α: 67.6, 83.3, and 85.9 degrees.

where σD(B⊥) is Drude conductivity in magnetic field B⊥ [24]
and ν̃(ε) = ν(ε)/ν0 is the normalized total density of states.
The main assumption of this model is utilized in Eq. (4).
Namely the impurity scattering between the spin-up and
spin-down subbands is considered to be comparable with the
impurity scattering within a spin subband, when the energies
of the spin sectors are the same. In other words a spin-up
(spin-down) electron has equal probability to scatter into a
spin-up or spin-down quantum state.

The proportionality of the conductivity σ (ε) to the square
of the normalized density of states is due to two factors. One
factor takes into account the number of available conducting
states (parallel channels) at energy ε, which is proportional to
the density of states. The second factor takes into account that
the dissipative conductivity in crossed electric and magnetic
fields is proportional to the electron scattering rate [24]. At
low temperatures the scattering is dominated by the elastic
impurities making the rate proportional to the density of final
states at the same energy ε [24,34]. The quadratic dependence
of the conductivity on the density of state results in the
factor 4 in Eq. (5), which is found to be in good quantitative
agreement with the amplitude of SdH oscillations shown in
Fig. 2. Furthermore the quadratic dependence on the density
of states yields both QPMR and its strong correlation with
SdH oscillations observed in presented experiments.

Equation (4) is similar to Eq. (5) of Ref. [35], which was
used for the conductivity in the perpendicular magnetic fields
neglecting both the Zeeman splitting and spin-orbital effects.
In this case the energy spectrum of spin-up and spin-down
electrons is the same and the normalized DOS for each spin
subband coincides with the normalized total DOS, ν̃(ε). For
two independent spin subbands the total conductivity is the
sum of two terms: σind = σ+ + σ−, where σ± = (σD/2)ν̃(ε)2.
The factor 1/2 takes into account that the electron density in
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each subband is half the total density. Thus at �Z = 0 the
total conductivity of two subbands does not depend on the
intersubband scattering: σind = σ (�Z = 0). At finite �Z the
intersubband scattering affects the conductivity.

A substitution of Eq. (4) and Eq. (2) into Eq. (3) yields
two additional terms to the Drude conductivity: σ − σD =
�σSdH + �σQPMR . The first term is proportional to Dingle
factor δ and describes SdH oscillations. It reads

�σSdH

σD

= −4δ

〈
cos

(
2πε

�ωc

)〉
cos

(
π�Z

�ωc

)

= −4δA(T ) cos

(
2πεF

�ωc

)
cos

(
π�Z

�ωc

)
, (5)

where εF is Fermi energy and A(T ) = (2π2kT /�ωc)
sinh(2π2kT /�ωc) is the

SdH temperature factor [1].
The second term is proportional to the square of the Dingle

factor and describes variations of the conductivity due to
QPMR. It reads

�σQPMR

σD

= 4δ2

〈
cos2

(
2πε

�ωc

)〉
cos2

(
π�Z

�ωc

)

= δ2

[
1 + cos

(
2π�Z

�ωc

)]
. (6)

In Eq. (6) the exponentially small temperature-dependent
term is neglected. At �Z = 0 Eq. (6) reproduces QPMR in
perpendicular magnetic fields [18,25].

Equations (5) and (6) indicate the strong angular correlation
between the amplitude of SdH oscillations and the QPMR. In
particular the SdH amplitude is proportional to cos(π�Z/�ωc)
and is zero at �Z = �ωc/2 in agreement with Eq. (1), while the
QPMR is proportional to 1 + cos(2π�Z/�ωc) and is zero too
at �Z = �ωc/2. In the next sections we compare experimental
results with Eq. (5) and Eq. (6).

B. Shubnikov de Haas oscillations

In quantizing magnetic fields ωcτtr � 1, where τtr is
the transport scattering time. At this condition resistivity
is ρxx = σ [ρxy]2 and ρxx(B⊥)/ρ0 = σ (B⊥)/σD(B⊥), where
ρ0 is Drude resistivity [24]. Therefore in accordance with
Eq. (5) the amplitude of SdH oscillations of the normalized
resistivity, �ρSdH /ρ0, is ASdH = 4δA(T ) cos(π�Z/�ωc), and
the normalized SdH amplitude is Anorm

SdH = ASdH /[4δA(T )] =
cos(π�Z/�ωc). To extract the normalized amplitude Anorm

SdH ,
the SdH resistance oscillations shown in Fig. 1 were separated
from the monotonic background using a low-frequency filter-
ing [30]. The separated SdH oscillations were then divided by
the factor 4ρ0δ(B⊥,τq)A(T ). By a variation of the quantum
scattering time τq in the Dingle factor δ quantum oscillations
with the amplitude, Anorm

SdH , independent of the magnetic field,
B⊥, are obtained. The later indicates that the ratio of the
Zeeman energy, �Z , to the cyclotron energy, �C = �ωc, is a
constant at fixed angle α in the SdH regime. The insert to Fig. 2
shows the independence of the normalized SdH amplitude,
Anorm

SdH , on the reciprocal magnetic fields at different angles α.
Figure 2 presents the angular dependence of the normalized

SdH amplitude Anorm
SdH . We note that the value of the SdH

amplitude agrees quantitatively with the one expected from
Eq. (5). The dependence is plotted versus cos(π�Z/�ωc) =

cos[πmg/(2m0 cos α)]. The g factor is used as a scaling
parameter for x axes of the plot to provide the linear depen-
dence between Anorm

SdH and cos(π�Z/�ωc). The obtained value
of g factor g = 0.97 ± 0.08 corresponds to the critical angle
αc = 86.3◦ ± 0.3◦ [see Eq. (1)] and is in a good agreement
with existing experiments [7–10]. Thus the angular evolution
of SdH oscillations agrees with both Eq. (5) and existing exper-
iments. We note that the strong enhancement of the g factor
obtained in the present experiments in the high-temperature
regime is intriguing, since the enhancement should degrade
with temperature increase in the low-temperature domain [8].

The obtained quantum scattering rate, 1/τq , is presented in
Fig. 3(d). The scattering rate is found to be independent of the
angle α: 1/τSdH

q ≈ 300 ± 100 GHz, and agrees with the one
obtained using the QPMR described in next section.

C. Quantum positive magnetoresistance

In accordance with Eq. (6) the magnitude of the quantum
magnetoresistance decreases exponentially with the reciprocal
magnetic field, 1/B⊥, due to the exponential decrease of
Dingle factor δ. Below we explore this property of the QPMR
to extract the quantum scattering rate 1/τq and the normalized
QPMR amplitude Anorm

QPMR = [1 + cos(2π�Z/�c)]/2. In the
vicinity of the critical angle αc the magnitude of the QPMR
is expected to be very small and the magnetoresistance should
be mostly driven by other mechanisms [36–38]. In particular
Fig. 3(b) presents the magnetoresistance at angle α = 90◦ at
which only in-plane magnetic fields are applied. The resistance

FIG. 3. (a) Dependence of the difference between normalized
resistivity at an angle α and the normalized resistivity at α = 85.9◦ ≈
αc, [ρxx − ρxx(85.9◦)]/ρ0, on the reciprocal magnetic field. From the
top curve to the bottom one corresponding angles α are 70.1, 76.2,
78.6, 81.2, 82.6, 83.3, and 84.3 degrees. (b) Magnetoresistance at α =
90◦. (c) Dependence of the normalized QPMR and SdH amplitudes
on the ratio between total and perpendicular magnetic fields. The
solid (dotted) line presents the normalized QPMR (SdH) amplitude,
Anorm

QPMR = [1 + cos(2π�Z/�ωc)]/2 (Anorm
SdH ), obtained from Eq. (6)

[Eq. (5)] using g factor g = 0.97. (d) Dependence of the quantum
scattering rate on the ratio B/B⊥ obtained from the analysis SdH
oscillations and the exponential decrease of the QPMR magnitude
with 1/B⊥ expected from Eq. (6).
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demonstrates a weak (within 2%) parabolic increase with the
in-plane magnetic field. The small in-plane magnetoresistance
affects weakly the curves presented in Fig. 1 and can be taken
into account assuming its independence on the angle α. Below
we assume that all mechanisms leading to negative magnetore-
sistance in the vicinity of the critical angle are independent of
the angle α and controlled by B⊥ and B‖ independently.

Within this assumption the difference between magnetore-
sistance at an angle α and the magnetoresistance at the critical
angle αc captures the main effect of the angular variations of
the electron spectrum on the electron transport described by
Eq. (6). Figure 3(a) presents the dependence of the difference
between the resistivity ρxx(α) and ρxx(85.9◦ ≈ αc) normalized
to the Drude resistivity ρ0 on the reciprocal magnetic field,
1/B⊥, taken at different angles. At small magnetic fields,
B⊥, the dependencies demonstrate an exponential decrease
with 1/B⊥ in accord with Eq. (6) with the rate depending
weakly on α. With an increase of the angle α the dependencies
shift down indicating a decrease of the normalized QPMR
amplitude Anorm

QPMR . The presented resistance difference takes
into account the small variations of the resistivity with the
in-plane magnetic field shown in Fig. 3(b). The applied
correction to the resistivity affects very weakly (within the
size of the symbols) the results presented in Figs. 3(c)
and 3(d).

Figure 3(c) presents the normalized QPMR amplitude
Anorm

QPMR and SdH amplitude Anorm
SdH plotted vs 1/ cos α =

B/B⊥. The normalized QPMR amplitude is obtained by the
extrapolation of the linear dependencies shown in Fig. 3(a)
at high 1/B⊥ to the infinite B⊥. The extracted normalized
amplitude Anorm

QPMR is presented by the open symbols. The
solid line shows the amplitude Anorm

QPMR obtained from Eq. (6)
using g factor g = 0.97. We note that there are no fitting
parameters between the experiment (open symbols) and the
Eq. (6) since the g factor is obtained from the fitting of
the angular dependence of the SdH amplitude. Shown in
Fig. 3(c) comparison of two amplitudes indicates strong
angular correlations between SdH resistance oscillations and
the quantum positive magnetoresistance.

Figure 3(d) presents the quantum scattering rates obtained
from the analysis of SdH resistance oscillations (filled sym-
bols) and QPMR (open symbols). In contrast to SdH resistance
oscillations the analysis of the QPMR magnitude yields more
accurate results for τq since QPMR does not depend on the
temperature damping factor A(T ) and the response is mostly
controlled by the Dingle factor only. The quantum scattering
rates extracted by two different methods are found to be in
a reasonable agreement indicating no significant variations of
the electron lifetime τq with both the angle α and the applied
magnetic fields at α < αc.

Figures 1 and 3(a) demonstrate the evolution of the QPMR,
which is obtained at a fixed angle α. At this condition
both perpendicular and total magnetic fields are changing.
As mentioned above the angular evolution of QPMR at
small (<65◦) and large (>αc) angles demonstrates additional
features, which may require a modification of the proposed
description. To get further insight into the angular evolution
of the QPMR, we have conducted measurements at a fixed
perpendicular magnetic field, B⊥, while sweeping the in-plane
magnetic field, B‖. At this condition the cyclotron energy is

FIG. 4. (a) Dependence of normalized resistivity on magnetic
field at fixed B⊥ as labeled. Inset shows position of the resistance
maximum at different B⊥. (b) Normalized variations of the resistivity
shown in (a): �ρxx/�ρN = (ρxx − ρmin)/(ρmax − ρmin) vs B. (c)
Normalized variations of the resistivity vs ratio of Zeeman and
cyclotron energies, μgB/�ωc, with g factor g = 0.97 obtained from
the angular variation of SdH oscillations. Open symbols present the
normalized magnetoresistance expected from Eq. (6) with no fitting
parameters.

fixed and variations of the electron spectrum are related mostly
to spin degrees of freedom.

Figure 4(a) presents dependencies of the normalized re-
sistivity on the total magnetic field taken at the fixed B⊥ as
labeled. In the agreement with the angular evolution shown
in Fig. 1 the total magnetic field suppresses the quantum
magnetoresistance at a fixed B⊥. A stronger perpendicular
magnetic field, B⊥, requires a stronger total magnetic field,
B, to suppress the QPMR. After the suppression the magne-
toresistance demonstrates a weak increase with the magnetic
field, which is, however, much smaller than expected from
Eq. (6). Finally at B⊥ > 0.3 T the magnetoresistance shows a
maximum enhancing at higher B⊥ that is also not explained
by this model. The inset to Fig. 4(a) presents the position of
the resistance maximum at different B⊥ indicating that the
maximum occurs at α0 ≈ 62◦.

Figure 4(b) presents the magnetic field dependencies
of a normalized resistance variation: �ρxx/�ρN = (ρxx −
ρmin)/(ρmax − ρmin), where ρmax and ρmin are maximum and
minimum values of the curves shown in (a). The figure
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facilitates the comparison of the shape of the dependencies
at different B⊥.

In accordance with the proposed model [see Eq. (6)] at
a fixed B⊥ and a constant quantum lifetime τq the Dingle
factor is fixed and the evolution of the magnetoresistance is
solely due to variations of the QPMR amplitude, Anorm

QPMR =
[1 + cos(2π�Z/�ωc)]/2. If the g factor is also a constant,
then the Zeeman term, �Z = μgB, is linearly proportional to
the total magnetic field, B, and the QPMR amplitude depends
only on the ratio B/B⊥. Thus in this case the QPMR should
scale with B/B⊥.

Figure 4(c) presents the normalized resistance
variations, �ρxx/�ρN , shown in Fig. 4(b) plotted
against the ratio between Zeeman and cyclotron energies:
�Z/�C = (mg/2m0)(B/B⊥), using the constant g factor
g = 0.97 obtained from the angular dependence of the
amplitude of SdH oscillations. Except for the curve taken at
the smallest B⊥ = 0.169 T all other curves shown in Figs. 4(a)
and 4(b) collapse on a single dependence at �Z/�C between
0.07 and 0.5. The collapse indicates B/B⊥ scaling, which
holds at high B⊥ in the studied system.

At �Z/�C < 1/2 the scaled dependencies are quite close
to the dependence expected from Eq. (6) and presented by the
open circles at g = 0.97 in Fig. 4(c) with no fitting parameters.
The dependence obtained at the smallest B⊥ = 0.169 T agrees
better with the model. We note that the model takes into
account only fundamental harmonics of the electron spectrum
and, thus, is valid only for overlapping Landau levels at
ωcτq < 1. At B⊥ > 0.3 T the Landau levels become separated
at τq ≈ 4 ps and an account of the higher harmonics of DOS
may improve the agreement with the experiment at high B⊥.
In contrast the description of SdH oscillations is valid even at
higher B⊥ since the contributions of the higher harmonics of
DOS to the SdH amplitude are suppressed by the temperature
for presented B⊥ [1,25]. We note also that the shift of the
resistive variation at B⊥ = 0.169 T to a stronger B (�Z) in
Fig. 4(c) agrees with the reduction of the enhanced g factor
by the disorder [8,17].

An unexpected feature of the dependencies presented in
Fig. 4 is the resistance maximum emerging at high B⊥. In
accordance with Eq. (6) the maximum occurs at �Z = 0 and
corresponds to the alignment of the quantum levels corre-
sponding to spin-up and spin-down subbands. The presence
of the maximum at a finite magnetic field, B, suggests that
the magnitude of the Zeeman splitting, |�Z(B⊥)|, decreases
with the increase of the total magnetic field, B, at a small
B‖. The decrease of the spin spitting is stronger at larger B⊥.
The total magnetic field, Bmax, corresponding to the resistance
maximum at different B⊥ is shown in the inset to Fig. 4(a).
At high B⊥ the Bmax is proportional to B⊥ that corresponds
to the angle α0 = 62◦. The position of the maximum agrees,
therefore, with the B/B⊥ scaling.

The observed behavior is compatible with the following
relation between an effective spin slitting �spin and magnetic
fields:

�spin = μ|g|B + �⊥, �⊥ = β�ωc, (7)

where β < 0. The parameter �⊥ describes the additional
contribution of the perpendicular magnetic field to the spin

FIG. 5. (a) Quantal heating of 2D electrons at different angles
α: 0, 66.4, 76.1, 80.8, 83.1, 84.3, 85.4, 86.6, 87.3 degrees at B⊥ =
0.267 T. (b) Solid lines are variations of the resistance shown in (a),
scaled vertically by factor k(α), vs the electric current I at several
angles α = 0, 76.1, 80.8, and 84.3. Dashed line presents fit, which
follows from Eq. (8) for the differential resistance [39]. (c) Solid
curves present smoothed dependencies of the normalized variations
of the resistance �ρxx/�ρN on the magnetic field B. Symbols present
the normalized magnitude of the heating induced resistance variation,
�norm

QH = k(α)/kmax, obtained at different magnetic fields B⊥ and B

as labeled.

splitting. At the resistance maximum �spin = 0 yielding β =
−m|g| cos α0/(2m0) ≈ −0.016|g|.

The structure of the effective spin splitting in Eq. (7)
is similar to the one used for 2D electron systems [8,10].
In particular in Eq. (10) of Ref. [8], �spin = μgB + γ �ωc,
the second term proportional to B⊥ is the contribution from
electron-electron interaction [3,15]. The important difference
is, however, that the sign of the second term, γ �ωc, is
opposite to the sign of the term �⊥ in Eq. (7). Furthermore
the magnitude of the β is an order of magnitude smaller
the γ ≈ 0.2. The origin of these maxima requires further
investigations.

At �Z/�C > 1/2 the angular evolution of the QPMR
deviates significantly from the expected behavior. Instead of
periodic oscillations with the parameter �Z/�C the resistance
demonstrates a weak increase at angles α > 86◦ indicating
that the modulation of the density of states with the energy
does not evolve as expected from Eq. (6). Accounting for
the magnetoresistance due to the in-plane magnetic field
[presented in Fig. 3(b)] reduces this resistance increase at
�Z/�C > 1/2 further (not shown).

To get a better understanding of the DOS at �Z/�C >

1/2 we have conducted measurements of quantal heating
[19–21]. Figure 5(a) presents dependencies of the normalized
differential resistance on the electric current obtained at fixed
B⊥ and different total magnetic fields B = B⊥/ cos α. An
application of dc current decreases considerably the differ-
ential resistance due to quantal heating. In accordance with
theory the magnitude of the heating induced variation of the
conductivity at small perpendicular magnetic fields is propor-
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tional to the square of the magnitude of DOS modulations with
the energy: 2δ2 [35]. Using Eq. (2) for the DOS and Eq. (4)
for the conductivity one can find the effect of quantal heating
on the conductivity in a tilted magnetic field following the
case corresponding to α = 0◦ and considering the inelastic
relaxation in the τ approximation [35]. The variation of the
conductivity due to quantal heating, �σQH = σ (I ) − σ (0), at
ωcτq < 1 is the following:

�σQH

σD

= −δ2

[
1 + cos

(
2π�Z

�ωc

)]
4Qdc

1 + Qdc

. (8)

The term Qdc = [2τin/τtr ][eERc]2[π/ωc]2, where τin (τtr ) is
inelastic (transport) time, Rc is cyclotron radius, and E ∼ I

is the electric (Hall) field [35,39]. Equation (8) follows from
Eq. (15) of Ref. [35] if one substitutes the factor 2δ2 by δ2[1 +
cos(2π�Z/�ωc)]. Equation (8) indicates that the magnitude
of the conductivity variation at different angles depends on
the factor [1 + cos(2π�Z/�ωc)], which is identical to the
one describing QPMR magnitude [see Eq. (6)]. On the other
hand the factor Qdc/(1 + Qdc), describing variations of the
resistance with the electric field (current), does not depend
on the angle α. This means that the shape of the current
dependence of the resistance is expected to be the same at
different angles, while the overall magnitude of the resistance
variations should depend of the angle.

Figure 5(b) demonstrates that the heating-induced resis-
tance variations, ρxx(0) − ρxx(I ), at different angles α are
indeed proportional to each other and to the one expected
from Eq. (8) [39]. To reveal the proportionality the curves,
shown in Fig. 5(a), are scaled vertically to follow the same
dependence on the applied current, I . At high currents the
dependencies deviate from the theory due to other mechanisms
of nonlinearity [19].

The normalized magnitude of the heating-induced resis-
tance variation �norm

QH = k(α)/kmax is shown in Fig. 5(c) at
different B and B⊥. Here k(α) is the reciprocal scaling
coefficients of the curves in Fig. 5(b) and kmax is the maximum
value of k. At �Z/�C < 1/2 the heating-induced resistance
variations follow the QPMR magnitude in agreement with
Eq. (6) and Eq. (8) and, thus, correlate with the angular
variations of the SdH amplitude. The latter is in agreement with
previous observations [21]. At �Z/�C > 1/2 the heating-
induced resistance variations are absent, indicating the absence
of oscillations of the DOS in this regime. On another hand
at �Z/�C < 1/2 the angular evolution of SdH oscillations,
QPMR, and quantal heating indicates quantization of the
electron spectrum demonstrating the electron lifetime τq ≈
4 ps independent of the angle α.

The results show, thus, a rather abrupt transition of the
quantized electron spectrum at �Z/�C < 1/2 to an uniform,
energy-independent DOS at �Z/�C > 1/2. Both these results
and investigations of the angular evolution of SdH oscillations
[8,10], thus, do not support the proposal of a gradual decrease
of the quantum scattering time with the in-plane magnetic
field [40,41]. The observed quenching of microwave-induced
resistance oscillations in tilted magnetic fields [41–43] also
indicates a modification of the electron spectrum, which
happens, however, at smaller angles α < αc. This suggests
that the transition to an energy-independent DOS in the

high-temperature regime, kT � �ωc, may depend not only on
the ratio between Zeeman and cyclotron energies but also on
some other parameters such as electron density, disorder[17],
and/or the width of the quantum well.

The angular evolution of QPMR indicates significant spin
mixing. This spin mixing suggests an important role of
the spin-orbit coupling in electron transport at high filling
factors. The importance of spin-orbit interaction for the
quantized spectrum increases at small magnetic fields since
the strength of this interaction is independent of magnetic
field [22,23]. The observed absence of QPMR and quantal
heating at �Z/�C > 1/2 suggests a transition of the quan-
tized electron orbital motion and the independent periodic
spin evolution to a stochastic spin-orbital dynamics when
energy (period) of the spin evolution is compatible with the
energy (period) of the orbital motion. Below we evaluate the
effect of spin-orbit interaction on spin mixing in the studied
system.

D. Spin-orbit interaction and quantum positive
magnetoresistance

Spin-orbit coupling in quantum wells and heterojunctions
has been discussed in the literature [4]. In particular the
significant deviation of the g factor obtained in electrically
detected electron spin resonance (ESR) from the bulk GaAs
value [11] has been attributed to spin-orbit effects [23].
The spin-orbit interaction leads to positive quantum correc-
tions to conductivity of disordered 2D conductors [44–46].
In GaAs heterojunctions the effect of spin-orbit interac-
tion on quantum corrections to the conductivity has been
investigated [47,48].

We consider that the spin mixing leading to QPMR is
due to impurity scattering between different s sectors of
the Hamiltonian (9) containing a spin-orbit interaction. To
evaluate the spin mixing we first find the electron spectrum,
then compute numerically matrix elements of the impurity-
induced transitions both within an s sector and between
different s sectors and compare them.

We consider a 2DEG in the x-y plane placed in a tilted
magnetic field and affected by a Rashba spin-orbit term
[22,23,49]. The in-plane component of the magnetic field is
chosen to be along the x direction yielding B = (B‖,0,B⊥).
The Hamiltonian of the system can be written in the following
form:

H = 1

2m

(
p + e

c
A

)2

+ λ

�
ẑ ·

[(
p + e

c
A

)
× σ

]

+ 1

2
μBgB⊥σz + 1

2
μBgB‖σx, (9)

where m,−e, and λ are the electron mass, charge, and
spin-orbit coupling constant, respectively, and σi are the Pauli
matrices. We employ Landau gauge A = −yBx̂. In that case
the Hamiltonian does not contain the x variable and the
momentum in the x direction px = �k is a conserved quantity.

As was noted previously [49] at angle α = 0 the problem
can be solved analytically yielding the following energy
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spectrum [22,23]:

En,s = �ωc

(
n + s

2

√
(1 − gs)2 + 8η2n

)
, (10)

where η = λmlB/�
2 and gs = gm/2m0. Here lB = √

�/eB⊥
is the magnetic length. In Eq. (10) s = 1 for n = 0 and s = ±1
for n > 0. We note that at λ = 2.5 meV nm obtained from an
analysis of the ESR spectrum in GaAs heterojunctions [11,23]
the spin-orbital term, 8η2n, provides a significant contribution
to the gap between different s sectors in Eq. (10) at the high
filling factors (n ∼ 30) relevant to the experiments.

The corresponding eigenfunctions have the form

ψn,k,s(x,y) = cos θn,sχn,k,+1 + i sin θn,sχn−1,k,−1, (11)

where θ0,1 = 0 and for n > 0, tan θn,s = −un + s
√

u2
n + 1 and

un = (1 − gs)/(η
√

8n). Functions χn,k,σ = φn,k|σ 〉 present
the eigenfunctions of the Hamiltonian (9) at λ = 0 and B‖ = 0,
where φn,k are the Landau level eigenfunctions and |σ 〉 is the
eigenstate of the spin operator σz with eigenvalues σ = ±1.
Each eigenstate ψn,k,s has the degeneracy Nφ = LxLyeB/(hc)
related to Nφ values of k, where Lx and Ly are the system sizes
in the x and y directions, respectively.

In a tilted magnetic field, α > 0, the problem can be solved
numerically [49]. An application of the in-plane magnetic field,
B‖, induces transitions between states ψn,k,s with different
index s (between different s sectors). Using functions ψn,k,s

as the basis set, one can present the Hamiltonian in matrix
form [30]. The matrix contains four matrix blocks: Ĥ =
(Ê+,T̂ ; T̂ ∗,Ê−), where the semicolon separates rows. The
diagonal matrices Ê+ and Ê− represent energy of the s sectors
with s = 1 and s = −1, respectively, in different orbital states
n following Eq. (10):

E+
nm = δnm�ωc

(
(n − 1) + 1

2

√
(1 − gs)2 + 8η2(n − 1)

)
,

(12)

E−
nm = δnm�ωc

(
n − 1

2

√
(1 − gs)2 + 8η2n

)
,

where indexes n = 1,2, . . . ,Nmax and m = 1,2, . . . ,Nmax enu-
merate rows and columns of the matrix correspondingly.
In numerical computations the maximum number Nmax is
chosen to be about 2 times larger than the orbital number
NF corresponding to Fermi energy EF . Further increase of
Nmax shows a very small (within 1%) deviation from the
dependencies obtained at Nmax ≈ 2NF .

The corresponding matrix elements of the off-diagonal
matrix T̂ are the following:

Tnm = iδnm

μBgB‖
2

cos θn−1,1 sin θm,−1. (13)

The Hamiltonian Ĥ is diagonalized numerically at different
magnetic fields B⊥ and B‖. To analyze the spectrum the
obtained eigenvalues of the Hamiltonian are numerated in
ascending order using positive integer index l = 1,2, . . . . The
electron transport depends on the distribution of the quantum
levels in the interval kT near the Fermi energy EF [24]. Below
we focus on this part of the spectrum.

Figure 6 presents the difference between energies of the
(l + 1)th and lth quantum levels of the electron spectrum.

FIG. 6. (a) Level spacing δEl = El+1 − El in the energy spec-
trum of electrons in B⊥ = 0.44 T and B‖ = 0.83 T at spin-orbit
coupling λ = 2.95 meV nm and g = −0.44. (b) Dependence of the
energy of the quantum states in the vicinity of Fermi energy on the
spin-orbit coupling parameter η at B⊥ = 0.44 T and α = 0◦. Labels
show quantum indexes of the levels according to Eq. (10).

Each symbol represents a particular level spacing normalized
to the cyclotron energy: δEl/�ωc = (El+1 − El)/�ωc [30].
Figure 6(a) presents the normalized level spacing at spin-orbit
coupling λ = 2.95 meV nm and g = −0.44 obtained in B⊥ =
0.44 T and B‖ = 0.83 T. These magnetic fields correspond to
the QPMR maximum shown in Fig. 4. At these conditions the
two nearest quantum levels coincide in the vicinity of Fermi
energy, EF , yielding the level splitting �∗ = 0. Figure 6(b)
presents the energy of the quantum levels in the vicinity of
the Fermi energy vs the strength of the spin-orbit coupling
characterized by the coefficient η at B⊥ = 0.44 T and α = 0◦.
Near η ≈ 0.11 the levels of two different s sectors intersect
opening a channel for the impurity scattering between s

sectors. Below we evaluate the rate of these transitions for the
crossing of the level with quantum numbers n0 = 30, s = 1
and the one with n0 + 2 = 32, s = −1 and investigate the
relation of the scattering matrix elements inside the same s

sector and between different s sectors.
We approximate the impurity potential by a Gaussian

function located at the (0,0) point:

V (x,y) = V0 exp

[
−x2 + y2

2a2

]
, (14)

where V0 is the amplitude of the impurity potential and a

defines its width. For very narrow impurity potential Eq. (14)
can be reduced to a delta function VD(x,y) = 2πV0a

2δ(x)δ(y).
In this case at α = 0◦ the matrix elements can be written
explicitly:

〈n,s,k|VD(x,y)|n′,s ′,k′〉
= 2πV0a

2 × [sin θn,s sin θn′,s ′φn−1,k(0,0)φn′−1,k′ (0,0)

+ cos θn,s cos θn′,s ′φn,k(0,0)φn′,k′(0,0)], (15)

whereas for the general case they should be computed
numerically.

Below we compute the matrix elements inside the same s

sector 〈n0,1,k|V (x,y)|n0,1,k′〉 and between different sectors
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FIG. 7. The contour plots of |〈n0,1,k|V (x,y)|n0,1,k′〉| (a) and
|〈n0,1,k|V (x,y)|n0 + 2,−1,k′〉| (b) for different values of k and k′

for Gaussian impurity potential with parameters V0 = 0.1�ωc, a =
6.6 × 10−4lB , and η ≈ 0.11.

〈n0,1,k|V (x,y)|n0 + 2,−1,k′〉 at the value η ≈ 0.11 and
compare the magnitudes of these two matrix elements. In
calculations the size of the system in the y direction is
Ly = 6Rc, where Rc = √

2n0 + 1lB is the cyclotron radius.
Figure 7(a) shows a contour plot of the magnitude of the ma-

trix element |〈n0,1,k|V (x,y)|n0,1,k′〉| within the same s sector
while Fig. 7(b) shows the magnitude of the impurity scattering
between different s sectors |〈n0,1,k|V (x,y)|n0 + 2,−1,k′〉|
for different values of k and k′. The impurity parameters are
V0 = 0.1�ωc and a = 6.6 × 10−4lB . Figure 7(a) demonstrates
that for scattering within the same sector both forward
scattering (k = k′) and backscattering (k = −k′) are substan-
tial, although forward scattering is somewhat stronger than
backscattering. In contrast, in transitions between different
s sectors backscattering plays the major role while forward
scattering is strongly suppressed. The average of the squares of
scattering amplitudes is found to be of the same order: 1.22 ×
10−19(�ωc)2 within the same s sector and 0.72 × 10−19(�ωc)2

between different s sectors. Thus due to backscattering the
impurity scattering between different s sectors is comparable
with that within the same s sector. We note that the studied
systems demonstrate a significant magnitude of impurity
backscattering [50–52].

Figure 8(a) presents the dependence of the averaged square
of the matrix elements on the shape of the impurity potential
V (x,y) at η ≈ 0.11. The average is over all k and k′ values.
This figure shows that at a < 0.05lB both Gaussian and
delta function potentials provide nearly identical scattering
both within the s sector and between different s sectors
and the scattering magnitude is proportional to the cross
section of the impurity potential a2. At higher magnetic
fields a > 0.05lB the scattering on the Gaussian potential
deviates from the a2 dependence. More importantly the figure
shows that at a > 0.05lB the impurity potential cannot provide
significant scattering between different s sectors. Thus the
scattering between different s sectors is effective at relatively
small magnetic fields (high filling factors) and/or for sharp
impurities. At the upper limit of the perpendicular magnetic
fields used in this study, B⊥ ≈ 1 T, the magnetic length lB ≈
25 nm and for impurities with size a less 1 nm backscattering is
effective and leads to the strong spin mixing at B⊥ < 1 T. The
size, a < 1 nm, is reasonable for neutral impurities in a solid.

FIG. 8. (a) The dependence of the square of matrix elements
on impurity width parameter a both for Gaussian V (x,y) and delta
VD(x,y) function potential cases for η ≈ 0.11. (b) The dependence
of the square of matrix elements on the value of spin-orbit interaction
parameter η for Gaussian impurity with the width parameter a =
6.6 × 10−4lB . The impurity amplitude is V0 = 0.1�ωc for both figures
and the amplitudes of matrix elements are averaged over all k and k′

values.

Due to the impurity scattering quantum levels are broadened
and the elastic transitions may occur in an interval of the
energies when two levels overlap. Thus the scattering may
exist in an interval of the parameter η. Figure 8(b) presents
the dependence of the averaged square of matrix elements
on the parameter η. The η is varied in the range, where the
energy of the system changes by about 0.6�ωc. It accounts,
thus, for a significant broadening of quantum levels. The
figure shows that the amplitudes of both the intrasector and
intersector scattering are quite comparable in the broad range
of η and the difference decreases with the η increase. The
increase of the scattering between different s sectors is related
to the fact that at η = 0 different sectors correspond to
eigenstates with different z components of the electron spin.
These states cannot be coupled by the impurity scattering
unless a magnetic impurity is involved [see Eq. (15)]. Due
to the fact that the majority of the impurities in the studied
systems are nonmagnetic the scattering between different
sectors is completely mediated by the spin-orbit interaction
and increases with the increase of the spin-orbit coupling.

The presented estimations of the impurity scattering in the
presence of spin-orbit interaction indicate that in the range
of physical parameters relevant to presented experiments the
scattering between different s sectors is comparable with
the scattering within the same s sector. This leads to strong
spin mixing in the studied systems and, thus, supports the
assumption used for Eq. (3).
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IV. CONCLUSION

Quantum positive magnetoresistance (QPMR) of 2D elec-
trons is studied at different angles α between the magnetic
field and the normal to the 2D layer. The magnitude of QPMR
varies significantly with the magnetic field tilt. The angular
evolution of QPMR correlates strongly with angular variations
of the amplitude of SdH resistance oscillations indicating
that the Zeeman spin splitting, �Z , enhanced by electron-
electron interaction, is the dominant mechanism leading to
the QPMR reduction. Surprisingly no quantization of the
electron spectrum is detected when the Zeeman energy exceeds
half of the cyclotron energy suggesting a transformation
of the electron dynamics in the high-temperature regime at
kT � �Z > �ωc/2.

In contrast to SdH oscillations the angular evolution of
QPMR implies substantial mixing between spin subbands.
Spin mixing has been detected in other 2D electron systems
[31,32]. Although the origin of the spin mixing remains
puzzling investigations indicate that the spin-orbit interaction
may lead to significant spin mixing via impurity scattering in
the studied system.
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