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Nonlinear transport of the inhomogeneous Wigner solid in a channel geometry
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The transport properties of an electronic Wigner solid (WS) on the surface of superfluid helium-4 are
investigated in a geometry that allows WS systems of significantly different sizes to be defined. We probe
and compare transport phenomena attributed to the electronic order, such as Bragg-Cherenkov scattering and the
WS sliding transition, in the cases of a long homogeneous WS, a small WS island, and a long inhomogeneous WS.
We find no significant WS size effects on the transport properties, in contrast to predictions of theoretical works,
which indicates an absence of long-range order in the WS systems under consideration. For the inhomogeneous
WS, consisting of two distinct WSs connected in series, a complex interplay of individual WS transport properties
is observed, as revealed in the observation of two separate Bragg-Cherenkov plateaus and WS sliding transitions.
A simple model is proposed that provides a qualitative explanation of this behavior.
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I. INTRODUCTION

Surface electrons (SEs) on helium form an extremely
pure two-dimensional electron gas with exceptionally high
mobilities up to 108 cm2/V s [1,2]. The system offers
an ideal platform to study Wigner crystallization in two
dimensions [3–6], which has long been of interest and is
relevant to a variety of other systems, including semiconductor
heterostructures [7–10], colloidal systems [11–14], dusty plas-
mas [15], flux lattices of superconductors [16], and magnetic
bubbles [17]. At the same time it is a promising resource for
quantum computing [18–20]. Some progress in this direction
has already been demonstrated, such as counting individual
SEs in a microscopic trap [21,22] and coupling SEs to a
superconducting microwave cavity [23].

The Wigner solid (WS) on helium also provides a unique
example of a two-dimensional electronic crystalline structure
interacting with a soft interface [1,2]. The pressure exerted
by the WS on the helium surface causes the formation of a
commensurate lattice of small dimples on the surface. When
the WS is forced to move along the surface, it experiences
a drag force from the dimple lattice, so the WS conductivity
is typically much lower than that of the electron system in
the “liquid” state. However, the response of the WS to a
driving force is also highly nonlinear; as the driving force
increases, the WS velocity first approaches and saturates at
the phase velocity of “resonant” surface waves (ripplons),
with wave number equal to the reciprocal lattice vector of
the crystal [24], and then sharply increases [24,25]. The
velocity saturation has been explained in terms of so-called
Bragg-Cherenkov (BC) scattering [26]. Due to constructive
interference of resonant ripplons, the dimple lattice becomes
resonantly deepened, and the drag force acting on each electron
increases significantly, limiting the WS velocity [26,27]. The
subsequent sharp increase of velocity, also known as the sliding
transition, was interpreted as a slipping of the WS out of the
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dimple lattice [25]. These phenomena were observed initially
in circularly symmetric Corbino geometry [24,25] and, more
recently, in microscopic channels [28–30]. The latter allowed
estimates of the drag force to be made [28], with the results
supporting the model in which the dimples become resonantly
deepened due to BC scattering [27]. Some novel properties
have also been revealed in the microchannel geometry,
such as reentrant melting [31–33] and nonlinear stick-slip
motion [34,35]. Yet understanding of the BC scattering and
sliding phenomena is still far from complete.

From the existing theory it follows that the resonant drag
force per SE is proportional to the number of SEs in the system.
Hence, the size of the WS system should significantly affect its
transport properties. Here we report an experimental study in
which the effects of the WS size are investigated. We employ
a microchannel device, where an additional gate electrode
in the channel allows the properties of the SE system to be
altered locally. Adjusting the SE density in different parts
of the channel, we probe the transport properties of a small
WS island containing a few thousand electrons and compare
them to the case in which the WS occupies the whole channel
(as in previous works). Thus, using the same device, two
WS systems of significantly different sizes are studied, which
allows us to test theoretical predictions regarding the WS size
effects. In addition, the properties of an inhomogeneous WS
system consisting of two WSs of different density are probed.
For the WS island, we demonstrate that it retains typical WS
transport properties down to the size of a few tens of lattice
constants. Regarding the relationship between the size of the
WS system and its transport properties, our analysis shows
no significant size effects, in contrast to expectations based
on theory. As for the inhomogeneous WS system, we observe
a complex evolution of transport properties, as the properties
of the WS island vary. In particular, when the density in the
WS island is much higher than in the rest of the channel, two
distinct sliding transitions are clearly observed. This behavior
can be understood by considering the interplay between
the transport properties of two WS systems connected in
series.
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FIG. 1. (a) An image of a device identical to the one used in the
experiments, taken by an optical microscope. Inset: the structure of
the central channel. (b) A sketch of the experimental circuit, where
the electron current is driven between electron reservoirs R1 and R2
through the central channel. (c) Left axis: calculated potential profile
across the central channel in the absence of SEs. Right axis: calculated
SE density profile across the central channel ne(y). VGu = 0, VR =
VG = 0.6 V, Ve = 0.195 V. (d) Left axis: calculated potential profile
along the central channel in the absence of SEs (x = 0 corresponds
to the center of the gate electrode). Right axis: calculated SE density
profile along the central channel ne(x). VGu = 0, VR = 0.6 V, VG =
2 V, Ve = 0.195 V.

II. EXPERIMENT

Experiments were performed in a vacuum-tight copper cell
filled with helium-4, mounted on a helium-3 cryostat with a
base temperature of 0.6 K. The device consists of an array
of 1.5-μm-deep channels, fabricated on a silicon dioxide
substrate using optical lithography [Fig. 1(a)]. Four sets of
20-μm-wide channels connected in parallel, which serve as
electron reservoirs, are connected to a single central channel
that is 10 μm wide and 400 μm long [Fig. 1(a), inset]. A
schematic picture of the device is shown in Fig. 1(b). The
sample is placed slightly above the helium surface in the cell, so
the channels are filled with superfluid helium due to capillary
action. Electrons are produced by briefly heating a tungsten
filament located above the device and are trapped on the helium
surface in the channels. In the experiments discussed here only
two electron reservoirs (R1 and R2) of the device were used
in the measurements, while two others were kept empty.

The electrostatic potential in the reservoirs and the central
channel is controlled by several electrodes integrated into the
device architecture. Two electrodes, each covering the bottom
of one of the reservoirs and the adjacent part of the central
channel, are denoted as reservoir electrodes. The potential of
these electrodes is denoted as VR. The electrode covering the
top of the channel ribs is denoted as the guard electrode, and
its potential is denoted as VGu (during the measurements it
was always grounded, so VGu = 0). The potential difference
VR − VGu > 0 confines the electron system and controls the
electron density in the reservoirs (nr) and in the central channel
(nch). The 20 × 10 μm gate electrode, with potential VG, is
defined in the middle of the central channel at the bottom.
The potential difference VG − VGu > 0 controls the electron
density in the section of the central channel above the gate
ng. Thus, ng could be made significantly different from nch.
Surface electron flow through the central channel is driven by
superimposing a small 99.5-kHz ac voltage Vpp on one of the
reservoir electrodes and is recorded by measuring the current
of image charges Irms induced in the other reservoir electrode,
using a lock-in amplifier.

The electron-density distribution in an infinitely long
channel can be calculated by numerically solving the Poisson
equation, using finite-element modeling techniques [36,37].
Here we perform similar calculations, using Comsol electro-
static simulation software. We define an electrostatic model
of our channel, where SEs are represented by an equipotential
plane at potential Ve. The solution of any electrostatic problem
is unique, and the resulting potential is smooth (has no
discontinuities). Therefore, to find a unique solution to the
electrostatic problem, the width of the equipotential plane
representing SEs is adjusted until the discontinuities in
the calculated potential profile around the plane boundaries
disappear. Thus, we directly obtain the width of the electron
system in the channel w, which is always somewhat less than
the geometric channel width W . The electron-density profile
across the channel ne(y) [Fig. 1(c)] is obtained from the
difference of perpendicular electric-field components above
and below the plane, using Gauss’s law. The value of Ve, which
represents the potential of the electron system in our model, is
determined experimentally by sweeping the value of VG and
finding the threshold value V th

G at which the current through
the central channel becomes zero. This condition corresponds
to VG becoming equal to the potential of the electron system
Ve; thus, Ve = V th

G . Our results are in good agreement with
those of previous works [36,37].

The resulting electron-density profile across the channel
is not homogeneous. In the following we define the electron
density as the average value ne = (1/w)

∫
ne(y)dy. Also, to

avoid confusion, our notation for the WS inhomogeneity refers
to inhomogeneity along the channel above the gate area, when
ng is different from nch [Fig. 1(d)]. We do not discuss the WS
inhomogeneity across the channel, which is always present in
microchannel devices close to the channel boundaries.

The electron density in the device was controlled by
following a simple procedure. Electrons were deposited into
the channels at VR = 0.6 V. The value of nr was initially close
to the maximum (saturated) value. After electron deposition,
VR was set to a particular more negative value V 0

R , allowing
some of the electrons to escape. VR was then returned back to
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FIG. 2. (a) Irms vs T measured at Vpp = 5 mV at three different
values of nch, as indicated. Estimated values of Tr and Tch are indicated
by arrows. (b) Irms vs Vpp, measured at T = 0.58 K, at three different
values of nch, the same as in (a). Inset: the same data on an expanded
scale, capturing the Bragg-Cherenkov transport regime. Estimated
values of IBC are also shown.

0.6 V. This allowed a reproducible value of nr to be obtained,
which was a function of V 0

R .

III. RESULTS

A. Homogeneous WS

We first investigate the SE transport properties of our
device with a homogeneous WS occupying the whole central
channel (VR = VG, nch = ng). Irms was measured at three
different values of nch, first as a function of temperature T

for small Vpp = 5 mV [Fig. 2(a)] and then as a function
of Vpp at the lowest temperature T = 0.58 K [Fig. 2(b)].
The Wigner crystallization temperature TWC depends on the
electron density ne as TWC = e2√πne/kB�WC, where �WC is
the plasma parameter at the WS melting point, which lies in the
range 124–139, according to different experimental works [1].
The values of TWC for the electron system in the reservoirs
(Tr) and in the channel (Tch), estimated for �WC = 134, are
indicated by arrows in Fig. 2(a). The value of the current in
the BC-scattering regime IBC, when the WS is moving with
a velocity equal to the phase velocity of resonant ripplons
vp, depends on ne as IBC = vpenew. Here vp = √

αG1/ρ,
where α and ρ are the surface-tension coefficient and density
of liquid helium, respectively, and G1 = (8π2ne/

√
3)1/2 is the

first reciprocal lattice vector of the WS. The estimated values
of IBC are indicated in the inset of Fig. 2(b).

In Fig. 2(a), several characteristic transport features are
observed, which are similar for different values of nch. With
decreasing T , Irms initially increases but then begins to
decrease at a certain temperature and finally decreases sharply
at a lower temperature. At all values of nch, if �WC is taken to
be equal to 134, the onset of the decrease coincides with the
estimated values of Tr and hence is due to the WS transition in
reservoirs. The WS transition in the channel does not coincide
with a consequent sharp decrease of Irms, indicating that the
WS in the channel, once formed, is in the sliding regime.
As T decreases further, however, the WS eventually becomes
pinned to the dimple lattice, and Irms decreases sharply. This
sudden decrease of Irms is not observed at the lowest value
of density, indicating that the electron system in the central
channel remains in the sliding regime even at the lowest T .
There is also a slight kink, visible on all three curves shortly
after the initial decrease, the origin of which remains uncertain.

In Fig. 2(b), transport signatures associated with BC
scattering and the sliding of the WS are clearly observed for
the two higher values of nch. With increasing Vpp, Irms first
increases slowly (BC regime) and then eventually increases
sharply (sliding transition) at Vpp ≈ 7 and 11 mV for nch =
1.19 × 109 and 1.61 × 109 cm−2, respectively. The values of
Irms at which the sliding transition occurs are in reasonable
agreement with the estimated values of IBC. Note that these
features are absent at the lowest value of nch, in agreement
with the data shown in Fig. 2(a).

In Fig. 2(b), additional nonlinear features are observed at
Vpp ≈ 9, 16, and 25 mV for nch = 0.84 × 109, 1.19 × 109, and
1.61 × 109 cm−2, respectively. These features are associated
with the sliding of the WS in some of the reservoir channels.
Similar features were first observed in Ref. [38] and then
correctly interpreted in Ref. [28]. There, in a particular
reservoir geometry, Irms increased in a steplike manner with
increasing Vpp. This was attributed to the sliding transition in
the central channel followed by consecutive sliding transitions
in different channels in the reservoirs.

The transport properties of the WS in our device are in
good agreement with previous observations. There are small
discrepancies between the data and the estimated values of
TWC and IBC, which might originate from possible errors in
the density calculation due to integration across the channel,
and uncertainty in the experimentally determined values of
Ve. However, despite this, our analysis provides a good
understanding of the transport properties of the homogeneous
WS in our device.

B. WS island

Next, we probe the transport properties of our device for
the regime in which the WS is formed only above the gate
area, while SEs in the rest of the device are in the liquid state.
In Fig. 3(a) we show Irms as a function of Vpp, measured at
different values of VG. Here ng reaches values up to ∼4 ×
109 cm−2, while nch � 0.1 × 109 cm−2 (in the case of a very
low density it becomes difficult to estimate the SE density
using our model). As VG increases, the BC plateau and the
sliding transition, associated with the WS island above the gate,
become pronounced. The estimated value of IBC for VG = 2
V is in good agreement with the experimental value.

195311-3



BADRUTDINOV, SMORODIN, REES, LIN, AND KONSTANTINOV PHYSICAL REVIEW B 94, 195311 (2016)

FIG. 3. (a) Irms vs Vpp, measured at T = 0.58 K, nch � 0.1 ×
109 cm−2, for different values of VG, as indicated. Estimated values
of IBC and ng above the gate at VG = 2 V are also shown. (b) ng and
the length of the WS system in lattice constants Nx vs VG. The value
of ng, corresponding to the WS transition above the gate, is indicated
by arrow.

Figure 3(b) shows the estimated ng and also the estimated
length of the WS system along the channel in units of
lattice constants Nx as a function of VG. From the ng vs VG

dependence a value of VG corresponding to the WS transition
above the gate is estimated. This value closely coincides with
the value of VG that corresponds to the onset of nonlinear
behavior of Irms vs Vpp [Fig. 3(a)]. The estimated value of Nx

at this value of VG is about 50. Therefore, we conclude that
the WS island above the gate retains all typical WS transport
properties down to the size of 50 lattice constants.

C. Inhomogeneous WS

Finally, we probe transport properties of our device for
the regime in which SEs are in the WS state both above
the gate area and in the rest of the channel. In Fig. 4 we
show Irms as a function of Vpp, measured at different values
of VG. Here ng reaches values up to ∼6 × 109 cm−2, while
nch = 1.19 × 109 cm−2. Within a certain range of VG (up
to ≈1 V), Irms-Vpp curves look qualitatively similar to the
homogeneous density case: a BC plateau with a subsequent
sliding transition is observed. In this range of VG, the onset
of the sliding transition depends on VG, while the feature
associated with the sliding of the WS in the reservoirs does not
depend on VG. With a further increase of VG, the Irms-Vpp curve
changes qualitatively, and a second BC plateau, followed by a
second sliding transition, develops. In addition, the onset of the
first sliding transition becomes nearly independent of VG, and
the feature associated with the sliding transition in reservoirs
is no longer visible.

FIG. 4. Irms vs Vpp, measured at T = 0.58 K, nch = 1.19 ×
109 cm−2, for different values of VG, as indicated. Inset: Irms vs Vpp

at VG = 2 V on an expanded scale, capturing the Bragg-Cherenkov
transport regime. Estimated values of IBC above the gate and in the
rest of the channel are also shown.

The second BC plateau and sliding transition are apparently
due to the WS island above the gate. However, the estimated
value of IBC for VG = 2 V exceeds the experimental value by a
factor of 1.7 (Fig. 4, inset), in contrast to the case when the WS
island alone is probed. This discrepancy may be due to some
systematic error in our estimation of the SE density above the
gate due to the approximation of an infinitely long channel.

The dependence of the Irms-Vpp curve on VG was measured
for different values of nch. The results are summarized as
two-dimensional diagrams showing differential conductance
dIrms/dVpp as a function of Vpp and VG [Figs. 5(a)–5(d)]. In

FIG. 5. (a)–(d) Differential conductance dIrms/dVpp vs Vpp and
VG, measured at T = 0.58 K, at (a) nch = 1.61 × 109 cm−2, (b) nch =
1.19 × 109 cm−2, (c) nch = 0.84 × 109 cm−2, and (d) nch < 0.1 ×
109 cm−2. Labels I–IV in (a) correspond to different transport regimes,
as discussed in the text.
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this representation, the rapid increase of Irms due to the WS
sliding is clearly visible. The bright lines on the diagrams
therefore indicate the evolution of different sliding transitions
with VG. Figure 5(b) shows data recorded under the same
conditions as in Fig. 4, while Fig. 5(a) shows data recorded
for a higher value of nch, Fig. 5(c) shows data recorded for a
lower value of nch, and Fig. 5(d) shows data recorded under
the same conditions as in Fig. 3, at the lowest value of nch.

At the highest value of nch = 1.61 × 109 cm−2 [Fig. 5(a)],
different transport regimes of the device can be distinguished
most clearly. Area I of the diagram corresponds to the BC-
scattering regime in all segments of the device. In area II the
WS in the main part of the channel is sliding, while the WS
above the gate is still in the BC-scattering regime. In area III
WSs both in the main part of the channel and above the gate are
sliding. And in area IV the WS in some part of the reservoirs
is sliding as well. For nch = 1.19 × 109 cm−2 [Fig. 5(b)] the
evolution of the Irms-Vpp curve with VG looks similar, with all
features shifted to lower Vpp. However, the difference between
the sliding transitions above the gate and in the reservoirs
is not so clearly distinguished. For the lowest nch < 0.1 ×
109 cm−2 [Fig. 5(d)], the electron system is liquidlike in both
the main part of the channel and in the reservoirs. Hence,
only one BC plateau and one sliding transition, attributed to
the WS formed above the gate, are visible. For nch = 0.84 ×
109 cm−2 [Fig. 5(c)], SEs in the main part of the channel
are crystallized but sliding if the density in the channel is
homogeneous (VR = VG = 0.6 V). As VG is increased, the BC
plateau and the sliding transition, attributed to the WS above
the gate, develop. However, at the same time, the BC plateau
and sliding transition attributed to the WS in the main part
of the channel also appear. This indicates that the electron
transport in the main part of the channel is influenced by the
condition of the electron system above the gate electrode.

IV. DISCUSSION

In the case of an inhomogeneous SE system in the channel,
distinct WSs, formed in the main part of the channel and
above the gate, have different SE densities and physical lengths
and are subjected to different pressing electric fields Ez [25].
Each of these factors influences the nonlinear response of the
electron system in the channel to the applied driving voltage.
Also, these WSs are connected in series, so that the voltage
drop along the whole channel Vpp is the sum of the voltage
drops across the WS above the gate (Vg) and across the WS in
the main part of the channel (Vch).

Because Vg and Vch are different and because the two
crystalline sections have different lengths, the driving electric
field Ex applied to the SE in each WS is different. For each
WS, the sliding from the dimple lattice occurs when the driving
force per electron eEx reaches a threshold value that depends
on the electron density and the pressing electric field. Once
decoupled from the dimple lattice, the WS resistivity drops
significantly. For two WSs connected in series, the sliding of
one WS from the dimple lattice therefore leads to an increase
in the driving force applied to SEs in the second WS. For the
short gate region, Ex becomes very large once the SEs in the
rest of the channel are decoupled from the dimple lattice; the
BC scattering can be observed only when the pinning force

becomes sufficiently strong, thus when VG is large. For lower
VG, once the SEs in the main part of the channel become
decoupled, the value of Ex in the gate area becomes large
enough to immediately induce sliding of SEs above the gate
area. As a result, we observe a single sliding transition in the
whole channel at lower VG and two distinct sliding transitions
in the main part of the channel and above the gate at higher VG.

The increased pressing electric field significantly increases
the SE resistivity in the gate region even before the BC plateau
is reached. This explains the influence of VG on the sliding tran-
sition in the main part of the channel, shown in Figs. 5(a)–5(c).
The increased resistance of the SE system in the gate region
leads to a smaller voltage drop (and hence smaller driving
electric field) in the main part of the channel, thus promoting
the pinning of the WS to the dimple lattice in this region.

Next, we discuss the relationship between the size of the
WS system and its transport properties. The BC scattering
effect was first described in Ref. [26], in which an expression
for the average friction force per electron F as a function
of the WS velocity v was derived. This expression has a
resonant form, so that F is infinite when v is equal to the
phase velocity of resonant ripplons vp and has finite “tails” on
both sides of the resonance. Off resonance, F is proportional
to the number of electrons in the system that contribute to
the resonant scattering, indicating the importance of the WS
size. This expression gave a good account of the saturation of
the WS velocity with driving force at the BC resonance, as
observed experimentally [24]. However, the sliding transition,
which occurs at finite driving force, remained unexplained.

The problem of the sliding transition was addressed in a
later work [27], in which a unified account of the BC scattering
phenomenon and the sliding transition was given in terms of
classical hydrodynamics theory, considering the interaction
of the moving WS with the distorted helium surface. An
expression for the amplitude of the surface distortion profile
was obtained that, in the absence of surface-wave damping,
diverges for v = vp. However, taking into account finite
damping of the surface waves leads to an expression for the
maximum friction force,

F max = nee
2E2

z

ρvdvp

, (1)

where vd is a coefficient (with a dimension of velocity) that
reflects the damping strength. Once the driving force exceeds
F max, the sliding transition occurs. The damping coefficient
incorporates radiative loss of capillary wave energy due to
finite size of the WS [27]. The latter could be due to the
system geometry or due to the lack of long-range order in the
WS. The dependence of F max on the number of electrons in
the WS system should therefore be implicitly included in vd .

Our experiment allows us to obtain the critical force
required to induce the sliding transition for WSs of different
lengths. For each measurement, the SE density and Ez are
calculated using our numerical model, and thus, vd can be
obtained using expression (1). Since vd incorporates size
effects, a significant difference in vd for the cases of the long
and short crystals should be expected. However, despite the
two orders of magnitude difference in the total number of
electrons, the estimated damping coefficients for the 20- and
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400-μm-long WSs are similar. For the case of the 20-μm-long
WS above the gate, from analysis of the data presented in
Fig. 3, we obtain vd in the range 0.9–1.5 m/s. For the
400-μm-long WS in the main part of the channel, from analysis
of the data presented in Fig. 2(b), we obtain vd in the range
2–3.2 m/s. In addition, we made similar estimates based on
transport measurements taken at the same temperature in other
experimental works, in which 100-μm [34] and 900-μm [28]
channels were investigated. The obtained values of vd were 2
m/s [34] and 22 m/s [28], respectively. While the former
is close to what we have observed, the latter is an order
of magnitude higher. However, this data point was taken
very close to the liquid-WS transition; thus, the error might
be substantial. Also we note that vd should decrease with
increasing WS system size, according to theory.

These observations indicate that, for the WS sizes consid-
ered here, the BC resonance is not significantly enhanced by
increasing the system size, in contrast to expectations based
on theory. This in turn suggests that the long-range order in
the WS system may be absent already on the smallest length
scale investigated here (20 μm). This is not unreasonable as,
because both the channel width and the helium depth are
shorter than the WS length, the screening of the Coulomb
interaction between the electrons can be expected to lead to a
loss of long-range order. Finite-size effects should be revealed
in studies of BC scattering for much smaller WS samples. This
remains an interesting direction for future studies.

V. SUMMARY

We have investigated and compared transport properties
of (1) a homogeneous WS, (2) a WS island, and (3) an
inhomogeneous WS, formed on the surface of liquid helium,
in a microchannel geometry. For the homogeneous WS, our
observations are in good agreement with previous studies. For
the WS island, we found that characteristic WS transport
phenomena are retained at least down to a WS size of
approximately 50 lattice constants. For the inhomogeneous
WS, the transport properties can be explained by the interplay
of two distinct WSs connected in series. Analyzing the
transport behavior of two WS systems of different size,
we found no enhancement of BC scattering by increasing
the system size, in contrast to theoretical expectations. This
suggests an absence of long-range order in the WS systems
under consideration.
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