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Surface anisotropy energy density is a key quantity in the description of the dynamics of surface spins
in ferromagnetic thin films and is known to result in a ferromagnetic resonance fine structure of a thin film: A
multipeak spectrum is observed in an effect known as spin-wave resonance (SWR). The so-called surface pinning
parameter, directly correlated with the surface anisotropy energy, plays a fundamental role in determining the
character of an SWR spectrum in the theory of SWR based on the surface inhomogeneity model. Here we
extend the theory of SWR by introducing a new formula representing the surface pinning parameter as a series
of contributions from different anisotropies existing in (Ga,Mn)As thin films. We show how to determine the
coefficients in this series by comparing the SWR theory with data obtained in a resonance experiment. The
proposed procedure allows one to determine the proportion with which each type of the anisotropy contributes
to the total surface anisotropy of (Ga,Mn)As, and, consequently, to assess to what extent the proportions on the
surface differ from those in the bulk. The presented considerations can be used for the study of any other thin-film
system, since we provide also a general rule that allows one to express the surface pinning parameter of a thin
film, as well as its surface anisotropy energy, by the free energy of the considered thin-film system. This enables
the interpretation of experimental SWR spectra in terms of the free-energy density of the thin film.
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I. INTRODUCTION

Ferromagnetic semiconductors are in the class of materials
that show promise of application in new spin-electronic—or,
in short, spintronic—devices using both the charge and spin
of the electron. Gallium manganese arsenide, (Ga,Mn)As, is
a promising material in this class, hence the recent intensi-
fication of studies of its properties. Its magnetic anisotropy
is of particular interest for its prospective technological
applications. However, the origins of this anisotropy in
(Ga,Mn)As have not been entirely elucidated yet, which can
be expected to affect the control of its use in spintronic
devices. Particularly, the magnetic anisotropy of thin films
of gallium manganese arsenide, (Ga,Mn)As, is one of their
most interesting properties, since it determines the direction
of the sample magnetization, the manipulation of which is of
key importance for prospective application of this material in
memory devices. For this reason the magnetic anisotropy of
(Ga,Mn)As thin films is being intensively investigated by many
experimental techniques. These include spin-wave resonance
(SWR), a method for studying the surface of (Ga,Mn)As
thin films in this respect [1–16]. It is worthy of notice that
the main objective of the SWR studies conducted so far in
(Ga,Mn)As has been to obtain information on certain volume
characteristics, such as the value of uniaxial anisotropy [7]
or exchange constant [14] in the studied material. This is
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understandable, as the complex nature of ferromagnetism in
dilute semiconductors prompts the search of methods that
could provide new information explaining this new (volume)
material property. Paradoxically, this leaves the main potential
of SWR unexploited, since the chief message of SWR studies
provides information on magnetic characteristics of the surface
(see, e.g., [17]). We propose here to use SWR first of all for
probing the surface magnetic anisotropy in (Ga,Mn)As thin
films.

The structure of the multipeak SWR spectra observed
in thin-film samples strongly depends on the type of inho-
mogeneity existing in the sample. Two extremely idealized
models, the volume inhomogeneity (VI) model and the surface
inhomogeneity (SI) model, have been used so far for the
description of this dependence. The objective of this paper
is to contribute to a present theory of spin-wave resonance
based on the SI model adjusted in its touchiest point, namely,
the boundary conditions. The model uses the concept of the
surface pinning parameter, which describes the freedom of
precessing surface spins in relation to that of precessing bulk
spins.

The paper is organized as follows. In Sec. II we deter-
mine the contribution of the magnetocrystalline anisotropy
to the free-energy density of a (Ga,Mn)As thin film; the
contribution includes first-, second- and third-order cubic
anisotropy terms, first- and second-order perpendicular-to-
plane uniaxial anisotropy terms, and two in-plane uniaxial
anisotropy energy terms. Next, in Sec. III we demonstrate how
specifically (by what formula) each of the above-mentioned
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magnetocrystalline anisotropies contributes to the surface
anisotropy and the surface pinning. In Secs. IV and V we
consider, with reference to the experimental data, specific
angular configurations of the static magnetic field with respect
to the surface of the thin film typically used in SWR
studies; of these configurations we indicate those that together
provide an optimal basis for experimental determination of
the contribution of each anisotropy present in (Ga,Mn)As to
the surface anisotropy. Finally, in Sec. VI we formulate some
observations based on the comparison of our results with those
of the SWR studies of (Ga,Mn)As thin films reported to date.

II. BULK MAGNETOCRYSTALLINE ANISOTROPIES
IN (Ga,Mn)As

The interpretation of most experimental studies of fer-
romagnetic resonance (FMR) in (Ga,Mn)As is based on
a phenomenological formula for the free energy of the
investigated sample. The main characteristic of the studied
system contained in this formula is the angular dependence of
the magnetocrystalline anisotropy energies. The free energy
of a (Ga,Mn)As sample is expressed as a series of terms
related to different symmetries; usually the series is limited to
low-order terms related to the cubic and uniaxial symmetries.
In the present study we are going to rely on a formula for the
free-energy density F in (Ga,Mn)As proposed in Ref. [18].
In this equation the terms of the series are expressed by the
coordinates nx, ny , and nz of the unit vector M̂ ≡ M/M

oriented along the magnetization M of the sample: nx =
cos ϕ sin ϑ , ny = sin ϕ sin ϑ , and nz = cos ϑ , where the angles
ϕ and ϑ are measured with respect to the [100] and [001] axes,
respectively. The equation reads
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where F0 is an isotropic term expressed by an angle-
independent constant. The next three terms represent
an expansion of the cubic anisotropy energy related to
the crystal symmetry of the zinc-blende structure of
(Ga,Mn)As. The cubic anisotropy is described by terms
invariant under permutation of the coordinate indexes x, y,
and z. The independent first-, second-, and third-order
cubic terms read Kc1(n2
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z), respectively, where Kc1,Kc2, and

Kc3 are cubic energy density coefficients.
Along with the cubic anisotropy, (Ga,Mn)As has different

types of uniaxial anisotropy, originating in lattice strains;
these uniaxial anisotropies are described by the last four
terms of Eq. (2.1). The terms −K[001]1

n2
z and − 1

2K[001]2
n4

z

refer to the perpendicular-to-plane uniaxial anisotropy energy,
which is due to the growth strain induced in the sample
by the lattice mismatch between the substrate and the film;
−K[001]1

n2
z refers to the lowest-order anisotropy component,

while − 1
2K[001]2

n4
z is the second-order contribution. The last

FIG. 1. Coordinate system used in this paper to describe sample
configuration. The orientation of the applied magnetic field H is
described by angles ϑH and ϕH , whereas the equilibrium orientation
of the sample magnetization M is given by ϑ and ϕ.

two terms in Eq. (2.1) are contributions to the free energy
brought by the in-plane uniaxial anisotropy, originating in
strains which occur in the sample along particular in-plane
crystal axes. Thus, the term −K[100]n

2
y refers to the uniaxial

anisotropy along the main crystal axes, since positive K[100]

favors an in-plane easy axis aligned close to the [010] axis; the
last term, − 1

2K[110](ny − nx)2, refers to the uniaxial anisotropy
along the diagonals, positive − 1

2K[110] favoring an easy axis
aligned close to the [11̄0] axis.

The model of magnetocrystalline anisotropy developed in
Ref. [18] predicts that the anisotropy coefficients in Eq. (2.1)
strongly depend on the hole density, Mn local-moment con-
centration, and temperature, which is confirmed by numerous
experiments. Another prediction implied by this model is that
the cubic anisotropy coefficient Kc1 should be proportional to
M4, and the uniaxial anisotropy coefficients K[001],K[100], and
K[110] to M2.

Usually in the literature the free energy is not represented
directly by formula (2.1), but by an equivalent equation with
anisotropy fields in place of the energy coefficients. The
anisotropy fields Ha are related to the energy coefficients
Ka by the identity Ha ≡ 2Ka/M . Also, the coordinates of
the magnetization unit vector M̂ in Eq. (2.1) are expressed
directly by the angles defining its direction in space, i.e., the
angles ϕ and ϑ measured with respect to the [100] and [001]
axes, respectively (see Fig. 1):

nx = cos ϕ sin ϑ ; ny = sin ϕ sin ϑ ; nz = cos ϑ. (2.2)

The resulting formula for the free energy is

F (M̂) = F0 + 1

8
MHc1 sin2 ϑ(sin2 ϑ sin2 2ϕ + 4 cos2 ϑ)

+ 1

8
MHc2 sin4 ϑ cos2 ϑ sin2 2ϕ

+ 1

32
MHc3[sin8 ϑ sin4 2ϕ

+ 4 cos4 ϑ sin4 ϑ(3 + cos 4ϕ)]
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)
. (2.3)

The anisotropy fields in Eq. (2.3) have the following sense:
Hc1,Hc2, and Hc3 are the first-, second-, and third-order
cubic anisotropy fields, respectively; H[001]1

and H[001]2
denote

the first- and second-order perpendicular uniaxial anisotropy
fields, respectively; H[100] and H[110] are independent in-plane
uniaxial anisotropy components along the [100] and [110]
axes, respectively.

Some information on the properties of these anisotropy
fields is available in the literature; the reported properties
were either established in experimental studies or predicted
theoretically (for an exhaustive review of these data please
refer to paper [18]). For example, Hc1,H[110], and H[100]

are known to be oscillatory functions of the hole density,
and there exist critical hole densities where the anisotropy
fields change sign; these critical values depend on the Mn
local-moment concentration. Moreover, the in-plane uniaxial
anisotropy fields oscillate with a longer period than the cubic
anisotropy field Hc1. It has been established that the extreme
values of H[110] are an order of magnitude smaller than the
extreme values of Hc1 ∼ 103 Oe and weakly dependent on the
hole density. In general, the amplitude of oscillations decreases
with decreasing Mn local-moment concentration [18]. It has
also been established [15] that in some (Ga,Mn)As thin
film samples the out-of-plane uniaxial anisotropy field H[001]1

varies linearly with the hole/Mn concentration (changing from
positive to negative values), however, it is suggested [18]
that the extreme values of H[001]1

are of the same order as
those of Hc1. The higher-order anisotropy terms are believed
to be small, or even negligible, in (Ga,Mn)As thin films.
For example, Hc2 and Hc3 have not been definitely resolved
experimentally to date.

Ferromagnetic resonance (FMR) and spin-wave resonance
(SWR) studied in thin films are major sources of information
on the anisotropy fields in (Ga,Mn)As. However, it has been
underestimated in the literature so far that SWR studies can
provide information not only on bulk anisotropy fields, but
also, and perhaps first of all, on surface anisotropy fields. Note
by the way that the surface properties of (Ga,Mn)As have been
studied very scarcely, and in light of recent findings [19] they
can be of crucial importance for a deeper understanding of
the essence of the ferromagnetism of diluted ferromagnetic
semiconductors [20–28]. In the present paper we propose a
simple model for surface anisotropy characterization inde-
pendent of the bulk anisotropy. The model describes SWR
in (Ga,Mn)As thin films on the basis of the above-specified
phenomenological formula expressing the anisotropic part
of the free energy in this material. For this purpose we
are going to introduce a separate concept of surface free-
energy density F s(M̂) ≡ F surf(M̂), a surface characteristic of
a ferromagnetic sample expressed by surface anisotropy fields
Hs

a ≡ H surf
a = 2Ksurf

a /M , as opposed to the bulk free-energy
density Fb(M̂) ≡ F bulk(M̂), a bulk characteristic expressed

by bulk anisotropy fields Hb
a ≡ H bulk

a = 2Kbulk
a /M . We will

use these quantities in the next section, in which we propose
a general formula for the surface pinning parameter, a key
quantity in the analysis of SWR spectra; it is precisely the
surface pinning parameter that will be expressed by the
above-introduced surface and bulk free energies.

III. SURFACE PINNING ENERGY IN TERMS
OF FREE-ENERGY DENSITY

In a ferromagnetic thin film with magnetic properties
homogeneous along the direction perpendicular to the surface
of the sample this homogeneity is only disturbed structurally
at the surfaces. Thus, the magnetic properties of such a sample
can be described using the surface inhomogeneity (SI) model,
which in the molecular field approximation assumes that an
effective magnetic field Hbulk

eff uniform across the sample
acts on spins in its bulk, whereas surface spins experience
another effective magnetic field, which we will denote as H surf

eff .
The difference between these two fields is referred to as the
effective surface anisotropy field [29,30] K surf

eff :

K surf
eff ≡ H surf

eff − Hbulk
eff . (3.1)

Thus, in relation to bulk spins, surface spins have an additional
pinning that is due to the effective surface anisotropy field,
which in general consists of surface single-ion and surface
exchange anisotropies.

As we have demonstrated in our earlier papers [29,30,33],
the precession of surface spins under this additional anisotropy
field K surf

eff can be fully described by introducing into the cor-
responding equations of motion a surface pinning parameter
A, defined

A = 1 − d2

Dex
K surf

eff · M̂, (3.2)

where d is the lattice constant, Dex is the exchange constant,
and M̂ denotes a unit vector oriented along the magnetization
M of the thin film. Another quantity used in the literature for
quantitative description of the surface pinning is the surface
anisotropy energy Esurf , which, in contrast to the above-defined
dimensionless surface pinning parameter, is expressed in
energy density units (erg/cm2). These two approaches are
equivalent, since A and Esurf are related as follows:

Esurf = 1

d
MDex(A − 1). (3.3)

Note that in the surface parameter model the lack of surface
anisotropy, Esurf = 0, implies A = 1; by Eq. (3.2) this, in
turn, means that the surface anisotropy field is either zero
(K surf

eff ≡ 0), or nonzero but perpendicular to the magnetization
of the sample, and thus of no effect on the surface pinning. In
this situation, which we will refer to as the natural surface
pinning, surface spins only feel energetically the natural lack
of that part of their neighbors of which they have been deprived
by the formation of the surface, and do not experience at all
the influence of the surface anisotropy field. This interpretation
results from the way in which formula (3.2) is derived in the
SI model [29,30]: The breaking of the interaction between the
surface spins and their eliminated neighbors is contained in
the “unity” in Eq. (3.2), whereas all other surface perturbations
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FIG. 2. Schematic representation of three surface spin pinning
regimes which prevail in a thin film depending on the configuration
of its magnetization M with respect to the effective surface anisotropy
field K surf

eff [see (3.2)]. When aligned as in (b), the surface spins do
not feel the anisotropy field and A = 1, which corresponds to their
natural freedom. In the configurations (a) and (c) the surface spins
are unpinned (A > 1) and pinned (A < 1), respectively, due to the
anisotropy field. Esurf denotes the surface anisotropy energy density
[see (3.3)].

are contained in the anisotropy field K surf
eff . The natural pinning

is a reference point with respect to which we consider other
surface spin pinning situations (see Fig. 2). When Esurf > 0
(i.e., A > 1), we say that surface spins and unpinned; when
Esurf < 0 (A < 1), the freedom of surface spins is constrained,
and therefore we say they are pinned. (The boundary con-
ditions corresponding to the natural pinning are particular
and require additional discussion, which we have included in
Appendix.)

The resonance intensity I of a given spin wave in the SI
model with symmetric boundary conditions is described by
the equation [29]:

I (k) ∼ (A − 1)2[usurf1(k) + usurf2(k)]2 sin−4

(
k

2

)
, (3.4)

where k is the “wave vector” component perpendicular to the
surface of the film describing the character of the standing
spin wave assigned to the given resonance excitation; usurf1(k)
and usurf2(k) are the surface amplitudes of the standing spin
wave at the bottom and top surfaces, respectively. As we can

see, nonzero resonance intensities are only possible when
A �= 1, i.e., when the surface spin pinning is different from
natural; in other words, a surface anisotropy is necessary
for the occurrence of SWR in a thin film. However, even
when this condition is fulfilled, antisymmetric modes (in
which usurf1 = −usurf2) will not be excited and the resonance
spectrum will only consist of symmetric modes. The spectrum
of symmetric modes kn allowed by the boundary conditions
results from the following characteristic equation (discussed
in detail in Refs. [29,30]):

A = cos L+1
2 k

cos L−1
2 k

, (3.5)

where L is the thickness of the film (in units of lattice constant
d). A careful analysis of Eqs. (3.4) and (3.5) leads to the
conclusion that the intensities of spin-wave resonance peaks
depend solely on the surface parameter A and the surface
amplitudes of the corresponding spin-wave modes. Therefore,
SWR opens a number of doors, which we will point out in the
next sections, to the investigation of some exceptional surface
properties.

In this context it is particularly important to relate the
surface pinning parameter of a material with the expression
for its free energy. Note that the standard method for the
description of ferromagnetic resonance in thin films is always
based on an appropriately constructed expression for the free
energy of the sample. However, its boundary conditions are
commonly formulated with the aid of something that we can
call a kind of “prosthesis”: a variously defined, depending on
the context, quantity referred to as the surface anisotropy, by no
means related to the basic characteristic of the bulk material,
which is its free energy. In the present study we have managed
to fill this conceptual gap by finding a relatively simple bridge
connecting the surface free energy with the surface boundary,
or pinning, conditions.

Let us rewrite Eq. (3.2) taking account of relation (3.1). We
obtain

A = 1 − d2

MDex

[
H surf

eff · M − Hbulk
eff · M

]
. (3.6)

Note that the terms in square brackets are locally defined free-
energy densities:

F bulk = −M · Hbulk
eff ;

F surf = −M · H surf
eff . (3.7)

Thus, the formula for the surface pinning parameter becomes

A = 1 + d2

MDex
[F surf − F bulk]. (3.8)

Accordingly, from Eq. (3.3) we obtain the following expres-
sion for the surface anisotropy energy:

Esurf = d[F surf − F bulk]. (3.9)

Considering this, we can again rewrite formula (3.8) as

A = 1 + Esurf

MDex/d
= 1 + Esurf

2Aex/d
, (3.10)

where Aex ≡ 1
2MDex denotes the exchange stiffness param-

eter. This expression of the surface parameter allows one

195303-4



SURFACE ANISOTROPY ENERGY IN TERMS OF . . . PHYSICAL REVIEW B 94, 195303 (2016)

to identify [34] our surface anisotropy energy Esurf as the
surface anisotropy constant figuring in the Rado-Weertman
(RW) boundary equation, the earliest boundary condition to
have been proposed in the theory of surface magnetism [35]:

2Aex

(
∂m

∂n

)
surf

− Esurfmsurf = 0, (3.11)

where m is the amplitude of the transversal (dynamic)
component of the magnetization and n denotes the direction
normal to the surface of the film. Since our surface anisotropy
energy density Esurf is identical with the RW surface anisotropy
constant by the above-derived formula (3.10) the RW equation
acquires a general character, becoming suitable for studying
the configuration effects contained explicitly in the depen-
dence A(ϑ,ϕ):

d

(
∂m

∂n

)
surf

− (A − 1)msurf = 0. (3.12)

A major advantage of Eqs. (3.8) and (3.9) we have derived
above is that by using expression (2.3) for the free energy
in these equations we will obtain full information on the
angular configuration dependence of the surface pinning. Note
that this information was not provided directly by the initial
formula (3.2), expressing the surface pinning parameter by the
unspecified effective surface anisotropy field K surf

eff .
Now, if we use Eq. (2.3) for expressing both the bulk

and surface free energies in (3.8), we obtain the following
expression for the surface pinning parameter:

A(ϑ,ϕ) = 1 + aiso + 1

8
ac1 sin2 ϑ(sin2 ϑ sin2 2ϕ + 4 cos2 ϑ)

+ 1

8
ac2 sin4 ϑ cos2 ϑ sin2 2ϕ

+ 1

32
ac3[sin8 ϑ sin4 2ϕ

+ 4(3 + cos 4ϕ) cos4 ϑ sin4 ϑ]

− 1

2
a[001]1 cos2 ϑ − 1

4
a[001]2 cos4 ϑ

− 1

2
a[100] sin2 ϑ sin2 ϕ

− 1

2
a[110] sin2 ϑ sin2

(
ϕ − π

4

)
, (3.13)

where the dimensionless surface pinning coefficients aa are
related to the respective surface anisotropy fields by

aanis = d2

Dex

(
H surf

anis − H bulk
anis

)

= 2d2

MDex

(
Ksurf

anis − Kbulk
anis

)
. (3.14)

The general idea for using Eq. (3.13) in SWR studies is
the following: The experiment allows one to establish the
configuration dependence of SWR spectra on either ϑ or ϕ; this
provides the basis for the determination of the dependence of
the pinning parameter on both angles, A = A(ϕ,ϑ). In the next
step, by numerical fitting of the experimental data to Eq. (3.13)
we can determine the set of surface pinning coefficients that
figure in this equation. Finally, in the third step, the surface

pinning coefficients can be used for the determination of the
corresponding surface anisotropy fields from Eq. (3.14) (the
bulk anisotropy fields are assumed to be known from other
measurements). Our recent papers [33,36] provide an example
in which this procedure is used for studying very special
configurations considered in an experimental study by Liu
et al. [14].

For practical reasons, Eq. (3.13) still needs some adjustment
to be adapted to the experimental conditions. Usually in an
SWR experiment only one angle is varied (either ϑ or ϕ), the
other one being fixed. Thus, two configurations are considered:
the in-plane configuration, in which the static magnetic field
lies in the plane of the film (ϑ = 90◦) and rotates around the
z axis, and the out-of-plane configuration, with the magnetic
field rotating in a plane perpendicular to the surface of the
film. In the out-of-plane configuration the plane of rotation is
defined by the z axis and a straight half-line ϕ = const; the
magnetic field is tilted with respect to the film surface and its
orientation can vary from perpendicular (ϑ = 0◦) to parallel
(ϑ = 90◦) to the surface. In the next section each of these two
configurations will be discussed in detail separately.

IV. SPECIAL RESONANCE ARRANGEMENTS: IN-PLANE
VS OUT-OF-PLANE SWR

In-plane SWR occurs when the static magnetic field H
lies in the plane of the film; consequently, the magnetization
M of the sample is forced to be oriented in the same plane,
i.e., its polar angle ϑ = 90◦. In the in-plane configuration
formula (3.13) for the surface pinning parameter simplifies
to the following equation, in which the azimuthal angle ϕ is
the only angle variable:

Ain−plane(ϕ) = 1 + aiso + 1

8
ac1 sin2 2ϕ + 1

32
ac3 sin4 2ϕ

− 1

2
a[100] sin2 ϕ − 1

2
a[110] sin2

(
ϕ − π

4

)
.

(4.1)

Note that in the considered in-plane configuration the surface
pinning parameter does not include contributions from the
second-order cubic anisotropy (the term with ac2 has vanished)
and from the first- and second-order perpendicular uniaxial
anisotropy (the terms with a[001]1 and a[001]2 have vanished,
too). Only the first- and third-order cubic anisotropies and both
in-plane uniaxial anisotropies still contribute to the surface
pinning.

Out-of-plane SWR is realized when the azimuthal angle ϕ

is fixed and only the polar angle ϑ varies. For example, in
the SWR study of (Ga,Mn)As thin films by Liu et al. [14] the
azimuthal angle is fixed at ϕ = −45◦. This means that the
applied magnetic field is rotated in the plane perpendicular to
the surface of the film defined by two axes: the [001], or z

axis, and the [11̄0] axis, which lies in the film plane. Thus, in
this experiment the magnetic field rotates from the direction
normal to the surface of the film (ϑ = 0, perpendicular
SWR) to the in-plane direction (ϑ = 90◦, parallel SWR). For
this particular experimental setup the formula for the surface
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pinning parameter becomes

A
[11̄0]
out−of−plane(ϑ)

= 1 + aiso + 1
8ac1 sin2 ϑ(sin2 ϑ + 4 cos2 ϑ)

+ 1
8ac2 sin4 ϑ cos2 ϑ + 1

32ac3 sin4 ϑ(sin4 ϑ + 8 cos4 ϑ)

− 1
2a[001]1 cos2 ϑ − 1

4a[001]2 cos4 ϑ

− 1
4a[100] sin2 ϑ − 1

2a[110] sin2 ϑ. (4.2)

As we can see, in this out-of-plane configuration all the
anisotropies present in (Ga,Mn)As contribute to the surface
pinning parameter.

For better illustration of the role the chosen azimuthal angle
ϕ plays in the out-of-plane SWR let us consider the situation in
which ϕ = 45◦, i.e., the plane of rotation of the magnetic field
H is perpendicular to the surface of the film and determined
by the in-plane [110] axis. For ϕ = 45◦ the last term in (3.13)
vanishes; consequently, the surface pinning parameter in this
case will differ, by this very term, from the surface pinning
parameter determined for ϕ = −45◦. Thus,

A
[110]
out−of−plane(ϑ) = A

[11̄0]
out−of−plane(ϑ) + 1

2a[110] sin2 ϑ. (4.3)

The vanishing of the term with a[110] in the configuration with
ϕ = 45◦ implies that the uniaxial in-plane anisotropy related
to the diagonal [110] axis (“diagonal” in-plane anisotropy)
does not contribute to the surface pinning parameter in this
configuration; the formula for A

[110]
out−of−plane(ϑ) simply does not

include the corresponding term. Consequently, on the basis of
two measurements of the surface pinning parameter, one for
ϕ = 45◦ and one for ϕ = −45◦, with the same polar angle
ϑ , it is possible to determine, from relation (4.3), the surface
diagonal uniaxial in-plane anisotropy expressed by a[110].

Let us consider yet another out-of-plane configuration,
corresponding to the azimuthal angle ϕ = 0. In this case
Eq. (3.13) becomes

A
[100]
out−of−plane(ϑ) = 1 + aiso + 1

2ac1 sin2 ϑ cos2 ϑ

+ 1
2ac3 cos4 ϑ sin4 ϑ − 1

2a[001]1 cos2 ϑ

− 1
4a[001]2 cos4 ϑ − 1

4a[110] sin2 ϑ. (4.4)

Thus, in this particular azimuth orientation the surface pinning
parameter formula loses two terms, related to the cubic
anisotropy ac2 and the uniaxial in-plane anisotropy a[100].

From the general formula (3.13) for the surface pinning
parameter, which applies to any polar and azimuth orientation,
it follows that in (Ga,Mn)As thin films the surface pinning
parameter is a sum of isotropic and anisotropic contributions:
The isotropic term aiso goes along with three terms related
to the cubic anisotropies acub and four terms related to the
uniaxial anisotropies auni. This gives a total of eight separate
energy contributions, all of which should be determined for
a full insight into the pinning of surface spins. In the next
section we will propose an optimal experimental arrangement
for SWR measurements to enable the determination of the
complete set of pinning coefficients figuring in Eq. (3.13).
Namely, we will specify optimal angles ϑ in particular out-
of-plane configurations, as well as optimal angles ϕ in the
in-plane configuration.

V. FURTHER EXPERIMENTAL CONJECTURES

We propose two types of SWR studies for the exploration of
the surface anisotropy of (Ga,Mn)As thin films. Experiments
of the first type are aimed at the determination of the critical
angles, i.e., the angles at which a multipeak SWR spectrum
will reduce to a single-peak FMR spectrum. In our earlier
papers [29,30] we have demonstrated that in the SI model
critical SWR corresponds to the surface pinning parameter
value Asurf ≡ 1 in such a particular (critical) configuration;
as a consequence, and as implied also by Eq. (3.4) cited
in the present paper, the resonance intensities of all the
spin-wave modes vanish in this case, with the exception
of the intensity of the fundamental mode k = 0 (see also
Appendix). The SWR study by Liu et al. [14] shows that at
least one critical angle ϑc for which Asurf ≡ 1 should exist
in any out-of-plane configuration. Thus, we can expect to
determine experimentally three such angles, one for each of the
out-of-plane configurations considered above. Let us denote
these critical angles as ϑc[11̄0], ϑc[110], and ϑc[100]. Conditions
(4.2), (4.3), and (4.4) lead to the respective equations:

A
[11̄0]
out−of−plane

(
ϑc[11̄0]

) = 1, (5.1)

A
[110]
out−of−plane

(
ϑc[110]

) = 1, (5.2)

A
[100]
out−of−plane

(
ϑc[100]

) = 1. (5.3)

The experiment by Liu et al. [14] indicates also the existence of
two critical angles, ϕc1 and ϕc2, in the in-plane configuration.
If these angles can be determined experimentally, then for each
of them we can write

Ain−plane(ϕc1) = 1, (5.4)

Ain−plane(ϕc2) = 1, (5.5)

using (4.1) in both equations.
Thus, we have already five equations with eight unknown

pinning coefficients. We need three more equations, which
will be provided by SWR studies of the second type. In
these experiments it is necessary to determine the surface
pinning parameter from the SWR spectrum measured in a
specific angular configuration. (For the idea and details of
the method for the conversion of an SWR spectrum into
the corresponding value of the surface pinning parameter
please refer to papers [30–32].) We propose to measure
the SWR spectrum and determine the corresponding surface
pinning parameter in extreme orientations in each of the three
out-of-plane configurations considered above. Thus, for the
orientation with ϑ = 0, which we will henceforth refer to as
the perpendicular configuration, we obtain [see Eq. (3.13)]:

A⊥ = 1 + aiso − 1
2a[001]1 − 1

4a[001]2 . (5.6)

For the orientations with ϑ = π
2 , henceforth referred to as the

parallel configurations, conditions (4.3) and (4.4) imply

A
[110]
‖ − A

[11̄0]
‖ = 1

2a[110], (5.7)

A
[100]
‖ = 1 + aiso − 1

4a[110]. (5.8)
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Note that two of all eight pinning coefficients a[110] and
aiso can be determined unambiguously from the latter two
equations alone. Thus, for the determination of the other
six pinning coefficients it is enough to add Eq. (5.6) to the
five equations (5.1)–(5.5) obtained previously from critical
angle measurements. To sum up, the complete set of pinning
coefficients figuring in the general formula (3.13) for the
surface pinning parameter can be determined by measuring
(1) the SWR spectrum in four special configurations: the
perpendicular configuration (along the [001] axis) and three
parallel configurations (along the [100], [110], and [11̄0]
axes), and (2) five critical angles: three polar critical angles
ϑc[100], ϑc[110], and ϑc[11̄0], and two azimuthal critical angles
ϕc1 and ϕc2.

Now, let us see what interesting information can be acquired
from pinning coefficient values determined in this way. For
example, let us consider the coefficient a[110], determined from
Eq. (5.7). Its experimental value, as established in the SWR
study by Liu et al. [14], is a[110] = −0.054. Now, let us refer
to the definition (3.14) of a pinning coefficient, from which it
follows that

a[110] = 2d2

MDex

(
Ksurf

[110] − Kbulk
[110]

)
. (5.9)

The determined negative value of a[110] implies

Ksurf
[110] < Kbulk

[110], (5.10)

which means that the diagonal in-plane uniaxial anisotropy on
the surface of the sample is weaker than in its bulk. Moreover,
if we knew the bulk value of the anisotropy constant, then
(knowing the numerical value of a[110]) from Eq. (5.9) we
could estimate also the value of this constant on the surface.

Obviously, the same procedure can be applied to all
the other surface anisotropy coefficients determined from
SWR spectra taken in (at least) eight angular configurations.
However, we suggest to seek first of all the critical angles,
since the determination of the surface pinning parameter from
the relative intensities of peaks in an SWR spectrum measured
in a noncritical angular configuration is subject to some error,
which is substantially reduced when the measurement is aimed
at a critical angle.

VI. OUTLOOKS

To date, measurements of the surface pinning parameter
based on experimental SWR spectra of (Ga,Mn)As thin films
in various angular configurations have only been reported by
Liu et al. [14]. For analyzing the SWR spectra obtained in the
out-of-plane configuration the authors of that experimental
study use the phenomenological formula for the free energy
density of the sample:

F
[11̄0]
out−of−plane(M) = (2πM2 − K2⊥) cos2 ϑ − 1

2K4⊥ cos4 ϑ

− 1
4K4‖ sin4 ϑ − K2‖ sin2 ϑ ; (6.1)

note that the term 2πM2 cos2 ϑ , related to the shape
anisotropy, does not figure in our Eq. (2.3). Now, if we compare
Eq. (6.1) with Eq. (2.3) for ϕ = −45◦, assuming an additive
constant F0 = − 1

2K4‖, we find the following relations between

the anisotropy constants figuring in (6.1) and the anisotropy
constants we have defined in (2.1):

K4‖ ≡ Kc1, K[001]2 ≡ K4⊥ − K4‖, (6.2)

K2⊥ ≡ K[001]1 , K2‖ ≡ K[110]. (6.3)

This implies that Eq. (6.1) does not include the second- and
third-order cubic anisotropy terms Kc2 and Kc3; neither does
it contain the uniaxial in-plane anisotropy described by K[100].
(Considerations similar to those above, leading to an identical
conclusion, can be found in the paper [18].) In our earlier
studies [33,36] we analyzed SWR measurements reported by
Liu et al. [14], assuming, by Eq. (6.1), that the only types of
surface anisotropy in a (Ga,Mn)As thin film are those figuring
in this formula; however, it turned out that the model of surface
anisotropy in (Ga,Mn)As thin films needs to be enhanced by
the addition of other types of anisotropy, not yet postulated
in Eq. (6.1). We leave this issue for in-depth consideration
in another paper, since the procedure of determination of the
pinning coefficients that we propose in Sec. V still requires
careful modification to be used for analyzing the measurements
reported by Liu et al. [14].

Before closing, let us remark that the above-discussed SWR
studies proposed for the determination of surface anisotropy
will actually provide information on more than just the
surface, because of the existing certain correlation between
surface and bulk properties of a thin film. Specifically, if
some type of anisotropy is found in the bulk, the same
type can be anticipated on the surface; and vice versa, if an
anisotropy of a type not yet observed in the bulk is found
on the surface, it should be expected that more thorough
studies will reveal it also in the bulk (this property may be
called a surface-bulk anisotropy affinity). Although in our
considerations here we have referred to (Ga,Mn)As thin films
magnetically homogeneous throughout the bulk (and therefore
described by the surface inhomogeneity model), we believe
that the expected correspondence between bulk and surface
in terms of magnetocrystalline anisotropy applies as well
to volume-inhomogeneous (Ga,Mn)As thin films in which
SWR is observed. This is the case of the samples studied
by Goennewein et al. [4,7,8] and Khazen [37], which use
the volume inhomogeneity model for the interpretation of
their results; we believe that also their SWR spectra bear a
significant imprint of the surface anisotropy too. Thus, it can
be expected that the surface anisotropy of such samples can
be studied also by a method similar to that proposed in the
present paper, based on SWR spectra measured in various
carefully chosen angular configurations.
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APPENDIX: THE SURFACE INHOMOGENEITY MODEL
AND NATURAL PINNING CONDITIONS

The concept of surface pinning is related to the description
of the energy status of surface spins, specifically to the degree
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FIG. 3. Profiles of the lowest spin-wave resonance modes (top)
and the corresponding SWR spectra (bottom) depicted separately for
various values of the surface pinning parameter A (i.e., for various
pinning of the surface spins) within the surface inhomogeneity (SI)
model. The spectra only exhibit peaks corresponding to symmetric
modes of odd number, n = 1,3,5,7. The calculations are performed
for the case of L = 75 (75 layers in the film); UM denotes uniform
mode, and SM-surface mode. Two very peculiar effects are observed:
first, the multipeak SWR spectrum reduces to a single-peak FMR
spectrum at A = 1, second, for A > 1 the spectrum includes a
surface-localized resonance peak.

of freedom of their precession. In a simplified image besides
the effective magnetic field present throughout the sample an
additional magnetic field K surf

eff , referred to as the effective
surface anisotropy field, acts on the surface spins. As we have
shown in Refs. [29,30] the boundary conditions to be fulfilled
by the precession of the surface spins can be expressed by the

surface pinning parameter defined by Eq. (3.2). Note that a
complete lack of anisotropy field on the surface corresponds
to the surface parameter value one; the freedom of the surface
spins in this situation will be referred to as the natural freedom.
As already we have illustrated in Fig. 2 in the case of nonzero
anisotropy field three situations, substantially different from
the physical point of view, may occur depending on the angle
between the magnetization M and the surface anisotropy field
K surf

eff . If the surface spins are aligned perpendicularly to K surf
eff ,

their freedom remains natural (A = 1); otherwise, the surface
spins are pinned (and A < 1) or unpinned (and A > 1) for the
above-mentioned angle acute or obtuse, respectively.

Note now that in the special case in which the bulk
and surface values of the free-energy density are equal
[see Eq. (3.8)] the surface pinning parameter is equal to one,
which corresponds to the natural pinning. This case is special
enough to deserve a separate discussion.

From Eq. (3.5) for A = 1 we obtain the following set of
allowed wave numbers k of symmetric modes:

k = 0,2
π

L
,4

π

L
, . . . ,(L − 1)

π

L
; (A1)

for convenience we have assumed above that L is an odd
number.

On the other hand, the surface amplitude of a symmetric
mode is expressed by the following equation [29]:

usurf(k) =
√

2

(
L + sin Lk

sin k

)−1/2(
cos

L − 1

2
k

)
. (A2)

Now, if we substitute Eqs. (3.5) and (A2) into (3.4), we
obtain the following expression for the resonance intensity
of symmetric modes:

I (k) ∼
(

L + sin Lk

sin k

)−1
(

sin 1
2Lk

sin 1
2k

k

)2

, (A3)

from which it follows that for all nonzero wave numbers
in the set (A1) the resonance intensity is zero, whereas for
k = 0 (uniform mode) (A3) becomes a 0/0 type undefined
expression. However, its limit for k → 0 is nonzero:

lim
k→0

I (k) = L. (A4)

Thus, the natural pinning excludes a multipeak resonance
excitation, and the SWR spectrum in this case only consists of
a single peak corresponding to the excitation of the symmetric
uniform mode k = 0 (see Fig. 3). In the literature this is
referred to as the critical resonance, and the angles ϑ and
ϕ for which this kind of resonance occurs are known as the
critical angles (ϑc and ϕc , respectively).
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[18] J. Zemen, J. Kučera, K. Olejnik, and T. Jungwirth, Magne-
tocrystalline anisotropies in (Ga,Mn)As: Systematic theoretical
study and comparison with experiment, Phys. Rev. B 80, 155203
(2009).

[19] J. Kanski, L. Ilver, K. Karlsson, M. Leandersson, I. Ulfat, and
J. Sadowski, Electronic structure of (Ga,Mn)As revisited: An
alternative view on the “Battle of the Bands”, arXiv:1410.8842.

[20] M. Sawicki, K.-Y. Wang, K. W. Edmonds, R. P. Campion, C. R.
Staddon, N. R. S. Farley, C. T. Foxon, E. Papis, E. Kamińska,
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