
PHYSICAL REVIEW B 94, 195207 (2016)

Terahertz radiation from accelerating charge carriers in graphene under ultrafast photoexcitation
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We study the generation of terahertz (THz) radiation from the acceleration of ultrafast photoexcited charge
carriers in graphene in the presence of a dc electric field. Our model is based on calculating the transient
current density from the time-dependent distribution function which is determined using the Boltzmann transport
equation (BTE) within a relaxation time approximation. We include the time-dependent generation of carriers by
the pump pulse by solving for the carrier generation rate using the optical Bloch equations in the rotating wave
approximation (RWA). The linearly polarized pump pulse generates an anisotropic distribution of photoexcited
carriers in the kx-ky plane. The collision integral in the Boltzmann equation includes a term that leads to the
thermalization of carriers via carrier-carrier scattering to an effective temperature above the lattice temperature,
as well as a cooling term, which leads to energy relaxation via inelastic carrier-phonon scattering. The radiated
signal is proportional to the time derivative of the transient current density. In spite of the fact that the magnitude
of the velocity is the same for all the carriers in graphene, there is still emitted radiation from the photoexcited
charge carriers with frequency components in the THz range due to a change in the direction of velocity
of the photoexcited carriers in the external electric field as well as cooling of the photoexcited carriers on a
subpicosecond time scale.
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I. INTRODUCTION

Terahertz (THz) radiation lies in the 0.1–10 THz frequency
range and this frequency range is referred to as the terahertz
gap. The frequency region below 0.1 THz is where con-
ventional electronics operates and the region above 10 THz
belongs to optics. This has been one of the reasons for a
dearth of generating sources and detectors for THz radiation
since it cannot be detected or generated by conventional
electronics used in the case of radio waves and microwaves and
novel methods for generation and detection of THz radiation
continue to make advances in this field. Imaging, sensing and
spectroscopy using THz radiation has widespread applications
in a variety of contexts [1]. Imaging and sensing using
THz radiation has promising applications in tumor detection
for biomedical applications, inspection/process control in
industry, studying cosmic background radiation in astronomy,
explosive detection for security purposes, remote sensing and
ultrafast wireless communication. Spectroscopy using THz
radiation is ideally suited to study low-energy excitations like
superconducting gap in superconductors, ionization energies
of shallow donors and acceptors in semiconductors, spin flip
energies, etc.

Photonics based devices are used for generation of high THz
frequencies close to optical frequencies, like the free electron
laser (FEL)[2] and quantum cascade laser (QCL)[3]. FEL
THz source includes an electron accelerator and an undulator
which produces a magnetic field that accelerates the electron
beam and radiates in the THz range. On the other hand, QCL
has a cascade of quantum wells, which have subbands due
to confinement effects where the energy spacing between the
subbands determine the lasing frequency. Electronics based
devices are also used for generation of low THz frequencies
close to electronic device frequencies, like Gunn oscillators[4]
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and optical parametric oscillators [5]. Gunn diode oscillators
are based on the negative differential resistance regime at
high electric field strengths where intervalley electron transfer
becomes significant. Optical parametric oscillators on the
other hand are based on the optical gain from parametric
amplification of a nonlinear crystal.

Semiconductors have been used to generate THz radiation
through several mechanisms wherein ultrashort pulses are
incident on a semiconductor surface and a THz pulse reflects
off alongside a portion of the incident pulse. The main mecha-
nisms for generation of THz radiation from semiconductors
are the following: (1) Optical nonlinearity of the material
causing radiation through higher order susceptibility χ2 [6–8],
(2) Virtual carriers by photoexcitation with pump energy
below the band gap in presence of dc electric field [9,10],
(3) Photo-Dember effect where a dipole moment forms close
to the surface due to the difference in mobilities/diffusion of
electrons and holes [11,12], (4) Photoexcited charge carrier
acceleration in presence of an internal or external electric field
[13,14].

Graphene is a zero-gap semiconductor with vanishing
density of states at the Dirac points [15]. The linearity of
the energy dispersion about the Dirac point has interesting
consequences in both transport and optical measurements
namely the presence of a zero energy Landau level [16],
anomalous quantum hall effect [17,18], good hot electron noise
property due to velocity fluctuations [19] among others [20].
This linearity of the dispersion near the Dirac points along
with the high carrier velocity causes large nonlinear optical
response [21]. Second-order nonlinearity from anisotropic
photoexcitation by oblique optical pulse excitation can gen-
erate THz frequencies in graphene [22]. Terahertz radiation
from single layer graphene on gold substrate is enhanced by
excitation of surface plasmons in gold due to the breaking of
inversion symmetry [23].

In this paper, we are interested in investigating THz
generation from ultrafast photoexcited carriers in graphene,
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FIG. 1. Suspended graphene with a dc electric field applied in the
graphene plane and polarized pump pulse incident perpendicular to
the sheet.

with emphasis on charge carrier acceleration. We take the
external electric field to be in-plane rather than perpendicular
as is usually the case (Fig. 1). Because the graphene crystal
structure is centrosymmetric, we expect no optical nonlinearity
contribution without excitation at oblique incidence. Also,
since the valence and conduction bands in graphene are
symmetric about the Dirac point for low energies (implying
similar electron and hole mobilities) in graphene, the photo-
Dember effect should be small [24]. One might also expect
THz generation through charge carrier acceleration to be
absent in graphene, since the magnitude of the velocity is
constant due to the linear Dirac dispersion at low energies.
However, the direction of the velocity changes which along
with the relaxation mechanisms can lead to a transient current
density which can lead to radiation.

In Sec. II, we explain the key difference in THz gen-
eration process via charge carrier acceleration between
the conventional parabolic dispersion and the Dirac dis-
persion in a simple model. Then we present a more
detailed model used in this manuscript in Sec. III. In
Sec. III A, we formulate the model using the time-dependent
Boltzmann equation in the relaxation time approximation,
the solution of which is used to calculate the transient
current density as described in Sec. III B. In Sec. IV,
we summarize the results for the undoped graphene and
n-doped graphene with room temperature chemical potential
of 50 meV.

II. SIMPLISTIC MODEL

For a typical semiconductor, the velocity of a carrier is
proportional to the wave vector v ∝ k. This implies that
the current due to this carrier in an electric field continues
to increase linearly with time in absence of momentum
relaxation mechanisms. The time derivative of the velocity
gives the acceleration, which is a constant in absence of
scattering, implying constant radiation. Momentum scattering
mechanisms are important here since it limits the increase in
velocity and there is a time varying acceleration as shown in
Fig. 2.

FIG. 2. (a) Schematic of the motion of an electron in parabolic
dispersion, (b) component of velocity along the field direction of a
carrier, and (c) time derivative of velocity as a function of time in
presence and absence of scattering.

The linear energy dispersion in graphene is much different
from the otherwise conventional quadratic dispersion (ε ∝ k2).
At the outset, it appears that the velocity is a constant for linear
dispersion. However, the k eigenstate of the electron matters
when it comes to acceleration, for example there is no radiation
for electron 1 as shown in Fig. 3. The direction of the velocity
vector changes for electron 2 and this change in direction
implies a time dependent acceleration as shown in Fig. 3.
Thus graphene has an interesting time dependent acceleration
even in absence of scattering. The effects of scattering
make a more detailed model and will be discussed in later
section.

An electron in graphene in presence of external electric
field has time varying x and y components of velocity. From
the semiclassical equation of motion, the time varying velocity
can be calculated

v = vF

k − eEt/�

|k − eEt/�| , (1)

which indicates that the variation of the velocity of an electron
depends on its initial k-state. e > 0 is the magnitude of
electronic charge, E is the electric field, vF is the Fermi
velocity of graphene, and t is the time.
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FIG. 3. (a) Schematic of the motion of an electron in graphene
Dirac dispersion, (b) component of velocity along the field direction
of a carrier, and (c) time derivative of velocity as a function of time
in absence of scattering for two different initial wave vectors.

III. MODEL

The configuration shown in Fig. 1 displays a graphene sheet
in the x-y plane in presence of a dc electric field applied
along the plane. A pump pulse is applied perpendicular to the
graphene sheet which photoexcites carriers in the conduction
band and holes in the valence band. These carriers accelerate
in presence of the dc field giving rise to a time-dependent
photocurrent. The time derivative of this photocurrent is
proportional to the radiated signal.

The most important relaxation mechanisms include a
“thermalization” and a “cooling” terms (Fig. 4). The initial
carriers along with the photoexcited carriers thermalize to an
effective drifted “thermalized Fermi-Dirac” distribution over
a time scale τT with a drift wave vector kd , a quasichemical
potential μ∗, and an effective carrier temperature Tel, which is
higher than the lattice temperature T because of energy being
pumped into the system by photoexcitation. This eventually
cools to a “cooled Fermi-Dirac” distribution over a time scale
τC with a chemical potential μ at the lattice temperature T .
The recombination of carriers across the bands is ignored
since it occurs on a much longer time scale compared to the
thermalization and cooling times.

To model all of this, the time-dependent Boltzmann
equation of carriers in presence of a dc electric field is solved

FIG. 4. Relaxation mechanisms include a “thermalization” term
and a “cooling” term. The initial carriers along with the photoexcited
carriers thermalize to an effective drifted “thermalized Fermi-Dirac”
distribution over a time scale τT and eventually cool to a “cooled
Fermi-Dirac” distribution over a time scale τC .

within the constant relaxation time approximation including a
thermalization and a cooling terms. A carrier generation term
is also included in the Boltzmann equation to take into account
the time-dependent generation of carriers by the pump pulse.
To get analytic results, the pump excitation is assumed to be
weak and an expression for the generation rate of carriers
is obtained by solving the optical Bloch equations in the
rotating wave approximation (RWA). Note that just electrons
are considered in this model since holes will have the same
contribution to the final current density for an undoped system
while in the n-doped system, we will only be interested in the
electrons.

A. Boltzmann equation formulation

The generation rate of the carriers is used to evaluate
the transient current density from the Boltzmann transport
equation (BTE) in presence of an in-plane dc electric field
(E = −Ex̂, F = −eE = eEx̂) as seen in Fig. 1,

∂f

∂t
+ eE

�

∂f

∂kx

= ∂fg

∂t
+ Icollision{f }, (2)

where f is the wave vector k and time dependent distribution
function, ∂tfg is the generation rate of carriers by the pump
pulse, and Icollision{f } is the collision integral.

The generation rate term corresponds to the carrier genera-
tion due to the ultrafast pump pulse evaluated using the Bloch
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equations in the weak pump limit as described in Appendix A
and A 2,

∂fg

∂t
=

√
π

2

e2v2
F w

2�2
A2

o

∣∣σλ
cv

∣∣2
e−t2/2w2

e−w2δ2/2(fv − fc)

× Real

[
e−iδt

(
1 + Erf

(
t√
2w

− iδw√
2

))]
, (3)

where Erf is the error function, w is the pump pulse width,
δ = ωcv − ωo is the detuning. The factor |σλ

cv|2 implies the
interband matrix element of the sublattice Pauli matrix in
the (kx,ky) plane for linearly polarized pump pulse with
polarization in λ direction.

The collision integral terms are approximated within the
relaxation time approximation (RTA) as described below,

Icollision{f } = −f − ft

τt

− f − fc

τc

. (4)

The first term in the collision integral corresponds to
thermalization where the distribution relaxes via electron-
electron intraband scattering [25] to a drifted Fermi-Dirac
distribution with a nonzero time dependent chemical potential
and an effective electron temperature that is higher than the
lattice temperature:

ft = [1 + exp{(�vF |k − kd | − μ∗)/(kbTel)}]−1. (5)

We note that the thermalization term in the collision integral
is due to scattering between carriers and thus conserves number
density, energy and wave vector. Since the dc field is assumed
to be along the x direction:

kd = 〈kx〉
n

= 1

n

∫∫
dk

(2π )2
kxft (k),

n(t) =
∫∫

dk
(2π )2

ft (k),

〈εk〉 =
∫∫

dk
(2π )2

εkft (k). (6)

The equations above determine the quasi-Fermi level (μ∗),
electron temperature (Tel) and the drift wave-vector (kd ). The
quasi-Fermi level μ∗ and the electron temperature increases
over the duration of the pump pulse as the pump generates
carriers in high-energy states.

The second term in the collision integral corresponds
to “cooling” of carriers generated by the pump and here
the distribution relaxes to a Fermi-Dirac distribution with a
nonzero chemical potential larger than the equilibrium value
since we have more carriers because of photoexcitation, and
lattice temperature (T ) via intraband scattering with phonons,

fc = [1 + exp{(�vF |k| − μ)/(kbT )}]−1. (7)

The collision integral term for cooling of carriers also
conserves carrier density. This conservation rule determines
the Fermi level (μ), which increases over the duration of the
pump pulse. We note that the recombination of the carriers
across the band is neglected here since the typical time
scale corresponding to this mechanism is much larger than
the typical subpicosecond time scale corresponding to the
thermalization and cooling mechanisms.

TABLE I. Parameters used for calculating THz radiation contri-
bution from photoexcited carrier acceleration.

Parameter Value

Fluence F 1 μJ/cm2

Pulse Central Energy �ωo 0.5 eV
FWHM pd 40 fs
Thermalization time τT 50 fs
Cooling time τC 0.5 ps
Electric Field E 1 kV/cm
Temperature T 300 K

B. Observables

The Boltzmann equation can be solved using Fourier
transforms as described in Appendix. B to obtain the time-
dependent distribution function. The carriers are in a steady-
state prior to the application of the pump. The time dependent
distribution obtained can be used to evaluate the transient
current density

j = −e

∫∫
dk

(2π )2
vf (k,t). (8)

The radiation for the charge carrier acceleration is propor-
tional to the time derivative of the current:

d j
dt

= −e

∫∫
dk

(2π )2
v
df (k,t)

dt
. (9)

IV. RESULTS

Assuming the pump vector potential is of the Gaussian
form in Eq. (A8). The fluence of the pump pulse F and the
central energy ωo can be used to calculate the vector potential
amplitude Ao:

Ao ≈
√

2F√
πω2

oεowc
.

Also given the FWHM (full width half maximum) of the pump
pd , the pulse width w = pd/(2

√
2ln(2)) is evaluated. The

parameters chosen for the calculations are specified in Table. I.
The results presented below are for undoped graphene as well
as for n-doped graphene with room temperature chemical
potential of 50 meV and Y -polarized pump pulse.

The time evolution of the distribution function for undoped
graphene as shown in Fig. 5 and n-doped graphene with
room temperature chemical potential of 50 meV in Fig. 7.
The carriers are generated anisotropically by the polarized
pump pulse [26] due to the matrix element |σλ

cv|2 in Eq. (3)
after which the thermalization of carriers takes place and
subsequently the hot carriers cool down by interaction with
the lattice.

The distribution of carriers in energy N (E) can be evalu-
ated. N (E)dE is the carrier density between the energies E

and E + dE which when integrated over all energies gives
the total number density. This energy distribution is evaluated
using

N (E) =
∫∫

dk
(2π )2

f (k)δ(εk − E). (10)
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FIG. 5. Time evolution of the distribution function for undoped graphene. There is a nonzero, thermally excited carrier density (at room
temperature) in the conduction band. The carriers are generated by the pump pulse with Y polarization (∝cos2 θ ) during the pulse width
duration. The carriers then thermalize to a hot Fermi-Dirac distribution, which eventually cools down to the lattice temperature.

This is equivalent to the product of the density of states per
unit area and the probability of occupation of state with energy
E. The distribution of carriers in energy is shown in Fig. 6 and
Fig. 8. It shows the generation of carriers by the optical pump
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FIG. 6. Time evolution of N (E) [defined in Eq. 10], the product
of the density of states per unit area and the probability of occupation
of state with energy E for undoped graphene as a function of energy.

pulse during the pulse duration. The carriers then thermalize
and eventually cool on longer time scales.

The current density averaged over the distribution shown
in Fig. 9 initially decreases during the generation of carriers.
This is because the sudden increase in carrier density created
by the pump pulse actually decreases the drift wave vector
(see Fig. 11) and the fast thermalization relaxes the system
towards a distribution is centered about a smaller drift wave
vector kd causing a decrease in the average velocity/current.
At longer time scales the averaged current density increases as
the carrier distribution drifts and eventually saturates over the
cooling time scale.

The time derivative of the averaged current density over
the distribution is also plotted in Fig. 10. It decreases over
the pumping duration and increases when carriers drift before
decaying to zero when the carriers cool down and reach a
steady state. We note that the time integral is zero for a
typical THz waveform, which arises due to a time-dependent
polarization such as from either virtual carriers for below band
edge excitation or optical nonlinearity (rectification) which
lasts only for the duration of the pump pulse. For these cases,
the current density itself goes to zero after the pump. However,
in our case, we are considering real photoexcited carriers above
the band gap. The photoexcited carriers accelerate in the dc
field so that the total current density changes and increases to a
new steady-state value long after the pump pulse is gone (due to
the additional photoexcited carriers). Thus the time derivative
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FIG. 7. Time evolution of the distribution function for n-doped graphene with room temperature chemical potential of 50 meV. The carriers
are generated by the pump pulse with Y polarization (∝cos2 θ ) during the pulse width duration. The carriers then thermalize to a hot Fermi-Dirac
distribution which eventually cools down to the lattice temperature.

of total current density is expected to have a nonzero time
integral unless the current density decays to its initial value. We
note that we have ignored carrier recombination in our model
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FIG. 8. Time evolution of N (E) [defined in Eq. 10], the product of
the density of states per unit area and the probability of occupation of
state with energy E for for n-doped graphene with room temperature
chemical potential of 50 meV as a function of energy.

which when included will bring the current density back to the
original value prior to the pump pulse over the time scale of
recombination. Thus when the recombination mechanism is
included, the time derivative of total current density will have
a zero time integral.
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FIG. 9. Total current density of all carriers as a function of time
for undoped and n-doped graphene with room temperature chemical
potential of 50 meV.
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FIG. 10. Time derivative of total current density of all carriers
as a function of time for undoped and n-doped graphene with room
temperature chemical potential of 50 meV.

We also note that the amplitude of radiation from transient
current density depends critically on the geometry of the
detector and sample,

E(t) ≈ sin φ0

4πε0c2

S2

r

d j
dt

. (11)

However, using typical geometrical parameters in the expres-
sion for radiation from a transient current density in two
dimensions (detector angle φ0 = 45◦, pump pulse spot size
diameter S = 100–500 μm, detector distance r = 1–10 cm)
[9], we expect the radiation amplitude to be in the range of few
10’s of mV/cm up to a few V/cm.
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FIG. 11. Drift wave vector of a single carrier as a function of
time for undoped and for n-doped graphene with room temperature
chemical potential of 50 meV.

V. CONCLUSION

The radiative contribution to the THz signal of ultrafast
photoexcited carrier acceleration in presence of an in-plane
dc electric field in graphene is studied. The linearity of the
graphene dispersion near the Dirac point implies constant
magnitude of velocity which naively might lead one to expect
no THz radiation due to carrier acceleration. However the
azimuthal degree of freedom allows for a time dependent
velocity/current density where the direction of the current is
changing. The polarized pump pulse creates an anisotropic
carrier distribution in the 2D Brillouin zone. Since the
thermalization time scale arising from rapid carrier-carrier
scattering is of the order of 50 fs, the anisotropic photoexcited
carrier distribution relaxes to a drifted Fermi-Dirac distribution
at a higher temperature relative to the lattice. The cooling of
lattice through phonons happens on a time scale of picosecond.
It is this cooling which via momentum and energy relaxation
drives the current density to its steady-state value. Thus the
two relaxation mechanisms give rise to a time-varying current
density which radiates in the THz frequency range. In spite
of a constant “speed” of the carriers in graphene, there is still
radiation from the acceleration of the carriers as they change
their direction.
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APPENDIX A: BLOCH EQUATIONS IN RWA

The optical response of semiconductors excited by coherent
light sources are best described by the optical Bloch equation
formalism. In presence of an optical field, the momentum
couples to the field by Peierls minimal coupling: p −→ p +
eA (e > 0 is the magnitude of electronic charge). This implies
that the total Hamiltonian in presence of the optical field is

Hk = �vF σ · k + evF σ · A. (A1)

In the eigenbasis of the unperturbed Hamiltonian Ho, the
complete Hamiltonian H can be written as

Hk =
∑

l

εl|l〉〈l| +
∑
pq

evF A · σ pq |p〉〈q|, (A2)

where σ pq = 〈p|σ |q〉. The sum over l, p, and q ∈ {c,v}. The
unperturbed Hamiltonian Ho:

Ho = εc|c〉〈c| + εv|v〉〈v|. (A3)

The eigenbasis of the unperturbed Hamiltonian Ho is εc/v =
±�vF k,

|c〉 = 1√
2

(
e−iφ/2

eiφ/2

)
and |v〉 = 1√

2

(
e−iφ/2

−eiφ/2

)
, (A4)

where φ = tan−1(ky/kx).
The possible matrix elements σ pq in the above basis can be

evaluated:

σ cc = [cos(φ)x̂ + sin(φ)ŷ],

σ vv = −[cos(φ)x̂ + sin(φ)ŷ],
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σ cv = [−i sin(φ)x̂ + i cos(φ)ŷ],

σ vc = [i sin(φ)x̂ − i cos(φ)ŷ]. (A5)

Neglecting the intraband matrix elements(since it will not
satisfy energy and momentum conservation simultaneously
and we are only interested in interband absorption), the
perturbation Hamiltonian can be written as

H ′ = evF A · σ cv|c〉〈v| + evF A · σ vc|v〉〈c|. (A6)

In the interaction representation (where the trivial time
dependence from the unperturbed Hamiltonian is removed),

H̃ ′ = eiHot/�H ′e−iHot/�

= evF A · σ cve
iωcvt |c〉〈v| + evF A · σ vce

−iωvt |v〉〈c|,
(A7)

where �ωcv = εc − εv .
Assuming the vector potential of the optical field to be a

pulse with a Gaussian envelope:

A = Re
(

Aoe
−t2/2w2

e−iωot
)
. (A8)

Thus, in the RWA (rotating wave approximation), i.e., keeping
only near resonance terms and dropping fast oscillating terms,

H̃ ′
R = evF

2
Ao · σ cve

−t2/2w2
eiδt |c〉〈v|

+ evF

2
Ao · σ vce

−t2/2w2
e−iδt |v〉〈c|, (A9)

where δ = ωcv − ωo. From the Von-Neumann equation for the
density matrix,

i�
∂ρ̃

∂t
= [H̃ ′

R,ρ̃], (A10)

one can evaluate the time evolution of the density matrix
components, i.e., the band occupation density (diagonal com-
ponents of the density matrix) and the interband microscopic
polarization (off-diagonal components of the density matrix),

∂ρ̃cc

∂t
= − ievF

2�
e−t2/2w2

Ao · [σ cve
iδt ρ̃vc − σ vce

−iδt ρ̃cv],

∂ρ̃vv

∂t
= ievF

2�
e−t2/2w2

Ao · [σ cve
iδt ρ̃vc − σ vce

−iδt ρ̃cv],

∂ρ̃cv

∂t
= − ievF

2�
Ao · σ cve

−t2/2w2
eiδt (ρ̃vv − ρ̃cc),

∂ρ̃vc

∂t
= ievF

2�
Ao · σ vce

−t2/2w2
e−iδt (ρ̃vv − ρ̃cc). (A11)

1. Undoped graphene absorption

The velocity operator for graphene in the Dirac dispersion
approximation is �v = vF �σ . This in second quantized notation
gives

�v = vF �σcv|c〉〈v| + vF �σvc|v〉〈c|,
(A12)

�̃v = vF �σcve
iωcvt |c〉〈v| + vF �σvce

−iωcv t |v〉〈c|,
where �̃v is the operator in the interaction representation. In
case of monochromatic vector potential: A = Re[Aoe

−iωt ],
the optical field vector potential is A = Ao[e−iωt + eiωt ]/2.
Thus A(ω) = Ao/2. The coupled density matrix equations in

Eq. (A11) can be formulated for the monochromatic vector
potential in the RWA and solved for the interband coherence
to lowest order in the optical field. Without loss of generality,
we assume the pump to be polarized along the x̂ direction. The
susceptibility is defined by

χ (ω) = j (ω)

εoω2A(ω)

= e2v2
F

εoω2�L2

∑
k

sin2(φ)

(
fv − fc

ωcv − ω − iη

)
, (A13)

where j = −eTr[ρ̃ṽ] = j (ω)e−iωt + j (−ω)eiωt . Assuming
valence band to be full and conduction band to be empty,
fv = 1 and fc = 0,

Im[χ (ω)] = πe2v2
F

εoω2�L2

∑
k

sin2(φ)δ(ωcv − ω). (A14)

The absorption relates to the imaginary part of the
susceptibility:

α(ω) = ω

c
Im[χ (ω)]

= e2

4εo�c
= 0.0231. (A15)

This is consistent with the measured and calculated interband
absorption from far infrared to ultraviolet spectrum range [27–
30].

2. Generation rate under weak pump excitation

Considering the case of weak pump excitation ( evF Ao

2�
 1)

for the pulse with Gaussian envelope such that to lowest order:

∂ρ̃cv

∂t
= − ievF

2�
Ao · σ cve

−t2/2w2
eiδt (ρ̃vv − ρ̃cc)

� − ievF

2�
Ao · σ cve

−t2/2w2
eiδt (ρvv − ρcc),

ρ̃cv � − ievF

2�
Ao · σ cv(ρvv − ρcc)

∫ t

−∞
dt ′e−t ′2/2w2

eiδt ′

� −
√

π

2
w

ievF

2�
Ao · σ cv(ρvv − ρcc)e−δ2w2/2

×
[

1 + Erf

(
t√
2w

− iδw√
2

)]
. (A16)

Substituting the above expression in the equation for the
diagonal component of the density matrix with the vector
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potential polarization Ao = Aoλ̂,

∂fc

∂t
= ∂ρ̃cc

∂t

=
√

π

2

e2v2
F w

2�2
A2

o

∣∣σλ
cv

∣∣2
e−t2/2w2

e−w2δ2/2(fv − fc)

× Real

[
e−iδt

(
1 + Erf

(
t√
2w

− iδw√
2

))]
. (A17)

In using the generation rate for further calculations, we assume
that fc = 0 and fv = 1.

APPENDIX B: BOLTZMANN EQUATION SOLUTION

The BTE in Eq. (2) can be solved by Fourier transforms of
the distribution function defined by

g(r) = 1

2π

∫∫
e−ik·rf (k) dk,

f (k) = 1

2π

∫∫
eik·rg(r) d r. (B1)

Upon Fourier transforming the BTE in Eq. (2):

∂g

∂t
+ ieEx

�
g = ∂gg

∂t
− g − gt

τT

− g − gc

τC

. (B2)

Integrating over time from an initial time ti (well before the
applied pump pulse) gives the solution in Fourier space:

g = gie
−(t−ti )/τ e−ieEx(t−ti )/� + e−t/τ e−ieExt/�

×
∫ t

ti

dt ′et ′/τ eieExt ′/�

(
∂gg

∂t ′
+ gt

τT

+ gc

τC

)
, (B3)

where τ−1 = τ−1
T + τ−1

C , gi in the Fourier transform of the
steady-state distribution before the pump is applied, which
means the steady-state distribution of the carriers (due to
finite temperature and doping) in presence of dc electric
field. gg/gt /gc are the Fourier transforms of fg/ft /fc. Upon
taking the inverse Fourier transform of g, one can get the
time dependent distribution function f . However, the initial
steady-state distribution function prior to the pump pulse needs
to be determined.

The carriers prior to the optical pump pulse are in a steady
state, which can be calculated using the Boltzmann equation.
The steady-state Boltzmann equation for the initial distribution
prior to the pump pulse is one similar to Eq. (2) except
that the time derivative term is absent since steady state and
the generation rate term is absent since the system prior to
photoexcitation is being considered:

eE

�

∂fi

∂kx

= −fi − fit

τT

− fi − fic

τC

, (B4)

where the subscript i in the distribution functions corresponds
to “initial.” The collision terms are the same as stated in Eq. (5)
and Eq. (7):

fit = [
1 + exp

{(
�vF |k − kd

i | − μ∗i
)
/
(
kbT

i
el

)}]−1
,

fic = [1 + exp{(�vF |k| − μi)/(kbT )}]−1. (B5)

The moments of the BTE [Eq. (B4)] for the initial distribution
with respect to wave vector kx and energy εk is given by

ki
d = 〈kx〉

n
= eEτC

�
,

(B6)
〈εk〉i = 〈εc〉i + eEτC〈vx〉in,

where

〈vx〉in = 1

(2π )2

∫∫
vx(k)fi(k) dk,

〈εk〉i = 1

(2π )2

∫∫
εkfi(k) dk,

〈εc〉i = 1

(2π )2

∫∫
εkfc(k) dk. (B7)

The solution to the BTE ([Eq. (B4)] in Fourier space is

gi = 1

1 + ieExτ/�

(
τ

τT

git + τ

τC

gic

)
. (B8)

The energy moment relation suggests that the initial steady-
state distribution needs to be solved self-consistently since
the energy is related to the average velocity of the carriers.
Thus starting with a guess of average energy 〈εk〉i (initial
carrier number density ni is fixed), μ∗i and T i

el is solved for
and then the initial steady-state distribution is evaluated. This
initial distribution is used to find the average energy and this
procedure is repeated until self-consistency is achieved.

Thus solution to the BTE (B3) requires the time-dependent
parameters kd, μ, μ∗, and Tel in the collision integral. These
can be determined from the moments of the BTE as described
below.

APPENDIX C: MOMENTS OF DISTRIBUTION FUNCTION

1. Moment equation for carrier density

Since the thermalization and cooling collision integrals
conserves number density, one can integrate the BTE [Eq. (2)]
over all k states:

∂n

∂t
= ∂ng

∂t
=

∫∫
dk

(2π )2

∂fg

∂t
. (C1)

The equation can be integrated in time to get

n(t) = n(ti) +
∫ t

ti

dt ′
∂ng

∂t ′
. (C2)

The above equation clearly indicates that a change in the num-
ber density of carriers can come about from the generation of
carriers by the pump pulse since we do not have recombination
in our model, which occurs at a longer time scale compared to
thermalization and cooling.

2. Moment equation for wave vector

To determine the time evolution of the drift wave vector,
one can multiply the BTE [Eq. (2)] by kx and then integrate
over all k states:

∂kn
d

∂t
− eEn

�
= − kn

d

τC

, (C3)
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where kn
d = 〈kx〉 is the average of wave vector over the

distribution function (average of n carriers). Integration of
the above equation gives a time-dependent drift wave vector:

kn
d (t) = kn

d (ti)e
−(t−ti )/τC + eE

�

∫ t

ti

dt ′e−(t−t ′)/τC n(t ′). (C4)

Thus the drift wave vector of the distribution kd (t) =
kn
d (t)/n(t).

The time variation of the drift wave vector per carrier of
the drifted Fermi-Dirac distribution kd is shown in Fig. 11.
The thermalization collision integral attributed to scattering
between carriers relaxes the distribution to a drifted Fermi-
Dirac distribution with an effective temperature and quasi-
Fermi level with the drift wave vector kd . The optical pump
photoexcites carriers with no net wave vector. Thus the drift
wave vector as seen in Fig. 11 decreases during the duration of
the pump pulse as the number of the carriers increases but the
carriers are generated with no net wave vector by the optical
pump pulse. After the pump pulse is over the distribution starts
to drift under the effect of dc electric field and the drift wave
vector increases to its initial steady-state value.

3. Moment equation for energy density

To determine the time evolution of energy, one can multiply
the BTE [Eq. (2)] by εk and then integrate over all k states:

∂〈εk〉
∂t

− eE〈vx〉n = ∂〈εg〉
∂t

− 〈εk〉 − 〈εc〉
τC

, (C5)

where 〈vx〉n is the average of velocity over the distribution
function f (average of n carriers), 〈εk〉 is the average of energy
over the distribution function f, 〈εc〉 is the average of energy
over the cooling distribution function fc, and ∂t 〈εg〉 is the
average of energy over the generation rate ∂tfg . Integration of
the above equation gives a time-dependent energy:

〈εk〉(t) = 〈εk〉(ti)e−(t−ti )/τC
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FIG. 12. Energy density of carriers as a function of time for
undoped and for n-doped graphene with room temperature chemical
potential of 50 meV.
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FIG. 13. Electron temperature of thermalized distribution as a
function of time for undoped and for n-doped graphene with room
temperature chemical potential of 50 meV. Note that the electron
temperature is higher than the lattice temperature (T = 300 K)
because of the heating of the electrons due to the dc field.

+
∫ t

ti

dt ′e−(t−t ′)/τC

[
∂〈εg〉
∂t ′

+ eE〈vx〉n + 〈εc〉
τC

]
.

(C6)

The average energy of the carriers increase during generation
of carriers since the pump provides energy to photoexcited
carriers and thermalization mainly corresponds to carrier-
carrier interaction which conserves energy as seen in Fig. 12.
After the thermalization time scale the carriers begin to
cool down by giving their energy to the lattice via inelastic
carrier-phonon scattering.

The time-dependent wave vector (kd ), number density (n),
and energy (〈εk〉) determine the parameters (μ∗, Tel, and
μ). The time evolution of the effective electron temperature
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FIG. 14. Chemical potential for the thermalization and cooling
distributions as a function of time for undoped and for n-doped
graphene with room temperature chemical potential of 50 meV.

195207-10



TERAHERTZ RADIATION FROM ACCELERATING CHARGE . . . PHYSICAL REVIEW B 94, 195207 (2016)

follows the average energy as seen in Fig. 13. The electron
temperature increases as energy is pumped into the system
through photoexcitation. The electron temperature increases as
the photoexcited carrier density increases and eventually cools
down to the initial steady-state electron temperature which is
higher than the lattice temperature since the presence of the dc
electric field increases the steady-state electron temperature of
the thermal/doped carriers prior to the optical pump pulse.

The chemical potential for the cooling collision integral
follows the number density as seen in Fig. 14. However,

the quasi-Fermi level for the thermalization collision integral
μ∗ initially decreases. This happens because the effective
electron temperature increases due to the energy pumped into
the system by the pump pulse but the conservation of the
instantaneous number density requires the quasi-Fermi level
μ∗ to decrease. After the duration of the pump pulse, the
quasi-Fermi level μ∗ increases as the carriers cool down. We
note that we have not included a recombination term in the
collision integral and thus the chemical potential does not
decrease to the steady-state value prior to photoexcitation.
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