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2 fermions, type-II Weyl semimetals, and critical Weyl semimetals

in tricolor cubic lattices
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Multiband touchings, such as three-band, six-band, and eight-band touchings, together with the emergence
of high-pseudospin fermions were predicted recently at high-symmetry points in three-dimensional space. In
this paper, we propose a simple cubic model whose unit cell contains three atoms. There are six bands in the
system due to the spin degrees of freedom. The four-band and two-band touchings are realized at high-symmetry
points, where we derive low-energy theories, demonstrating the emergence of pseudospin-3/2 fermions and Weyl
fermions, respectively. Away from the high-symmetry points, we find critical Weyl fermions present exactly at
the boundary between the type-I and type-II Weyl fermions. This critical Weyl fermion transforms into the type-I
or type-II Weyl fermion once the magnetic field is applied.
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I. INTRODUCTION

Dirac, Weyl, and Majorana fermions have attracted much
attention in condensed-matter physics in views of topology
and symmetry. They have a two-band touching with a linear
dispersion. Dirac and Weyl fermions emerge in various
materials, which are called Dirac and Weyl semimetals [1].
An interesting feature of Weyl semimetals is that they have
a monopole charge in the momentum space, which protects
the existence of the Weyl points topologically [2]. The type-II
Weyl semimetal has attracted much attention recently [3–12],
which emerges when the Weyl cone is highly tilted so that the
Fermi surface consists of a pair of electron and hole pockets
touching at the Weyl point. It is experimentally realized in
MoTe2 [13–17], LaAlGe [18], WTe2 [19–22], TaIrTe4 [23],
PtTe2 [24], and Ta 3S2 [25].

Very recently, new types of fermions with multiband
touching were proposed based on symmetry analysis as well
as first-principles calculations, where three-band [26,27], six-
band [26], and eight-band [26,28] touchings were reported at
high-symmetry points. In particular, it is shown that the three-
band touchings are well described by the fermions carrying the
pseudospin 1. Furthermore, the eight-band touching has been
proposed in antiperovskites to produce two sets of pseudospin-
3/2 fermions [29]. On the other hand, the four-band touching is
yet to be realized, although the existence of the pseudospin-3/2
fermion is discussed based on the symmetry analysis in the
supplement of Ref. [26].

Motivated by these proposals on multiband touchings and
fermions carrying higher pseudospins, we propose a lattice
model possessing four-band and two-band touchings (Fig. 1).
They are realized naturally in a lattice structure with the
cubic symmetry where the unit cell contains three atoms
(Fig. 2). We call it a tricolor cubic lattice. First, we derive
the low-energy four-band theory at the high-symmetry points,
which is shown to produce pseudospin-3/2 fermions having
the angular momenta j = (−3/2,−1/2,1/2,3/2). The bands
have monopole charges −3,−1,1,3 at these points. Second,
the two-band theory is described by the Weyl fermion.
Furthermore, away from the high-symmetry points, we find
a critical Weyl fermion, which resides at the exact boundary
of the type-I and type-II Weyl fermions. They transform into

type-I or type-II Weyl fermions once the magnetic field is
applied.

This paper is organized as follows. In Sec. II, we pro-
pose a tricolor cubic lattice and the corresponding lattice
Hamiltonian. In Sec. III, we show that four-band touching is
realized in the band structure, where the effective Hamiltonian
describes the pseudospin-3/2 fermion. In Sec. IV, we show the
emergence of a critical Weyl fermion, which becomes type-I
or type-II Weyl semimetals by applying a magnetic field.

II. MODEL HAMILTONIAN

We consider a cubic lattice as illustrated in Fig. 2(a).
Though it looks complicated, the unit cell is quite simple.
It contains three atoms represented by magenta, cyan, and
yellow spheres [Fig. 2(b)]. Each color atom forms the
body-center-cubic lattice. We call it a tricolor cubic lattice.
The Brillouin zone is shown in Fig. 2(c). There are four
high-symmetry points: �(0,0,0), P (π,π,π ), N (π,π,0), and
H (2π,0,0). Additionally, there are important points named
�(π,0,0), G(3π/2,π/2,0), �(π/2,π/2,0), �(π/2,π/2,π/2),
F (3π/2,π/2,π/2), and D(π,π,π/2).

The main term of the lattice Hamiltonian is the hopping
term along the bonds dij = ri − rj connecting a pair of the
nearest-neighbor sites i and j in the tricolor cubic lattice
[Fig. 2(a)]. The Hamiltonian has six bands due to the spin
degrees of freedom. We introduce the spin-orbit interaction
(SOI) preserving the cubic crystalline symmetry [30],

HSO = iλ
∑
〈i,j〉

c
†
i [σ · dij ]cj , (1)

with λ the coupling strength and σ = (σx,σy,σz) the Pauli
matrix for the spin. The six-band Hamiltonian reads Ĥ6 =∑

k c†(k)H6(k)c(k) in the momentum space, where

H6(k) = I2 ⊗
⎛
⎝ 0 fx f ∗
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FIG. 1. Bird’s eye view of the band structure near the P point.
The horizontal plane is spanned by the kz and kx axes. The vertical
axis is the energy E = E(kx,π,kz). (a) Two-band (cyan circle) and
four-band (red circle) touchings are observed at the P point. There
appear other two-band touchings (green circle) off the P point. (b),(c)
An enlarged portion of the two-band (four-band) touching indicates
the emergence of (one) two Weyl cones at the P point.

with fα = t cos kα , gα = λ sin kα , α = x,y,z, and the 2 × 2
unit matrix I2. We remark that the SOI is zero (gα = 0) at the
high-symmetry points �, P , N , H and also at the � point.

III. BAND STRUCTURE

The energy spectrum is obtained by diagonalizing the
Hamiltonian. We show the band structure along the line
�-�-H -G-N -�-�-�-P -F -H -F -P -D-N in Fig. 3 for typical
values of the parameters t and λ. The four-band and two-band
touchings are observed at various points in Fig. 3(b). The
high-symmetry point P is typical, around which we show the
bird’s eye view of the band structure in Fig. 1.

The four-band touchings are protected by cubic crystalline
symmetry and time-reversal symmetry. They occur at the high-

FIG. 2. Lattice structure and the Brillouin zone. (a) The lattice
structure of a tricolor cubic lattice. (b) The unit cell contains three
atoms, which are colored by magenta, cyan, and yellow. Each colored
atom forms the body-center-cubic lattice. (c) The Brillouin zone and
the high-symmetry points �, P , H , N , and �. The green bold lines
show the cut along the �-�-H -G-N -�-�-�-P -F -H -F -P -D-N line.

symmetry points �, P , N , H and additionally at the � point.
Hence, hereafter we count the point � as a member of the high-
symmetry points. Let us explain how the four-band touching
emerges. As shown in Fig. 3(a), in the absence of the SOI,
the fourfold degeneracy is present due to the cubic crystalline
symmetry at the high-symmetry points. Even by including
the SOI, the bands never split at the time-reversal invariant
momentum points, which implies the Kramers degeneracy. (In
the present model this is realized since the SOI is zero at
these points.) Consequently, the fourfold degeneracy without
the SOI yields the four-band touching with the SOI at all the
high-symmetry points [Fig. 3(b)].

To explore these touchings analytically, we diagonalize the
Hamiltonian by a unitary transformation U ,

U−1H6U = νtdiag(2,2,−1,−1,−1,−1), (3)

at the high-symmetry points; ν = + for the �, N , and H

points, and ν = − for the P and � points. The bands with the
first two energies 2νt form a two-band touching, while those
with the four energies −νt form a four-band touching as in
Fig. 3(b).

A. Four-band touching

First we construct the four-band model by way of

H4(k) = P4U
−1H6(k)UP4, (4)

where U is fixed by (3) while P4 is the projection operator from
the 6 × 6 Hamiltonian to the 4 × 4 Hamiltonian containing
the four bands with the eigenenergies −νt . The four-band
Hamiltonian is derived up to the linear order of kα as

νH4 = −t − πλ

3

⎛
⎜⎜⎜⎝

0 η
√

3kz 3iky η
√

3kx

η
√

3kz −2kz η
√

3kx 2kx − iky

−3iky η
√

3kx 0 −η
√

3kz

η
√

3kx 2kx + iky −η
√

3kz 2kz

⎞
⎟⎟⎟⎠,

(5)

where η = + for the �, P , N , H points and η = −1 for the
� point. Here we have set the origin of the momentum kα = 0
at each high-symmetry point to investigate physics near the
point. This Hamiltonian (5) is exactly diagonalizable,

Ej = νt ± 2j

3
λk, k = |k|, (6)

which is independent of η, where j = −3/2,−1/2,1/2,3/2.
The energy spectrum consists of two Weyl cones with
velocities λ/3 and λ [Fig. 1(b)].

B. Pseudospin-3/2 fermion

The energy eigenvalues (6) as well as the eigenfunctions are
the same as those of the pseudospin-3/2 Weyl fermion defined
by

H4 = νt + 2
3λk · J, (7)

where J is the pseudospin-3/2 operator. It implies that the
Hamiltonian (5) is unitary equivalent to the system of the
pseudospin-3/2 fermions.
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FIG. 3. Band structures of the six-band model. The band structure along the �-�-H -G-N -�-�-�-P - F -H -F -P -D-N line for typical
values of parameters (t,λ) as indicated in the figures. (a) All energy bands are degenerate with respect to up and down spins when λ = 0. The
fourfold degenerate points are marked by magenta circles. (b) The spin degeneracy is resolved by the SOI (λ �= 0) except for the high-symmetry
points (indicated by circles) where the SOI vanishes. Pseudospin-3/2 fermions (red) and Weyl fermions (cyan) emerge at various points.

A comment is in order with respect to the pseudospin-3/2
fermion. It has already been proposed in antiperovskites, where
the effective low-energy Hamiltonian is written as [29,31]

H = mτz + v1τxk · J + v2τxk · J̃. (8)

It is an eight-band model due to the presence of another
pseudospin degrees of freedom τ . Furthermore, this model
has another operator J̃ preserving the cubic symmetry, which
introduces another velocity v2. In general, it is impossible to
obtain an exact energy spectrum of this Hamiltonian. However,
if we set m = 0 and v2 = 0 in this low-energy effective
Hamiltonian, it is reduced to describe a double copy of the
pseudospin-3/2 Weyl fermion, although the lattice structure is
different from the one we are considering.

C. Monopoles

With the use of the eigenfunction, the Berry curvature is
explicitly calculated for each band as [26]

(j ) = i∇ × 〈ψj |∇ψj 〉 = j
k
k
, (9)

where j labels the band with j = −3/2,−1/2,1/2,3/2. In
deriving the formula, we have used the fact ∂ψ

∂r
= 0. Since

ρ(j ) = 1

2π

∫∫∫
∇ · j = 2j = −3,−1,1,3, (10)

the Berry curvature of the band indexed by j describes a
monopole with the monopole charge 2j .

We note that with the use of the Matsubara Green function,

G(k) = [iω − H (k)]−1, (11)

the Berry curvature is rewritten as

i(j ) = 1

6
εiμνρ〈ψj |

[
G

∂

∂kμ

G−1G
∂

∂kν

G−1G
∂

∂kρ

G−1

]
|ψj 〉,

(12)

where i = x,y,z, while μ, ν, ρ run over 0, x, y, z with
k0 = iω being the Matsubara frequency (ω: real). This formula
has a merit that it can be used even in the presence of
interactions [32–34].

IV. WEYL SEMIMETALS

We may also construct the two-band model by way of

H2(k) = P2U
−1H6(k)UP2, (13)

where P2 is the projection operator from the 6 × 6 Hamil-
tonian to the 2 × 2 Hamiltonian containing the two bands
with the eigenenergies 2νt in (3). The low-energy two-
band model derived from this Hamiltonian describes Weyl
fermions,

νH2 = 2t + 2
3λ(kxσx − kyσy − kzσz). (14)

We may verify the presence of monopole doublets ±1 at the
points �, N , H , and ∓1 at the points P , �, where the upper
(lower) component dictates the monopole charge of the upper
(lower) band. It is remarkable that Weyl fermions emerge
naturally in the present three-dimensional tight-binding model.
The Weyl semimetal is topologically protected as far as the
two-band touching is intact.

We note that there also exist two-band touchings at the
points G and �. However, since the effective theory is derived
as

H2 = ±(−t + λkzσz), (15)

they do not describe Weyl semimetals.

A. Critical Weyl semimetals

Two-band touchings emerge also at points which have no
conventional names. See points marked by two green circles in
Fig. 1(a) and Fig. 4(a1). We study the band structure near the
points. Since they locate on the kz axis, we derive the energy
spectrum of the Hamiltonian H4 by setting kx = ky = 0. It is
given up to the order of k2

z as

νE4(0,0,kz) = −t ∓ λkz + t

2
k2
z , − t ∓ λ

3
kz − t

6
k2
z . (16)

We can check that these parabolic curves fit the results
obtained by the six-band tight-binding model very well.
There are two-band crossing points at kz = ±λ/t with the
energy ±(t + λ2/2t): see Fig. 4(a2). In the vicinity of
these points, we derive the two-band model with the use
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FIG. 4. Band structures in the vicinity of the P point. The horizontal axes are the kz and kx axes, while the vertical axis is the energy
E. (a1)–(d1) The band structure without and with magnetic field B in the [001] direction. The value of B is given in the figures. Four-band
touching (red circle) and two two-band touchings (green) are observed. (a2)–(d2) Four-band and two-band touchings occur along the kz axis
(kx = ky = 0). The cross sections of various surfaces are well approximated by parabolic curves. (b3) and (b4) show enlarged portions of the
vicinity of the four-band touching in (b1) and (b2), respectively. Symbols C, I, and II stand for the critical, type-I, and type-II Weyl points,
respectively. The points indicated by II* are identical to those in Figs. 5 and 6. (b2) shows that the four-band touching (red circle) is broken
but the two two-band touchings (green) are not. The critical Weyl points in (a2) turn out to be type-I and type-II Weyl points in (b2). See also
Fig. 5 for details. The pair of the type-II Weyl points (II*) in (c2) and (b4) are annihilated in (d2). See Fig. 6 for details.

of k′
z = kz ∓ λ/t ,

νH±
2 = −t − λ2

2t
∓ 1

3
λk′

z + t

3
k′2
z

+ λ√
3

(
−kxσx + kyσy + 1√

3
k′
zσz

)
± t

3
k′2
z σz. (17)

The energy spectrum along the kz axis is given by

νE±
2 (0,0,k′

z) = −t − λ2

2t
+ t

2k′2
z ,

− t − λ2

2t
∓ 2

3λk′
z − t

6k′2
z . (18)

Interestingly, the linear order of k′
z is absent in the sec-

ond energy spectrum. Consequently, they are critical Weyl
semimetals between the type-I and -II Weyl semimetals.

B. Magnetic-field-induced type-II Weyl semimetals

We apply an external magnetic field (B �= 0) in the [001]
direction. The Hamiltonian is given by adding the term Bσz ⊗
I3 to the Hamiltonian (2), where I3 is the 3 × 3 unit matrix.
There occurs the Zeeman split in the band structure as in Fig. 4.

With respect to the two-band touching (Weyl point), the
only effect of the magnetic field is adding the Zeeman term
Bσz to the Hamiltonian (14). It results in a shift of the Weyl
point in the z direction, but the gap never opens.

On the other hand, the four-band touching is broken under
the magnetic field. This is because it is protected by the time-
reversal symmetry and the cubic symmetry.

Type-II Weyl fermions are produced in two different ways
as the magnetic field is introduced. (i) First, as we remarked
immediately above, there exist critical Weyl points in the
vicinity of the four-band touching point [Figs. 4(a) and 5(a)].
They are turned into the type-I and type-II Weyl points
[Figs. 4(b) and 5(b)]. (ii) Second, as the four-point touching is
broken, there appear six two-point touchings in general as in
Fig. 4(b4), among which we find type-II Weyl points.

We discuss the case (i): see Fig. 5. We study how the
critical Weyl fermions are modified under a magnetic field. The
crossing points are given by kz = ±(λ + √

λ2 + 12Bt)/2t . In
the linear order of B, the additional term to the two-band
model (17) is

νH±
2 = B

(
±1 + t

λ
k′
z − 2t

λ
k′
zσz

)
. (19)

It transforms the two critical Weyl fermions into the type-I
and type-II Weyl fermions. We note that a similar tilting of
Weyl points in the Zeeman field has been discussed for the
pseudospin-1 Weyl fermion in the supplement of Ref. [26].

FIG. 5. Transition from the critical Weyl fermions to the type-I
and type-II Weyl fermions. (a1),(a2) Critical Weyl points. (b1) Type-I
Weyl point. (b2) Type-II Weyl point. They represent bird’s eye views
of the corresponding points in Figs. 4(a2) and 4(b2).
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FIG. 6. Pair annihilation of two type-II Weyl fermions. (a) A
bird’s eye view of the type-II points marked II* in Figs. 4(b2)
and 4(b4). (b) These two Weyl fermions merge at a critical magnetic
field as in Fig. 4(c2). (c) They are annihilated beyond the critical field.

Next we discuss the case (ii): see Fig. 4(b3). In the four-
band linear model, the energy spectrum along the kz axis is
given by −νE = t ± (λkz − B), t ± ( 1

3λkz − B). There are
two-band crossings at kz = 3B/λ. In the vicinity of this point,
the two-band model is given by

H±
2 = ±

[
−t + 2B − 2

3
λk′

z

− λ√
3

(
kxσx − kyσy − 1√

3
k′
zσz

)]
, (20)

with the energy spectrum

E±
2 = ±(−t + 2B − 2

3
λk′

z ± 1

3
λ

√
3k2

x + 3k2
y + k′2

z

)
. (21)

Since the tilt of the Weyl cone is larger than the velocity of the
Weyl cone, they are type-II Weyl points.

We have mentioned the emergence of type-II Weyl points
in two different ways. Interestingly, they are pair annihilated
at B = ±λ2/12t and disappear for |B| > λ2/12t , as shown in
Figs. 6(b) and 6(c), respectively.

V. DISCUSSION

We have shown that the four-band touching is real-
ized in the tricolor cubic lattice. This four-band touching
may be universal in the six-band system with the cubic
symmetry and the time-reversal symmetry. There is the C3v

symmetry along the [111] axis in the cubic lattice. The
C3v symmetry has the irreducible representations (A1, A2,
and E), where the E representation is the two-dimensional
representation. If the E representation is realized, there is
twofold degeneracy at the high-symmetry points such as the �

and P points. Since the � and P points are the time-reversal
invariant momentum, the Kramers degeneracy assures the
four-band touching even when spin-orbit interactions are
included. Our results indicate a possibility of multiband
touching protected by the crystalline and the time-reversal
symmetry.
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