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Activated hopping transport in anisotropic systems at low temperatures

S. Ihnatsenka
Laboratory of Organic Electronics, ITN, Linköping University, SE-60174 Norrköping, Sweden
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Numerical calculations of anisotropic hopping transport based on the resistor network model are presented.
Conductivity is shown to follow the stretched exponential dependence on temperature with exponents increasing
from 1

4 to 1 as the wave functions become anisotropic and their localization length in the direction of charge
transport decreases. For sufficiently strong anisotropy, this results in nearest-neighbor hopping at low temperatures
due to the formation of a single conduction path, which adjusts in the planes where the wave functions overlap
strongly. In the perpendicular direction, charge transport follows variable-range hopping, a behavior that agrees
with experimental data on organic semiconductors.
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I. INTRODUCTION

Electrical conduction in organic semiconductors is typically
interpreted in terms of temperature activated hopping of charge
carriers. A seminal work [1] by Mott showed that the hopping
conductivity follows a stretched exponential dependence on
temperature,

σ = σ0 exp

[
−

(
T0

T

)α]
, (1)

T0 = β

ρ0ξd
, (2)

where α = 1/(1 + d), d is dimensionality, ρ0 is the density
of localized states at the Fermi level, ξ is the isotropic
localization length proportional to the carrier wave function
extent, and β is a numerical coefficient (β = 21.2 and 13.8
for d = 3 and 2, respectively [2]). In the derivation of
(1), the charge transport was assumed to be dominated by
the states within a narrow energy band close to the Fermi
energy, and within that energy band the charge transport
occurs by variable-range hopping (VRH) [2]. It becomes
nearest-neighbor hopping (NNH) for α = 1 with kBT0 being
the activated energy. Equation (1) has been routinely used to
determine dimensionality [3–6], T0, and consequently ξ if ρ0

is known, or vice versa, from a separate measurement [7–10].
Conductivity in a system having structural anisotropy is still
expected to follow (1) with the same α for all directions,
but different σ0, which becomes direction dependent and
related to carrier wave function anisotropy [2]. However,
surprisingly, in experiments by Nardes et al. [7], thin films
of poly(3,4-ethylenedioxythiophene) (PEDOT), which were
prepared by spin coating, showed α = 0.25 for σ measured in
the lateral direction (σ‖) and α = 0.81 for measurement in the
perpendicular (vertical) direction (σ⊥), with a ratio σ‖/σ⊥ =
10–103. This has led to a conclusion about VRH in the lateral
and NNH in the vertical direction, but the microscopic origin
of the coexistence of those two regimes remained an open
question. Another uncertainty exists regarding the fractional
value α = 0.81 that is less than 1 expected for activated
Arrhenius-like transport. Fractional values of α, which do not
fit integral d, are commonly observed [3,6] in conductivity
measurements on organic semiconductors, which further lead
to uncertainties in interpreting the morphology and nature of
charge transport.

The extraction of Mott’s exponent α from the temperature
dependence of conductivity is known to be error prone. The
values extracted deviate commonly from 1

4 , 1
3 , and 1

2 that
are characteristic of three-dimensional (3D), two-dimensional
(2D), and one-dimensional (1D) charge transport, respectively.
This led to conclusions of quasi-dimensional transport with
morphology having no preferred dimensionality [3]. For α >

1/2, a conclusion was drawn about the transition between VRH
and NNH [7]. A common method to obtain α is to plot σ vs
T −α for different α and check whether it falls onto a straight
line. The linearity could be then quantified via the correlation
coefficient [7,9]. Another, more accurate method is based on
computing the reduced activation energy d log(σ )/d log(T ),
for which a slope, when plotted as a function of log(T ), directly
gives α [11].

In this paper, numerical calculations of charge hopping
transport in anisotropic systems are presented with a focus
on an analysis of powers α entering the Mott’s law (1). As
the localized states become progressively anisotropic, σ in a
direction, where the localization length is smaller, follows (1),
with α taking any values between 1

4 and 1 at low T . This
implies changing VRH to NNH as a result of the formation of
a single conduction path that carries most of the current. This is
demonstrated by current visualization and also explained using
the percolation theory. At the same time, σ in a perpendicular
direction retains VRH for any degree of anisotropy, which
is all consistent with experimental data [4,7] on anisotropic
conduction in PEDOT.

II. MODEL

The hopping conduction between localized states in a
disordered system is modeled by a resistor network [12–14].
The resistance between two states i and j is [2]

Rij = kBT

e2�ij

, (3)

where the average tunneling rate accounting for wave function
anisotropy is

�ij = γ0 exp

(
−2

√√√√x2
ij + z2

ij

ξ 2
‖

+y2
ij

ξ 2
⊥

−|Ei−Ej |+|Ei |+|Ej |
2kBT

)
,

(4)
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FIG. 1. Temperature dependence of (a) averaged conductivity and
(b) reduced activation energy. The dotted lines show a fit to Eq. (1)
with α denoted in (b). In an isotropic system, the localized states are
spheres centered in the nodes of a cubic lattice, while the states in an
anisotropic system are oblate spheroids squeezed in the y direction as
shown in the inset in (b). σ in the xz plane (in-plane), where neighbor
states overlap more, and in the y direction (out-of-plane) are shown
for two values of anisotropy: ξ‖/ξ⊥ = 3 and 6. The lattice size is
20 × 20 × 20.

with γ0 being the electron-phonon coupling parameter, ξ‖ (ξ⊥)
is the localization length in the xz plane (y direction) [see the
inset in Fig. 1(b)], (xij , yij , zij ) are the coordinate components
of the distance between states, and Ei is the energy of the ith
state. The exponentially decaying wave functions are charac-
terized by ellipsoids with semi-major and semi-minor axes ξ‖
and ξ⊥ [see the inset in Fig. 1(b)] that are centered on lattice
sites of the cubic crystal that is assumed in the following. In this
way, ξ‖/ξ⊥ describes the degree of anisotropy; for the isotropic
case, ξ‖ = ξ⊥ = ξ , and (4) reduces to a familiar expression for
the tunneling rate [2]. The linear Ohmic regime is assumed in
the following and the chemical potential is set to zero.

Applying the Kirchhoff’s law to the resistor network, the
resistance between two arbitrary nodes can be calculated [15]
from the determinants of the conductance matrix G,

Rij = |Gij |
|Gj | , (5)

where |Gj | is the determinant of G with the j th row and
column removed, and |Gij | is the same determinant but with
the ith and the j th rows and columns removed. It is convenient
to introduce two additional nodes serving as the source (s) and

drain (d) electrodes and then connecting them to all nodes
in the outer planes of the lattice by small resistances. Those
nodes are substituted into (5), which is further used to compute
conductivity,

σ = 1

RsdNl
, (6)

where N is the edge length and l is the constant of a cubic lat-
tice. This method allows one to account for resistances between
all pairs of nodes in the system and thus current branching
without any cutoff, which is more accurate than commonly
implemented methods [14] and also the critical subnetwork
approximation [16] used in the percolation approach [17].
Note that a weak T dependence due to the preexponential
factor in (3) is explicitly taken into account. To visualize the
currents, the system of equations I = GV is solved for a small
source-to-drain voltage, eVsd � kBT [14].

In the following, the y axis is assumed to be a direction in
which the anisotropic localized states are squeezed [Fig. 1(b)],
and if the source and drain electrodes align with the y axis, it
is said to be out-of-plane transport. If the electrodes are in the
x (or z) direction, transport is denoted as in-plane.

III. RESULTS AND DISCUSSION

To analyze the influence of structural anisotropy on charge
transport, the numerical calculations are performed for a
system with parameters typical for organic semiconductors
[18]. In particular, ξ = ξ‖ is chosen to be equal to l, a
value large enough not to bring the system into a strong
localization (insulating) regime. The density of states (DOS)
is taken to be uniform (constant) with a width W (measured
in units of K) that establishes an energy scale. The disorder
is assumed to be only energetic; the effect of positional
disorder will be commented on later. The system size for the
results presented below is 20 × 20 × 20. This allows one to
perform averaging over 10 000 different disorder realizations
within moderate computational resources. The calculations
were also performed for different sizes and ξ with similar
results obtained.

Figure 1 shows the temperature dependence of conductivity
for different morphologies, as the localization states change
from isotropic to anisotropic, for which the transport direction
is either in-plane or out-of-plane. There, several transport
regimes can be traced, which are easy to distinguish by
slopes to d log(σ )/d log(T ) in Fig. 1(b). At high temperatures
(Tc > 0.1W ), conductivity follows activated behavior with
T0/W ≈ 0.1. This agrees with the traditional hopping theory
[2] that predicts activated transport for

Tc > 0.29Wρ
1/3
0 ξ. (7)

At lower temperatures, VRH is observed with σ described
by the Mott’s law (1). For the isotropic structure, α = 1

4
and T0/W = 18 are derived, while α = 1

3 and T0/W = 7
are derived for the in-plane conduction, implying β = 18 and
β = 7 for 3D and 2D hopping, respectively, for ξ = l. These
values agree well with known values [2], which, along with Tc

obtained above, justify the validity of the method implemented.
While isotropic and in-plane hopping conduction demonstrate
an expected behavior, out-of-plane conduction surprisingly
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FIG. 2. Currents in (a) isotropic and (b) anisotropic ξ‖/ξ⊥ = 6 structures mapped onto a view stretched along the y axis: For better
visualization, the distance between the xz planes is intentionally increased after calculation has been done; the original lattice is cubic. The
dots mark the hopping sites, with the dot size being inversely proportional to the absolute value of energy of the localized state. Gray pads are
the source and drain electrodes. Both structures have a 15 × 15 × 15 lattice size and an identical energetic disorder. T/W = 0.001.

reveals a reentrance to activated behavior at low T as the
anisotropy degree of the localized states becomes stronger.
For ξ‖/ξ⊥ = 6, α = 0.7, and it approaches 1 as the ratio ξ‖/ξ⊥
increases further.

To understand this, Fig. 2 compares the currents flowing
through isotropic and anisotropic (ξ‖/ξ⊥ = 6) structures at
T/W = 0.001. Both structures have an identical energetic
disorder. For the former, the current spans uniformly over the
interior, and the conduction path acquires different distances,
consistent with VRH theory [2]. However, the anisotropic
structure in Fig. 2(b) reveals nearest-neighbor interplane hop-
ping along the transport direction. Conduction is dominated
by a single path that consists of a chain of resistors connecting
neighbor planes in a series. That path carries even more current
(less branching) when compared to the isotropic structure.

Reentrance to the activation regime at low T for out-of-
plane transport can be also understood from the percolation
theory with the following argument. In the percolation theory
[2,16], a critical subnetwork is constructed from bonds
(resistors) that satisfy the inequality

rij

rmax
+ |Ei | + |Ej | + |Ei − Ej |

2Emax
< 1, (8)

where

Emax = kBT ln

(
γ0

�c

)
(9)

and

r2
max = x2 + z2

r2
max‖

+ y2

r2
max⊥

(10)

bounds an ellipsoid (oblate spheroid) with semi-major and
semi-minor axes,

rmax‖ = ξ‖
2

ln
γ0

�c

, (11)

rmax⊥ = ξ⊥
2

ln
γ0

�c

. (12)

�c is chosen such that the set of connected bonds is just enough
for the subnetwork to span through the device, from the source
to drain electrodes. This percolation criterion is satisfied at

nr2
max‖rmax⊥ = vc, (13)

where n = 2ρ0Emax is the total number of states per unit
volume with |Ei | < Emax. vc is a dimensionless constant
related to the critical density of the percolation problem.
For a given site i, the factor r2

max‖rmax⊥ allows all the states
contained inside the ellipsoid centered at i to create a bond.
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FIG. 3. Probability distribution function of conductance fluctua-
tions for T/W = 0.001. ξ‖/ξ⊥ = 6 for in-plane and out-of-plane σ .

Note that the elliptical shape of rmax results from the wave
function anisotropy in (4). For the isotropic case, this ellipsoid
transforms into a sphere of radius rmax, and the coordinate
terms in (13) are replaced by r3

max [16]. If the localized states
are strongly anisotropic ξ‖/ξ⊥ � 1 and positional disorder is
weak 	r < ξ⊥, the states in the y direction, which fall inside
the ellipsoid (10) and are thus allowed to create a bond at
the percolation threshold, belong to the nearest-neighbor xz

planes. This allows one to replace rmax⊥ in (13) by the lattice
constant l, which is the minimal bond length at percolation:

ln

(
�c

γ0

)
≈ vc

2ρ0kBT ξ 2
‖ l

. (14)

Since y is the transport direction and the xz tails of the wave
functions from different planes do not overlap, rmax‖ ≈ ξ‖.
Within the xz planes there are many strongly coupled states
available to adjust the subnetwork such that a pair of states from
the nearest-neighbor planes with the smallest energy difference
is to be chosen to form a bond. For an electron traversing
through the system this means that it is energetically favorable
to hop in the xz plane until the next vacant site on the other
plane becomes closest in energy. From (14), an activated T

dependence of conductivity (σ ∝ �c) is obtained.
Additional information on the conduction mechanism in

the activation regime can be obtained from the probability dis-
tribution function (PDF) of the conductance fluctuations [19].
The hopping transport generally implies strong fluctuations as
any external parameter (e.g., the chemical potential) varies
because of an extremely broad distribution of elementary
resistors composing the network [20]. In the activated regime,
however, fluctuations are expected to be smaller than those in
the VRH regime, since the bond length does not fluctuate. To
check whether this holds for a low-T activated regime, Fig. 3
shows PDF of the ln σ fluctuation for isotropic and anisotropic
structures at T/W = 0.001. In the activated (NNH) regime,
σ reveals strong fluctuations, comparable in magnitude with
fluctuations in the VRH regime. This might be understood to
be a result of an additional constraint imposed by the wave
function anisotropy (anisotropic breaks) on the current path,
where this path has to adjust in a way shown in Fig. 2(b). Note
that the geometrical constraint due to reducing dimensionality

generally enhances fluctuations (see Ref. [19] and references
therein), and leads ultimately to large non-self-averaging
fluctuations in 1D [21].

PDF is asymmetric and skewed to the right, which indicates
that the samples with large σ dominate the ensemble averaged
σ . As N → ∞, fluctuations decrease (not shown) and become
negligible compared to the average value; PDF approaches
a Gaussian distribution, in agreement with the central limit
theorem. For isotropic and in-plane transport, PDF is already
closely approximated by a Gaussian, which indicates that N

chosen is sufficiently large.
Relevant results were obtained by Nardes et al. [4,7] in

experiments on anisotropic PEDOT films where coexisting
activated and VRH transport regimes were found. Their
samples were prepared by spin coating and confirmed by
scanning tunnel microscopy to contain elongated PEDOT
grains aligned in horizontal layers and separated by poly(4-
styrenesulfonate) (PSS) lamellas [4,9]. PEDOT grains possess
good electrical conduction while PSS acts as an insulating
barrier [3,4,7,9,22]. Experimentally [7] extracted in-plane
T0 = 3.2 × 105 K exceeds out-of-plane T0 = 70 K, which
is consistent with the result obtained above. Additional
non-Ohmic measurements revealed the characteristic hopping
length ≈1 nm for the out-of-plane direction. This agrees with
the plane-to-plane separation of PEDOT layers obtained for
relaxed geometries in the first-principles calculations [23].
Thus, activated out-of-plane conduction and low values of
σ⊥ (∼10−6 S/cm) in experiment might be related to a strong
charge localization and short-range order in the PEDOT layer
across the thin film [4,7]. In-plane VRH in the measurement
of the same sample, along with a larger σ‖ (∼10−4 S/cm),
might be explained by weaker localization, where the wave
function extends along the polymer backbone and couples
strongly with another state in a neighbor polymer unit. Note
that, in experiment, α = 1

4 , indicating 3D VRH, while the
above theoretical results predict 2D. This might be attributed to
the fact that for in-plane electrical measurements the electrodes
were placed 1 mm apart from each other, thus including many
(∼106) localized states composing a conductive network that is
unlikely to maintain long-range order, in contrast to theoretical
results where the long-range order (no positional disorder)
was realized. A quantitative agreement with experiment [4,7]
might be achieved for other parameters: kBW = 0.25–1.25
eV, which is of the order of the band gap of pristine PEDOT
[23]; γ0 = 1013 s−1, which is a typical value for organic
semiconductors [18]; l = 1 nm.

Finally, several comments are as follows. First, the results
presented above were obtained for constant DOS, which
might be a poor approximation for DOS in real polymeric
systems [24]. Equation (1) was derived while assuming that
transport occurs in a narrow energy band where DOS can
be regarded as a constant for sufficiently low T [1,2]. For
sufficiently low T , (1) is still expected to hold true, even
for DOS of strongly varying Gaussian shape [25]. Because
an overwhelming number of experiments supports Mott’s
law (1), the above results are expected to stay qualitatively
the same also for different DOS shapes fulfilled with a low
T condition. Second, if positional disorder is added to the
modeling with a deviation of 80% relative to l [26], the
activated regime disappears, consistent with the traditional
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VRH theory [2]. In this case of strong positional disorder,
charge carriers propagate zigzaglike through the network.
Third, to reproduce the absolute values of σ in Fig. 2, with
arbitrary units converting to S/cm, γ0 = 1013 s−1 should be
used. Fourth, the above theory does not include a Coulomb
interaction that is known [27] to create a soft gap in DOS near
the Fermi energy and make α = 1

2 in (1). Electron interactions
are expected to become important at low T , below the range
where VRH occurs, and also if screening is not strong. This
effect might be a topic of a separate study. Fifth, the hopping
rates (4) assume electrons or holes as charge carriers. These
rates are modified when polaron effects become important
[28], which also deserves a separate study.

In conclusion, numerical calculations of hopping conduc-
tion have shown that both activated temperature dependence
and stretched exponential dependence of the Mott’s law
(1) should be observable in anisotropic structures at low

temperatures. This implies nearest-neighbor and variable-
range hopping for different transport directions. Both are
characterized by conductance fluctuations of comparable
amplitudes. Activated behavior (nearest-neighbor hopping) is
a result of a single conduction path formation that adjusts in
the planes where the wave functions strongly overlap. This
has been demonstrated by current path visualization and using
the percolation theory. These findings provide a microscopic
explanation of anisotropic hopping conduction in PEDOT thin
films observed by Nardes et al. [4,7].
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