
PHYSICAL REVIEW B 94, 195201 (2016)

Nonlinear optical coefficients of wurtzite-type α-GaN determined by Raman spectroscopy
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Raman scattering on phonons in GaN with wurtzite structure (α-GaN) is used to determine the coefficients of
second-harmonic generation (SHG) and the linear electro-optic effect (LEO) in the region of optical transparency
for excitations below the band gap. For wurtzite-type crystals, the symmetry requires that three SHG coefficients
d31, d33, and d24 and three LEO coefficients r31, r33, and r42 be considered. In this work, the dependence of these
SHG and LEO coefficients on the Raman scattering intensities of the polar transverse optical (TO) and longitudinal
optical (LO) phonon modes in wurtzite-type crystals and their corresponding Faust-Henry coefficients is derived.
In the case of GaN, the obtained SHG coefficients are |d31| = 2.46 pm/V, |d33| = 3.97 pm/V, and |d24| =
2.48 pm/V, which agree well with results measured by other methods. Also, all three LEO coefficients of GaN
have been determined: |rS

13| = 0.72 pm/V, |rS
33| = 1.31 pm/V, and |rS

42| = 0.38 pm/V. Contrary to previous
reports, our results indicate an important contribution of the ionic lattice displacements to the linear electro-optic
effect. The ratios of the three SHG coefficients or the three LEO coefficients, which correspond to different
nonlinear susceptibility tensor elements, depend on the relative intensities of the polar TO and LO phonon modes
connected with different Raman tensor elements.
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I. INTRODUCTION

GaN has attracted considerable interest as material for many
electronic and optoelectronic devices with short-wavelength
and high-power requirements. Particularly, the consumer
electronics segment with light-emitting diode (LED)-based
display and LED-based lighting as well as the communication
segment with power electronics and switching equipment drive
the growth of the global market. The properties of α-GaN
make it promising as nonlinear optical material for applications
using second-harmonic generation (SHG) or the linear electro-
optic effect (LEO). Efficient frequency conversion requires
a constant phase relationship among the interacting optical
waves over the optical path. In general, the phase-matching
condition for the fundamental and second-harmonic wave is
not naturally satisfied due to the dispersion of the refractive
index. In α-GaN bulk, therefore, the SHG efficiency is too
small to be of practical interest [1]. A way to circumvent
this is to perform quasiphase matching (QPM) with structures
periodically grown with alternating polarities along the optical
path. In the case of a one-dimensional (1D) α-GaN photonic
crystal, the SHG response was 5000 times greater than
for unstructured epilayers [2]. For high-power applications,
thicker periodically oriented layers are necessary. Methods
have been shown to grow them not on sapphire but on GaN
substrates [3]. Because of its large transparency window,
α-GaN has the potential as a nonlinear frequency converter
in a large frequency range. For orientation-patterned GaAs, it
could be already shown to have optical parametric oscillation
(OPO) with watt-level output in the mid-IR range [4]. Details
of such epitaxially grown structures for QPM applications
can be found, for example, in Ref. [5]. The design and
analysis of such devices requires accurate values of the linear
and nonlinear optical responses. There have been several
experimental and theoretical studies for coefficients of the
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second-harmonic generation (SHG) in α-GaN. In contrast,
for the electro-optic effect, there exist only two experimental
studies [6,7] with considerable divergences. Shokhovets et al.
[7] measured it under unclamped conditions and reported only
the coefficient r31. In both cases the results were influenced by
the piezoelectric effect and acoustic resonances. Long et al.
[6] measured the coefficients r33 and r31 and concluded that
the linear electro-optic response is predominantly electronic
in origin, based on the measured SHG coefficients χ

(2)
33 =

−20 ± 6 pm/V and χ
(2)
31 = 10 ± 3 pm/V. However, recently

measured values of these coefficients are considerably lower
(see Table II; dE

33 and dE
31 correspond to χ

(2)
33 /2 and χ

(2)
31 /2,

respectively). Therefore, the assumption of predominantly
electronic origin of the LEO coefficient is questionable.

Whereas the first experimental investigations were re-
stricted to thin GaN layers on heterosubstrates, improvements
in material quality enable better characterization of the
nonlinear optical response. In addition to the conventionally
applied methods, Raman scattering can be used to determine
the SHG and LEO coefficients below the band gap as shown
by Johnston and Kaminow [8]. In binary semiconductors with
zincblende structure, one SHG and one LEO coefficient exist;
however, for binary semiconductors with wurtzite structure,
the symmetry requires three coefficients for each case. In
this work, we derive expressions for the six nonlinear optical
coefficients as function of the Raman scattering intensity of
the polar phonons of A1 and E1 symmetry in wurtzite-type
crystals and determine them in the case of α-GaN.

II. THEORY

A. Induced nonlinear polarization

The induced polarization in the material can be written as

�P = ε0χ
(1) �E + ε0χ

(2) �E2 + · · · . (1)

In the weak-field approximation, the induced polarization is
linearly related to the applied electric field, where ε0 denotes
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the electric permittivity in vacuum and χ (1) refers to the
susceptibility of the medium. Nonlinearity becomes manifest
at higher field amplitudes. The susceptibility coefficients χ (1)

and χ (2) are tensors of second (i.e., χ
(1)
ij ) and third order (i.e.,

χ
(2)
ijk), respectively.

In the case of second-harmonic generation (SHG), also
called frequency doubling, two photons of the same frequency
ω interact in the nonlinear optical material to generate new
photons with frequency 2ω: χ (2)(−2ω; ω,ω). For the linear
electro-optic (LEO) effect, also called the Pockels effect, with
χ (2)(−ω; 0,ω) the nonlinear response is caused by an electric
field with zero or very low frequency. This field induces
variation of the refractive index, resulting in a corresponding
variation of the intensity or phase of an optical field with
frequency ω that is transmitted through or reflected by the
electrically activated sample. The frequency ω in the case
of constant strain (i.e., clamped case) is well above and in
the case of constant stress (i.e., free case) is well below the
acoustic resonances of the sample. In comparison with the fre-
quency conversion, no phase-matching requirement between
fundamental and generated fields exists as an advantage of the
LEO effect, since the frequencies of the two optical waves are
identical.

The nonlinear susceptibility tensor χ
(2)
ijk is also incorporated

in the equations describing the Raman scattering intensity of
phonons. The macroscopic electric field that accompanies the
polar lattice vibrations provides a source of modulation of the
susceptibility of the crystal. The coefficients responsible for
the Raman scattering process depend on contributions from the
displacements of charged ions and electrons relative to their
ionic nuclei. For crystals with wurtzite structure or of higher
symmetry, they can be expressed as [9,10]

χ
(2)
ijk =

√
ε0ε∞,k

(
ω2

LO,k − ω2
TO,k

)
ω2

TO,k − ω2

(
∂χ

(1)
ij

∂Qk

)
+

(
∂χ

(1)
ij

∂Ek

)
, (2)

where k runs from 1 to 3 and denotes the axes x,y,z. ε∞,k refers
to the high-frequency relative permittivity. The frequencies
of the longitudinal (transverse) optical phonon modes are
indicated by ωLO,k (ωTO,k). The ionic and the electronic
contribution are related to the susceptibility derivatives with
respect to the normal coordinate Qk and the electric field Ek ,
respectively. Phonon damping was neglected. For frequencies
ω much larger than the phonon frequency ωTO,k , the ionic
contribution in Eq. (2) will be very small in comparison with
the electronic one. Direct measurements of SHG coefficients
have been carried out with exciting light in this frequency
range. LEO coefficients have been measured directly with
frequencies ω much smaller than the phonon frequencies
ωTO,k .

B. Nonlinear optical coefficients

The Raman scattering efficiencies of the polar transverse
optical (TO) and longitudinal optical (LO) phonon modes
in piezoelectric crystals are correlated with the SHG and
LEO coefficients. The so-called nonlinear optical coefficient
dEO

kji of the Pockels effect for crystals with orthorhombic or
higher symmetry, especially with wurtzite structure, where the
relative permittivity tensor is diagonal, can be written [9,11]

as

dEO
kji = dI

kji + dE
kji = −εiiεjj r

S
ijk/4. (3)

There are two contributions, where dI
kji denote the indirect ones

originating from ionic lattice displacements accompanying
polar optical phonons and dE

kji indicate the pure electronic
ones. The so-called electro-optic coefficients of the Pockels
effect are denominated by rS

ijk . The superscript S refers to
the electro-optic coefficients in the case of constant strain
(i.e., clamped). The notation of the indices follows Nye [12].
Electro-optic coefficients are measured in the transparent
region of the spectrum with photon energies below the
band gap. εii denotes the relative permittivity at the optical
frequency in the direction of the axis i, where i runs from
1 to 3.

The ratios of electronic and ionic contributions are de-
scribed by the Faust-Henry coefficients CFH

kji :

CFH
kji = dI

kji/d
E
kji . (4)

They can be determined based on the ratio of the measured
Raman scattering efficiencies of the TO and LO phonon modes
of the appropriate symmetry. The electronic contribution
corresponds to the susceptibility derivative with respect to the
electric field

dE
kji = 1

4

(
∂χ

(1)
ij

∂Ek

)
(5)

and is connected with the second-harmonic-generation coef-
ficient dSHG

kji = dE
kji . The ionic contribution is related to the

susceptibility derivative with respect to the normal coordinate
Qk and can be expressed as

dI
kji =

√
ε0ε∞,k

(
ω2

LO,k − ω2
TO,k

)
4 ω2

TO,k

(
∂χ

(1)
ij

∂Qk

)
. (6)

The derivative of the susceptibility tensor with respect to
the normal coordinate Qk is related to the Raman scattering
efficiency [13] of the transverse optical phonon modes.

1. Zincblende structure

At first the introduced formalism is applied in the case
of zincblende-type crystals. Binary semiconductors with
zincblende structure have one doubly degenerate TO phonon
mode and one LO phonon mode at the � point of the Brillouin
zone. In this case, we have to consider only one SHG and one
LEO coefficient, and Eq. (3) reduces to

dEO
14 = dI

14 + dE
14 = (1 + CFH) dE

14 = −ε2rS
41/4, (7)

where dEO
14 is the nonlinear optical coefficient of the Pockels

effect with the ionic contribution dI
14 and the electronic

contribution dE
14. The Faust-Henry coefficient describes their

ratio CFH = dI
14/d

E
14 according to Eq. (4). ε indicates the

relative permittivity at the optical frequency.
We consider GaAs as a first example. Values for the

coefficients rS
41 and dE

14 were already calculated from Raman
scattering efficiencies by Johnston and Kaminow [8]. Here, we
use more recent experimental results in order to verify Eq. (7).
Reported values of the LEO coefficient rS

41 measured with
different samples and/or wavelengths below the band gap are
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−1.54 and −1.50 pm/V (Ref. [14]), −1.68 and −1.72 pm/V
(Ref. [15]), and −1.33, −1.41, −1.46, and −1.53 pm/V
(Ref. [16]). Using rS

41 = −1.50 pm/V, the reported value of the
Faust-Henry coefficient CFH = −0.51 (Ref. [16]) measured
in the transparent region, and n = √

ε = 3.38 we obtain from
Eq. (7) dE

14 = 100 pm/V. This is in the right order of magnitude
of several measured values of the SHG coefficient: 100 pm/V
(Ref. [17]), 120 pm/V (Ref. [18]), 99 pm/V (Ref. [16]), and
83 pm/V (Ref. [19]) as revised by Roberts [20].

In the case of GaP as a second example with zincblende
structure, reported values are rS

41 = −1.1 pm/V, n = √
ε =

3.0 (Ref. [21]), and CFH = −0.53 (Ref. [22]). Using Eq. (7)
we obtain dE

14 = 47 pm/V, which can be compared with
experimental values of the SHG coefficient: dSHG

14 = 45 pm/V
(Ref. [19]) and 37 pm/V (Ref. [20]).

2. Wurtzite structure

α-GaN with wurtzite structure belongs to the space group
C4

6v . ε11 = ε22 = ε⊥ describes the relative permittivity at the
optical frequency in the optically isotropic (x,y) plane and
ε33 = ε‖ refers to the relative permittivity in the z direction
parallel to the c axis of the uniaxial crystal. The twofold
degenerate polar phonon mode with symmetry E1 vibrates
in the (x,y) plane with frequencies ωTO,E1 and ωLO,E1. The
corresponding normal coordinates are Q1 and Q2. Since the
phonon mode with symmetry A1 causes lattice displacements
parallel to the z axis with the frequencies ωTO,A1 and ωLO,A1,
the normal coordinate is Q3.

According to Claus et al. [23] nonzero Raman tensor
elements of the transverse optical phonon modes are in the
case of α-GaN

∂χ
(1)
13

∂Q1
= ∂χ

(1)
31

∂Q1
= ∂χ

(1)
23

∂Q2
= ∂χ

(1)
32

∂Q2
= cTO,

(8)
∂χ

(1)
11

∂Q3
= ∂χ

(1)
22

∂Q3
= aTO,

∂χ
(1)
33

∂Q3
= bTO.

The absolute values of the three different tensor elements
aTO, bTO, and cTO can be determined by measurements of
the corresponding Raman scattering efficiencies Ia and Ib

of the TO phonon modes with A1 symmetry and Ic of
the TO phonon modes with E1 symmetry using appropriate
scattering geometries as well as polarization configurations.
The susceptibility tensor derivative with respect to the normal
coordinate Qk in Eq. (8) should be expressed in units of
kg−1/2 m1/2.

According to the symmetry, we have to consider three linear
electro-optic coefficients r13, r33, r42 and three nonlinear SHG
coefficients d31, d33, d24. Here, we use the notation introduced
by Nye [12] with r113 = r13, r333 = r33, r232 = r42, d311 = d31,
d333 = d33, d232 = d24:

dEO
31 = dI

31 + dE
31 = (

1 + CFH
a

)
dE

31 = −ε2
‖r

S
13/4,

dEO
33 = dI

33 + dE
33 = (

1 + CFH
b

)
dE

33 = −ε2
⊥rS

33/4, (9)

dEO
24 = dI

24 + dE
24 = (

1 + CFH
c

)
dE

24 = −ε‖ε⊥rS
42/4,

where the Faust-Henry coefficients CFH
a and CFH

b are connected
with the optical phonon mode of A1 symmetry and its assigned
Raman tensor elements a and b. Accordingly, CFH

c is associated

with the phonon mode of E1 symmetry. Their values were
obtained from measured Raman scattering efficiencies of cor-
responding longitudinal and transverse optical phonon modes
which are accessible in appropriate scattering configurations
[10].

Using Eqs. (3)–(6), (8), and (9), the nonlinear coefficients
can be determined as described by

dI
31 = α‖aTO, dE

31 = α‖aTO/CFH
a ,

rS
13 = − 4α‖aTO

(
1 + 1/CFH

a

)
/ε2

‖,

dI
33 = α‖bTO, dE

33 = α‖bTO/CFH
b ,

(10)
rS

33 = − 4α‖bTO
(
1 + 1/CFH

b

)
/ε2

⊥,

dI
24 = α⊥cTO, dE

24 = α⊥cTO/CFH
c ,

rS
42 = − 4α⊥cTO

(
1 + 1/CFH

c

)
/ε‖ε⊥,

with the following abbreviations:

α‖ =
√

ε0ε∞,‖
(
ω2

LO,A1 − ω2
TO,A1

)
4 ω2

TO,A1

,

(11)

α⊥ =
√

ε0ε∞,⊥
(
ω2

LO,E1 − ω2
TO,E1

)
4 ω2

TO,E1

.

Thus, in order to obtain the LEO and SHG coefficients
directly from Raman spectroscopic investigations, in addition
to the determination of Faust-Henry coefficients, the measure-
ment of the Raman scattering efficiency of the transverse
optical Raman modes is necessary. This will be shown in
Sec. III.

III. EXPERIMENTAL RESULTS

A. Raman scattering efficiencies

The determination of the nonlinear optical coefficients of
α-GaN using Eq. (10) requires data of Raman tensor elements
aTO, bTO, and cTO and corresponding Faust-Henry coefficients
CFH

a , CFH
b , and CFH

c . In this work, we use values published by
Irmer et al. [10]. The Raman tensor elements given therein
are normalized with respect to that of the strong nonpolar
E2,high phonon at 567.6 cm−1 which was set d = 1. For the
measurements, scattering configurations were realized, in such
a way that both (i) TO phonons or LO phonons and (ii) the
E2,high Raman mode as an inner standard were allowed. As an
example in Fig. 1 Raman spectra recorded in backscattering
geometry are shown.

From these data, the relative intensities of the TOA1,a

and LOA1,a phonon modes were deduced. Backscattering
measurements can also be used to ascertain the relative
intensities of TOA1,b and TOE1,c phonon modes. The intensity
ratio of the LOE1,c and TOE1,c phonons is accessible in
90◦ scattering geometry. The determination of the LOA1,b to
TOA1,a intensity ratio requires near 0◦ scattering geometry. For
more details we refer to our previous work [10]. The relative
Raman tensor elements which were deduced from the relative
intensities are included in Table I.

However, the Raman tensor elements aTO, bTO, and cTO

included in Eq. (10) are absolute values. Therefore, we
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FIG. 1. Normalized Raman spectra with respect to the intensity
of the E2,high Raman mode and the observable TO and LO phonon
modes of A1 symmetry, which are connected with the Raman tensor
elements aTO and aLO. The spectra were excited with the 514.5-
nm line of an Ar+ laser and recorded in backscattering geometry at
room temperature. The polarization configurations x(yy)x̄ and z(yy)z̄
according to Porto’s notation [24] were realized.

determined the absolute Raman efficiency of the E2,high phonon
on the same crystal as used in Ref. [10]. The connection
of the Raman scattering efficiency of the nonpolar twofold
degenerate E2 phonon mode with its assigned Raman tensor

elements is given by

IE2 = ∂SE2

∂�
=ω4

S,E2�(nE2 + 1)

32π2c4ωE2
· ωL

ωS,E2

∑
i=1,2

|�eS · R̃E2,i · �eL|2.

(12)

In this equation IE2 indicates the Raman scattering efficiency
in units of m−1 sr−1 as the ratio of scattered to incident
power per unit solid angle � and scattering length path.
Its relation to the differential Raman cross section ∂σ/∂�

is ∂S/∂� = (1/V ) ∂σ/∂�, where V denotes the effective
scattering volume [13]. ωL and ωS,E2 refer to the frequencies
of the exciting laser light and the scattered light, respectively.
nE2 = 1/[exp(�ωE2/kT ) − 1] is the Bose-Einstein factor. The
factor ωL/ωS,E2 takes into account the registration of the
Raman spectrum by means of photon counting. The polar-
izations of the incident and scattered light are described by
the unit vectors �eL and �eS. According to Claus et al. [23]
nonzero Raman tensor elements are (RE2,1)12 = (RE2,1)21 =
−d, (RE2,2)11 = d, (RE2,2)22 = −d.

The absolute Raman scattering efficiency of the E2,high

Raman mode was determined by the external standard
method where intensities of sample and reference standard
are recorded consecutively under identical conditions. As
reference standard we have chosen CCl4 where absolute
scattering efficiencies are available in literature.

The Raman spectra were recorded in the macro chamber
of a T64000 Raman spectrometer from Horiba/Jobin Yvon
in 90◦ scattering geometry. The spectra were excited with
the 514.5-nm line of an Ar+ laser at power level of about
50 mW before the sample. The scattering configuration is
shown in Fig. 2. The exciting linearly polarized laser beam
focused by a laser objective is directed along the x axis of
the laboratory coordinate system and enters the surface of the
prismatic sample or the prismatic liquid cell. The scattered
light falls within the solid angle ϑ onto the entrance lens.
It should be noted that due to the refraction of the scattered
light at the boundary of sample-air the effective solid angle
ϑsample for scattered light passing the entrance lens is smaller
inside the sample. This fact is depicted in more detail in the
upper part of Fig. 2. Then, the scattered light originating from
the focus plane of the entrance lens passes an analyzer and
a quartz wave plate which rotates the polarization axis in the

TABLE I. Scattering cross sections and Raman tensor elements of the E2,high Raman mode and the polar phonon modes of α-GaN. The
errors of the adapted relative values [10] amounts to about 3%; the error of the absolute values is about 20%.

Raman Scattering cross section Raman tensor element

Raman shift Absolute Absolute
mode (cm−1) Relative (10−5m−1 sr−1) Relative (108 kg−1/2 m1/2)

E2,high 567.6 1 3.2 d2 = 1 |d| = 6.86
TOA1,a 531.8 0.63 2.02 a2

TO/d2 = 0.58 |aTO| = 5.23
LOA1,a 734 0.66 2.11 a2

LO/d2 = 0.92 |aLO| = 6.58
TOA1,b 531.8 1.98 6.34 b2

TO/d2 = 1.82 |bTO| = 9.26
LOA1,b 734 2.00 6.40 b2

LO/d2 = 2.78 |bLO| = 11.44
TOE1,c 558.8 0.35 1.12 c2

TO/d2 = 0.34 |cTO| = 4.00
LOE1,c 741 0.43 1.38 c2

LO/d2 = 0.61 |cLO| = 5.36
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y
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6

ϑsampleϑ

x

x

FIG. 2. 90◦ scattering configuration for the determination of the
absolute Raman scattering efficiency. The exciting laser beam was
directed along the x axis of the laboratory coordinate system. (1)
GaN crystal or prismatic liquid cell, (2) entrance lens, (3) analyzer,
(4) quartz plate, rotatable (5) lens, and (6) spectrometer entrance
slit. Due to the refraction of the scattered light at the boundary of
sample-air, the effective solid angle ϑsample for scattered light passing
the entrance lens is smaller inside the sample (upper part).

position for which the spectrometer throughput is optimized.
After passing the monochromator in subtractive mode, the
scattered light was detected by a charge coupled device (CCD).
The sample holder was covered with a mask permitting only
light scattered from the central position of the sample or cell
to pass onto the spectrometer so that reflected and other stray
light have been effectively excluded. Corrections were made
for the reflectivity of the crystal and the liquid to both the
incident and the scattered light. The length of the effective
light path entering the spectrometer was controlled with masks
in the plane of the entrance slits and could be observed with a
periscope.

The dimensions of the α-GaN single crystal were about
5 × 5 × 1 mm. The GaN crystal was grown by hydride vapor
phase epitaxy (HVPE) along the c axis. In our setup, its c axis
is oriented parallel to the z axis of the laboratory coordinate
system. In Fig. 3 room-temperature Raman spectra recorded
in 90◦ scattering geometry as indicated by the notation x(yy)z
and x(yx)z are shown. In both polarization configurations, the
Raman intensity of the E2,high phonon mode proportional to∑

i=1,2 |�eS · R̃E2,i · �eL|2 = d2 is obtained (see Fig. 3).
Using 90◦ scattering geometry the transferred phonon wave

vector includes an angle of θ = 45◦ to the optical c axis of
the crystal. Whereas symmetry and frequency of the nonpolar
E2,high Raman mode are not influenced by the angle θ , for the
polar TO and LO phonon modes directional dispersion occurs
as indicated by the inset of Fig. 3 in the case of the TO branches.
For θ = 0◦ polar phonon modes are observed at ωLO,A1 =
734 cm−1 and at ωTO,E1 = 558.8 cm−1 with the wave vector
parallel to the c axis. In the case of θ = 90◦ with the transferred
wave vector lying in the optically isotropic (x,y) plane the
phonon frequencies ωLO,E1 = 741 cm−1, ωTO,A1 = 531.8 cm−1,
and ωTO,E1 = 558.8 cm−1 are observable [25]. In the limit of
θ = 0◦ and θ = 90◦, the polar phonon modes have defined
symmetry A1 or E1. This is not the case for intermediate angles

520 540 560 580
Raman shift (cm-1)

R
am

an
 in

te
ns

ity
 (

ar
b.

 u
ni

ts
)

0 15 30 45 60 75 90

θ (°)

530

540

550

560

570

ω
 (c

m
-1
)

x(yy)z

x(yx)z

545
558

545 558

567.6
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TOe.o.
TOo.

E2,high

E1(TO)

A1(TO)

TOe.o.

TOo.

FIG. 3. Raman spectra of the E2,high phonon mode recorded in
scattering configurations x(yy)z and x(yx)z. The inset shows the
frequency dependence of the extraordinary TO phonon mode (TOe.o.)
on the angle θ between the transferred wave vector and the c axis of
the crystal.

θ for the extraordinary branches (i.e., TOe.o. and LOe.o.) whose
frequencies are changed continuously according to A1(LO) →
E1(LO) and E1(TO) → A1(TO) while the LO or TO character
is maintained. For the third polar mode, the ordinary one (i.e.,
TOo.), E1(TO) → E1(TO) is observed and the frequency does
not depend on the angle θ .

The area of the E2,high phonon peak was ascertained in
each Raman spectrum by deconvolution of the spectra using
Gaussian-Lorentzian mixed functions for the E2,high phonon,
the extraordinary TO phonon at 545 cm−1, and the ordinary
E1(TO) phonon at 558.8 cm−1 (see Fig. 3). In the case
of CCl4 we decided to analyze the Raman intensity of the
totally polarized band at 459 cm−1 which is close to the
wave number of the E2,high phonon mode. Thus, the influence
of the spectral dependence of the spectrometer and detector
was minimized. The reported absolute Raman scattering
efficiency I

CCl4
459 = 1.10 × 10−5 m−1 sr−1 was taken from

Ref. [26].
Comparing both, the area of the E2,high phonon peak

and that one of the CCl4 Raman band at 459 cm−1, we
obtained the scattering efficiency of the α-GaN crystal
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TABLE II. Second-harmonic-generation (SHG) coefficients of
α-GaN.

∣∣dE
31

∣∣ ∣∣dE
33

∣∣ ∣∣dE
24

∣∣
(pm/V) (pm/V) (pm/V) Sample thickness

This work 2.46 3.97 2.48 800 μm
Sanford 2.65 4.0 160.14 μm, free standing
et al. [31] 2.75 4.6 229.67 μm, free standing

Miragliotta 2.40 4.795 2.40 5.31 μm
et al. [1] 2.205 4.48 2.24 3.00 μm

2.165 4.165 2.08 2.25 μm

Kravetsky 2.73 5.64 2.74 1 μm
et al. [32]a

aThe values reported in Ref. [32] have been divided by factor 2 in
order to adapt them to the introduced definitions used here.

for the E2,high phonon mode as IE2 = IGaN
567 = (3.2 ± 0.7) ×

10−5 m−1 sr−1. Based on this value, the absolute Raman
scattering efficiencies for α-GaN have been calculated and are
summarized in Table I. Their estimated error amounts to about
20%.

B. Nonlinear optical coefficients

According to Eq. (10) the determination of the nonlinear
optical coefficients of α-GaN requires data of Raman tensor
elements aTO, bTO, cTO and corresponding Faust-Henry coef-
ficients CFH

a , CFH
b , CFH

c . With the above determined absolute
Raman scattering efficiency of the E2,high Raman mode the
magnitude of the corresponding Raman tensor element was
calculated according to Eq. (12): d = 6.86 × 108 kg−1/2 m1/2.
Subsequently, the absolute values of the remaining Raman
tensor elements were obtained (see last column of Table I)
[27]

The estimated error of the absolute values amounts to about
20%, and the error of the relative Raman tensor elements
in Table I is about 3%. The Faust-Henry coefficients can
be expressed in dependence on the relative Raman tensor
elements [see Ref. [10], Eq. (10)]. Therefore, the Raman tensor
elements of corresponding TO and LO phonon modes are listed
in Table I. The obtained set of Faust-Henry coefficients was
adopted from Irmer et al. [10]: CFH

a = −3.46, CFH
b = −3.81,

and CFH
c = −2.31.

The anisotropy of the relative permittivity of α-GaN is
small [28–30]. At the frequency of the scattered light excited
with the laser wavelength 514.5 nm, the value ε‖ = ε⊥ ≈ 5.83
was utilized [30]. As the high-frequency permittivity, the
value ε∞‖ ≈ ε∞⊥ = 5.37 calculated [30] from the first-order
Sellmeier equation for λ → ∞ was used, which is in good
agreement with the value 5.35 measured by Barker et al. [28].

Table II shows our results in comparison with other exper-
imental results. The review by Miragliotta and Wickenden
[1] also contains older results, which deviate considerably
from the newer ones. We are aware of only one other
experimental determination under clamped conditions of the
LEO coefficients in α-GaN; see Table III. The value r13 =
(1.55 ± 0.08) pm/V measured by electroreflectance with
unclamped experiment was reported by Shokhovets et al. [7].

TABLE III. Linear electro-optic (LEO) coefficients of α-GaN.

∣∣rS
13

∣∣ ∣∣rS
33

∣∣ ∣∣rS
42

∣∣
(pm/V) (pm/V) (pm/V) Sample thickness

This work 0.72 1.31 0.38 800 μm
Long et al. [6] 0.57 ± 0.11 1.91 ± 0.35 4.62 μm

IV. DISCUSSION

The susceptibility derivatives depend, in general, on fre-
quency and do not have the same magnitude for measurements
of the second-harmonic generation, Raman scattering cross
section, and electro-optic effect. However, the frequency
dependence is small in the range of optical transparency well
below the electronic transitions of the crystal [9].

The determination of absolute values of the LEO and SHG
coefficients from Raman scattering measurements requires
absolute values of the Raman scattering efficiencies, which
cannot be easily obtained and are a source of errors. Only
one other measurement on α-GaN is known to us. Loa
et al. [33] measured the Raman scattering efficiencies of
α-GaN layers in backscattering geometry. Using their value
(3.8 ± 1.1) × 10−5 m−1 sr−1 (Ref. [33]) for the Raman
efficiency of the E2,high phonon instead of our result (3.2 ±
0.7) × 10−5 m−1 sr−1 would result in 9% greater coefficients
in Tables II and III. However, Eqs. (10) show that the ratios
between the three coefficients SHG and LEO, respectively,
depend only on ratios of the intensities of the TO phonons and
of the Faust-Henry coefficients of different symmetry, which
can be accurately determined by Raman measurements with
suitable scattering geometry. The factors α‖ and α⊥ defined
in Eq. (11) are precisely known. Therefore, the error of the
coefficient ratios is mainly caused by errors of the square root
of intensity ratios and should be in the order of a few percent.

The signs of the nonlinear optical coefficients are often
given controversially in the literature. Unfortunately, they
cannot be determined with measurements of the Raman
efficiency due to its quadratic dependence on the tensor
elements [see Eq. (12)]. However, some constraints exist.
With the applied Faust-Henry coefficients CFH

a = −3.46,
CFH

b = −3.81, and CFH
c = −2.31, we obtain from Eq. (9)

the correlations dE
31/rS

13 > 0, dE
33/rS

33 > 0, and dE
24/rS

42 > 0.
For some geometrical configurations of Raman measurements
the efficiencies depend on sums or differences of aTO and
bTO (see Table I in Ref. [10]). From comparison of these
efficiencies it is possible to conclude that aTO/bTO < 0 and
therefore dI

33/d
I
31 < 0, dE

33/d
E
31 < 0, and rS

33/rS
13 < 0.

For an ideal hexagonal wurtzite structure, the nonzero
tensor elements of the SHG tensor are not independent
and related by the following expressions: d31 = d24, d31 =
−d33/2 [31,34], derived by arguments based on symmetry
considerations. Whereas the first expression is well satisfied
by our results, the second one is not rigorously verified (see
Table II). A reason could be that this constraint is based on the
premise that the optical nonlinearity in the hexagonal structure
is due entirely to the contributions of tetrahedral units [31,34].

Our results have a considerable ionic part of the
electro-optic coefficient: |rI

33| = 4|dI
33|/ε2

⊥ = 1.78 pm/V and
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|rI
13| = 4|dI

31|/ε2
‖ = 1.00 pm/V. We can compare these results

with theoretical values based on the bond-charge dielectric
theory of Phillips and Van Vechten. We used the equations
given by Shih and Yariv [35,36] with parameters of α-GaN
calculated by Van Vechten [37] and obtain |rI

33| = 1.43 pm/V
and |rI

13| = |rI
33|/2 = 0.72 pm/V, respectively.

From Raman scattering efficiencies of corresponding TO
and LO phonon modes the Faust-Henry coefficients can be
deduced. However, for each coefficient two possible solutions
can be found. We applied here the set of Faust-Henry coef-
ficients for α-GaN which was unambiguously in accordance
with results of near-forward scattering of phonon-polaritons
[10,38]. Using the second set of coefficients CFH

a = 0.40, CFH
b= 0.40, and CFH

c = 0.33 the following nonlinear coefficients
have been obtained: |dE

31| = 21.4, |dE
33| = 37.8, |dE

24| = 17.3,
|rS

13| = 3.5, |rS
33| = 6.2, and |rS

42| = 2.7 pm/V. The comparison
of these values with experimental results in Tables II and III
shows that the second set of Faust-Henry coefficients can be
excluded due to the very large differences of the calculated
values and experimental SHG and LEO coefficients.

V. CONCLUSION

The determination of the SHG and LEO coefficients of
nonlinear optical materials with conventional methods is not

simple and often has deviating results. This applies also to
the technically important semiconductor α-GaN with partially
incomplete and controversially reported data. For the range
of optical transparency below the band-gap measurements of
the Raman scattering intensity of phonons can be used for the
determination of the coefficients. This is shown for crystals
with wurtzite structure. For relations between the coefficients
corresponding to different tensor elements it is sufficient to
compare the relative intensity ratios of the polar phonons with
different symmetry. The three SHG coefficients of α-GaN
determined with Raman spectroscopy agree well with recent
results obtained by other experimental methods. Additionally,
all three LEO coefficients have been determined, including
the coefficient |rS

42|. Our results clearly indicate, contrary to
previous reports, an important contribution of the ionic lattice
displacements to the LEO effect.
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