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Seebeck coefficient in correlated low-dimensional organic metals
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We study the influence of inelastic electron-electron scattering on the temperature variation of the Seebeck
coefficient in the normal phase of quasi-one-dimensional organic superconductors. The theory is based on the
numerical solution of the semiclassical Boltzmann equation for which the collision integral equation is solved
with the aid of the renormalization-group method for the electronic umklapp scattering vertex. We show that
the one-loop renormalization-group flow of momentum and temperature-dependent umklapp scattering, in the
presence of nesting alterations of the Fermi surface, introduce electron-hole asymmetry in the energy dependence
of the anisotropic scattering time. This is responsible for the enhancement of the Seebeck coefficient with respect
to the band T -linear prediction and even its sign reversal around the quantum critical point of the phase diagram,
namely, where the interplay between antiferromagnetism and superconductivity and also the strength of spin
fluctuations are the strongest. A comparison of the results with available data on low-dimensional organic
superconductors is presented and critically discussed.
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I. INTRODUCTION

In the past few years we have seen expanding interest in the
Seebeck coefficient as a sensitive probe of fluctuations encased
in the quantum critical behavior of correlated electrons. This
has been exemplified both experimentally and theoretically
for quantum critical points in heavy fermions [1–5] and
pnictides [6] and for hole- [7–10] and electron-doped [11,12]
cuprates. In organic superconductors like the Bechgaard salt
(TMTSF)2X series, also known to exhibit quantum criticality,
the measurements of the Seebeck coefficient have been the
subject of numerous reports following their discovery [13–19]
until very recently [20]. However, these works have found
very little theoretical echo as to the possible part played
by quantum fluctuations in the thermoelectric response seen
in these correlated quasi-one-dimensional (quasi-1D) metals.
This topic, which has remained essentially unexplored so
far [21], will be the main focus of the present work.

The quantum critical behavior of the Bechgaard salts is
known to result from the juncture of a declining spin-density-
wave (SDW) state with the onset of a superconducting (SC)
dome under pressure [22–26]. The signatures of quantum
criticality have been chiefly revealed by the observation
of linear-T resistivity [27], whose strength scales with the
distance from the quantum critical point (QCP) along the
pressure axis. Among other fingerprints of quantum criticality,
linear resistivity was also found to scale with the amplitude
of SDW fluctuations seen by NMR and with the size of the
critical temperature Tc for superconductivity [25,28–30].

The contributions of the renormalization-group (RG) ap-
proach to the understanding of these quantum critical features
were the purpose of several works in the past [31–33]. In the
framework of the quasi-1D electron-gas model, for instance,
that is how the characteristic sequence of instability lines and
the scaling of spin fluctuations with the size of Tc could
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be fairly well simulated when the antinesting amplitude of
the quasi-1D electron band structure was used as a tuning
parameter for the QCP [33–35].

More recently, the RG calculations for the umklapp vertex
were shown to serve as an input to the linearized Boltzmann
theory of electrical transport [36]. From this combination of
techniques, first proposed by Buhmann et al. [9] in the context
of the two-dimensional (2D) Hubbard model for the cuprates,
the metallic resistivity across the QCP could be calculated
along the pressure (antinesting) axis, and the results could
be congruently compared with experiments in the Bechgaard
salts [27].

In this work we further exploit the RG-Boltzmann approach
and derive the Seebeck coefficient for correlated quasi-1D
metals. The numerical integration of the linearized Boltzmann
equation when fed in by the RG umklapp vertex function
allows a microscopic determination of the energy variation
of the anisotropic electron-electron scattering time across
the Fermi surface. This variation is mostly influenced by
SDW fluctuations and is anisotropic on the Fermi surface.
It introduces deviations with respect to a positive and linear-T
Seebeck coefficient obtained in the band limit for hole carriers
in materials like the Bechgaard salts. The deviations take the
form of enhancements that can be not only positive but also
negative or electronlike in character. The latter can lead to
the sign reversal of the Seebeck coefficient, especially in the
neighborhood of the QCP where the interplay between SDW
and SC, together with the amplitude of the SDW fluctuations
in the metallic state, is the strongest. These results offer an
interesting avenue of understanding for the sign reversal of the
Seebeck coefficient occurring in the Bechgaard salts near their
QCP.

The theory is broadened to systems with stronger umklapp
scattering that favors a Mott instability in the 1D portion
of their metallic state and which can be approached by the
weak-coupling RG from the high-temperature domain. The
results are compared to the measurements of the Seebeck
coefficient for prototype members of the sulfur-based com-
pounds, the (TMTTF)2X, known as the Fabre salts series [37].
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These compounds are characterized by a more pronounced
dimerization of the organic stacks which magnifies umklapp
scattering and favors a crossover toward a 1D Mott insulating
state.

In Sec. II, we use the linearized Boltzmann theory to
derive the expression of the Seebeck coefficient for a quasi-1D
three-quarter-filled hole band of a lattice of weakly dimerized
chains. In Sec. III, the momentum-resolved renormalized
umklapp vertex entering the Boltzmann equation is computed
by the RG in the conditions of the quasi-1D electron-gas model
simulating the sequence of instabilities found in the Bechgaard
salts. In Sec. IV, we present the temperature variations of
the Seebeck coefficient across the quantum critical point of
the model and examine their link to the energy profile of the
inelastic scattering time. In Sec. V, a comparison of the results
is made with available data for (TMTSF)2X and on a broader
basis for the more correlated compounds (TMTTF)2X. We
conclude in Sec. VI.

II. LINEARIZED BOLTZMANN THEORY OF THE
SEEBECK COEFFICIENT

We consider the semiclassical Boltzmann equation for the
variation of the quasiparticle Fermi distribution function f

in the presence of collisions and a thermal gradient ∇rT . In
steady-state conditions, it takes the form[

∂f (k)

∂t

]
coll

= e E · ∇�kf − (Ek − μ)

T
∇rT · ∇�kf, (1)

where Ek is the carrier spectrum, μ is the chemical potential,
e is the electron charge, and E is the electric field set up by
the thermal gradient. The collision integral for an array of NP

chains of length L takes the form[
∂f (k)

∂t

]
coll

= − (LNP )−2
∑

k2,k3,k4

1

2
|〈k,k2|g3|k3,k4〉

− 〈k,k2|g3|k4,k3〉|2 2π

�
δk+k2,k3+k4±G

× δ
(
Ek + Ek2 − Ek3 − Ek4

)
× {f (k)f (k2)[1 − f (k3)][1 − f (k4)]

− [1 − f (k)][1 − f (k2)]f (k3)f (k4)}. (2)

From Fermi’s golden rule, the transition probability per unit
of time is related to the matrix element 〈k,k2|g3|k3,k4〉 for
longitudinal umklapp processes, where G = (4kF ,0) is the
longitudinal reciprocal lattice wave vector and kF is the 1D
Fermi wave vector.

We proceed to the linearization of the Boltzmann equation
by introducing [38]

f (k) = 1

eβ(Ek−μ)−φk + 1
, (3)

where φk is a normalized deviation to thermal equilibrium and
β = 1/kBT . In the tight-binding approximation, the hole band
spectrum for a linear array of NP weakly coupled dimerized
chains is given by

Ek =
√

2(t2 + δt2) + 2(t2 − δt2) cos ka + ε⊥(k⊥), (4)

where t ± δt are the transfer integrals within and between the
dimers (δt > 0, δt � t). Here a is the lattice spacing along the
chains, namely, the distance between dimers. The transverse
part of the hole spectrum is given by

ε⊥(k⊥) = 2t⊥ cos k⊥d⊥ + 2t ′⊥ cos 2k⊥d⊥, (5)

where t⊥ and t ′⊥ are the first- and second-nearest-neighbor
transfer integrals in the direction perpendicular to the chains.

For small deviations with respect to equilibrium, the Fermi
distribution becomes

f (k) � f 0(k) + f 0(k)[1 − f 0(k)]φk, (6)

where f 0(k) is the equilibrium distribution at φk = 0. Insert-
ing (6) in Eqs. (1) and (2) leads to the linearized Boltzmann
equation

Lφk = eβE · vk − β2kB(Ek − μ)vk · ∇rT

≡ LφE
k − LφT

k . (7)

The collision operator L satisfies the integral equation

Lφ
j

k =
∑

k′
Lk,k′φ

j

k′ (j = E,T ), (8)

where the kernel is given by

Lk,k′ = (LNP )−2
∑

k2,k3,k4

1

2
|〈k,k2|g3|k3,k4〉

− 〈k,k2|g3|k4,k3〉|2 2π

�
δk+k2,k3+k4±G

× δ
(
Ek + Ek2 − Ek3 − Ek4

)
× f 0(k2)[1 − f 0(k3)][1 − f 0(k4)]

[1 − f 0(k)]

× (
δk,k′ + δk2,k′ − δk3,k′ − δk4,k′

)
=

4∑
i=1

L[i]
k,k′ , (9)

which can be written as the sum of four contributions. The
explicit expressions for the diagonal (L[1]) and off-diagonal
(L[2−4]) terms are calculated according to Ref. [36] in the
limit of the quasi-1D electron-gas model. Their expressions,
given in the Appendix, are generalizations at arbitrary energy
distance from the Fermi level.

The electric current density along the chains resulting from
a longitudinal thermal gradient ∇aT and the induced electric
field Ea in leading order is given by

ja = 2e

LN⊥d⊥

∑
k

va
kf (k)

� 2e

LN⊥d⊥

∑
k

va
kf

0(k)[1 − f 0(k)]
(
φE

k − φT
k

)
, (10)

where va
k is the carrier velocity along the a direction.

Introducing the normalized deviations φ̄E
k = φE

k /(eβva
kF
Ea)

and φ̄T
k = φT

k /[β2kBva
kF

(Ek − μ)∇aT ], which have units of
time, this expression can be recast in the form

ja = K11Ea − K12∇aT . (11)
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In the absence of charge current (ja = 0), this leads to the
expression of longitudinal Seebeck coefficient Qa as the ratio

Qa = Ea

∇aT
= K12

K11
. (12)

Since the product f 0[1 − f 0] is strongly peaked at the Fermi
level Ek − μ ≡ E = 0, a Sommerfeld expansion of the matrix
elements K11 and K12 yields the following expression for the
Seebeck coefficient:

Qa = π3

3

k2
BT

|e|

{[
−d ln〈N (E,k⊥)〉k⊥

dE
− 2

d ln
〈
va

E,k⊥

〉
k⊥

dE

]

− ∂ ln〈φ̄E,k⊥〉k⊥

∂E

}
E=0

= Q0
a + Qc

a, (13)

which can be separated into two contributions. The first,
denoted Q0

a , is the sum of the two terms in brackets,
which corresponds to the band contribution. It is linked
to the energy derivatives of the density of states per spin
〈N (E,k⊥)〉k⊥ (= π−1〈|∂k/∂Ek|〉k⊥), and of the longitudinal
velocity 〈va

E,k⊥〉k⊥ (= �
−1〈∂Ek/∂k〉k⊥). Both quantities are

averaged over the Fermi surface for a filling of one hole per
dimer (〈· · · 〉k⊥ = N−1

P

∑
k⊥ · · · ). The second contribution, Qc

a ,
is associated with collisions; it is proportional to the energy
derivative 〈φ̄′

E=0,k⊥〉k⊥ averaged over the Fermi surface for the
normalized deviations φ̄E = φ̄T ≡ φ̄, namely, the scattering
time. The latter obeys the single integral equation

Lφ̄k =
∑
i,k′

L[i]
k,k′ φ̄k′ = 1, (14)

whose explicit expression is given in (A6). Here φ̄k → φ̄E,k⊥
can be expressed as a function of the energy distance from
the Fermi surface and the angle parametrized by k⊥. Expres-
sion (13) is reminiscent of the Mott formula for the Seebeck
coefficient [21,39]. It should be stressed, however, that the
scattering term results from the solution of the k-dependent
integral equation (14), which goes beyond the relaxation-time
approximation used for the Mott result [40].

III. RENORMALIZED UMKLAPP VERTEX

A. The quasi-one-dimensional electron-gas model

The temperature variation of the momentum-dependent
umklapp vertex part entering the collision operator of
the Boltzmann equation (9) is calculated using the
renormalization-group technique in the framework of the
quasi-one-dimensional electron-gas model. In the model the
longitudinal part of the lattice model for the hole spectrum Ek

in (4) is linearized with respect to the 1D Fermi points ±kF .
This gives

Ek − μ ≈ ε
p

k = −�vF (pk − kF ) + ε(k⊥), (15)

where p = ± refers to right- and left-moving carriers along
the chains and vF = (t2 − δt2)a/(�

√
2t2 + 2δt2) is the lon-

gitudinal Fermi velocity. According to band calculations,
the hopping integrals will be fixed at t/kB = 2700 K and
t⊥/kB = 200 K as typical figures for hopping integrals in

compounds like the Bechgaard salts. A second harmonic is
added to the transverse tight-binding spectrum which acts
as an antinesting tuning parameter t ′⊥ � t⊥. Antinesting is
considered the main parameter simulating the pressure in the
model.

Particles interact through three coupling constants defined
on the warped Fermi surface sheets kp

F (k⊥) = (kp

F (k⊥),k⊥),
as parametrized by k⊥ from the condition εp(kp

F ) = 0 (see
the top panel in Fig. 4 below). These are the backward- and
forward-scattering amplitudes g1(k−

F,1,k
+
F,2; k−

F,3,k
+
F,4) and

g2(k+
F,1,k

−
F,2; k−

F,3,k
+
F,4) and the longitudinal umklapp scatter-

ing g3(kp

F,1,k
p

F,2; k−p

F,3,k
−p

F,4). All couplings are normalized by
�πvF and develop from renormalization a momentum depen-
dence on three independent transverse momentum variables.

We will follow previous works [33,34,36] and fix the
bare initial repulsive values of the couplings consistently
with different experiments and band calculations. Thus for
the bare backward scattering, by taking g1 ≈ 0.32, one can
reasonably account for the observed temperature-dependent
enhancement of uniform susceptibility [41]. For the bare
longitudinal umklapp term g3, its bare amplitude is nonzero
but very weak, owing to the small dimerization of the organic
stacks that introduces some half-filled character to the band.
This yields g3 ≈ g1(2δt/t) as a result of the modulation
δt of longitudinal hopping integrals responsible for the
dimerization gap [42,43]. According to band calculations at
low pressure [44], δt/t ≈ 0.05, . . . ,0.1, suggesting we take
g3 ≈ 0.025 in the following calculations. From these figures,
the amplitude of the bare forward scattering can be finally
adjusted to the value g2 ≈ 0.64 in order to get from the low-t ′⊥
RG calculations (see Fig. 1) the right order of magnitude for the
observed SDW scale, namely, TSDW ∼ 10 K for (TMTSF)2X

at ambient pressure [22]. As a function of t ′⊥, the application
of the RG generates a phase diagram compatible with the

19 22 25 28 31 34 37 40 43 46
10

−1

10
0

10
1

10
2

t⊥ /kB [K]

T
[K

]

 

 

SDW

SCd

SDW
SCd

FIG. 1. Renormalization-group results for the phase diagram of
the quasi-1D electron-gas model as a function of the antinesting
tuning parameter t ′

⊥ and for the model parameters specified in
Sec. III A.
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experimental situation [22,27]. There is nothing special in the
above choice. Actually, at small umklapp, there exists a whole
range of reasonable coupling parameters that would yield a
phase diagram comparable to Fig. 1 and then results similar to
those for the Seebeck coefficient.

As will discussed in more detail in Sec.V A, one can extend
the analysis to the more correlated sulfur-based Fabre salt
series (TMTTF)2X characterized by smaller band parameters
and stronger umklapp scattering owing to a larger dimerization
of the organic stacks.

B. Renormalization-group results

The RG approach to the above quasi-1D electron-gas
model has been described in detail in previous works [32–36].
In essence, it consists of the segmentation of infinitesimal
energy shells on either side of the Fermi sheets into NP

patches, whose internal transverse momentum integration in
the loop calculations leads to as many k⊥ values. Successive
integrations of electronic degrees of freedom on these shells
from the (Fermi) energy cutoff EF /kB[= πt/(2kB

√
2)] ≡

3000 K down to zero at the Fermi surface result in the flow
of the coupling constants toward their momentum-dependent
values as a function of temperature. This is carried out until a
singularity is reached in the coupling constants which signals
an instability of the electron gas against the formation of a
broken-symmetry state at a given temperature.

For the repulsive sector with these (TMTSF)2X model
parameters, this can occur in either a SDW or d-wave SC (SCd)
channel depending on the amplitude of antinesting t ′⊥. The
characteristic sequence of instabilities obtained for NP = 60
patches is reviewed in Fig. 1 [36]. At relatively low nesting
deviations the magnetic scale TSDW dominates; it drops with t ′⊥
down to the critical value t ′∗⊥ , where instead of a plain quantum
critical behavior for antiferromagnetism for which TSDW would
reach zero, the ending of TSDW gives rise to an SCd instability
at its maximum Tc. The latter then steadily falls off with further
increasing t ′⊥.

The normal phase we are interested in for the Seebeck coef-
ficient is characterized by spin fluctuations. This is, of course,
found in the SDW sector of the phase diagram where the
SDW susceptibility χSDW(q0) at the best nesting wave vector
of ε

p

k at q0 = (2kF ,π/d⊥) develops a singularity at TSDW. In
the SCd sector, an enhancement, although nonsingular, is still
present. It takes the form of a Curie-Weiss temperature profile
χSDW ∼ (T + 	)−1 over a large temperature domain above Tc

(	 � 0). The enhancement is quantum critical at t ′∗⊥ (	 = 0)
and then decays with the decrease of Tc and the rise of the
Curie-Weiss scale 	 along the antinesting axis [33].

These short-range SDW correlations of the metallic phase
are directly related to the enhancement of umklapp scattering
entering the collision operator of the Boltzmann equation. In
Fig. 2, we show the temperature and momentum dependence
of g3 on the Fermi surface, as projected in the (k⊥1,k⊥3)
plane when k⊥1 = −k⊥2 and k⊥3 = −k⊥4. On the SDW side,
the top panel of Fig. 2(a) refers to the high-temperature
range (T > t⊥), which shows no structure in the transverse
momentum plane for g3, indicating that SDW correlations
are essentially 1D in character and confined along chains. As
temperature is lowered below t⊥, transverse short-range order

FIG. 2. Renormalized umklapp scattering amplitude g3(k⊥1,

−k⊥1; k⊥3, − k⊥3), projected in the (k⊥1,k⊥3) plane at different
temperatures for the metallic phase model parameters specified in
Sec. III A. (a) SDW, t ′

⊥/kB = 25 K (<t ′∗
⊥ /kB ), (b) SCd, t ′

⊥/kB =
35 K (>t ′∗

⊥ /kB ), and (c) SCd, t ′
⊥/kB = 42 and 46 K at T = 1 K.

starts to develop, as shown by more intense scattering along
the lines k⊥1 = k⊥3 ± π (d⊥ = 1). This is in accordance with
the transverse momentum transfer associated with the best
nesting wave vector q0 of the spectrum (15). When the lowest
temperature is reached, peaks of stronger intensity appear on
the corners at k⊥1,3 = 0, ± π and at the best nesting points
±π/4, ± 3π/4 of the spectrum (15). These refer to warmer
regions of scattering on the Fermi surface at the approach of
the critical domain of the SDW instability.

On the SCd side of the phase diagram, in Fig. 2(b), we
see a pronounced but nonsingular anisotropic increase of
umklapp scattering; peaks are confined around k⊥1,3 = 0, ± π

on the Fermi surface, where enhanced scattering is found as
the temperature is lowered. This enhancement occurs despite
the flow of coupling constants towards a SCd fixed point
indicative of positive interference between both instabilities.
This increase goes hand in hand with the one of SDW
correlations in this temperature region, which are directly
involved in the mechanism of d-wave Cooper pairing [45–47].
By increasing t ′⊥ further, although the same anisotropy of
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FIG. 3. The longitudinal Seebeck coefficient as a function of
temperature for (a) different values of antinesting t ′

⊥ in the metallic
phase and (b) model parameters in the more correlated case with
stronger umklapp scattering and lower amplitudes of hopping inte-
grals [t ′

⊥/kB = 15 K, t⊥/kB = 100 K; see Sec.V A on (TMTTF)2X

salts]. The dashed lines gives the band contribution Q0
a of Eq. (13)

for constant relaxation time in energy.

umklapp enhancement persists, its amplitude scales down with
the reduction of Tc, as displayed in Fig. 2(c).

The consequence of this anisotropic growth of umklapp
scattering on the temperature dependence of the Seebeck
coefficient will be analyzed next.

IV. NUMERICAL RESULTS FOR THE SEEBECK
COEFFICIENT

A. High-temperature domain

The temperature dependence of the Seebeck coeffi-
cient (13), as obtained from the numerical solution of (A6)
for the (TMTSF)2X model parameters, is shown in Fig. 3(a)
in the whole temperature interval of interest. By comparing the
amplitude of the two contributions to the Seebeck coefficient
in (13), we observe that apart from the high-1D-temperature
region, the amplitude of the last term related to scattering

k⊥

k

−π −π/2 0 π/2 π
−π

0

π

−0.2

−0.1

0
T = 300 K

−3

−2.5

−2

[∂
E

ln
φ̄

E
,k

⊥
] E

=
0

T = 100 K

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
−9

−8

−7

k⊥

T = 45 K

FIG. 4. Open Fermi surface of the quasi-1D electron-gas model
(top) and typical variations of the scattering time along the Fermi
surface for different high temperatures (t ′

⊥ = t ′∗
⊥ ; bottom).

dominates the band contribution Q0
a [dashed line in Fig. 3(a)]

over most of the temperature interval. This gives rise to a
shallow minimum for the Seebeck coefficient below which
the normalized energy derivative φ̄′

E=0,k⊥/φ̄E=0,k⊥ of the
normalized scattering time on the Fermi surface grows in
importance, as indicated in the lower panels of Fig. 4. The
derivative is negative, and according to (13), it gives a positive
Qc

a , as normally expected for hole carriers whose velocity and
scattering time decrease with increasing energy.

By lowering the temperature the scattering time derivative
gains in amplitude and develops, like g3 in Fig. 2, anisotropy
over the Fermi surface with maximums at k⊥ = 0, ± π and
±π/4, ± 3π/4. This leads to a smooth increase of the Seebeck
coefficient that levels off at a maximum value around the
antinesting t ′⊥ scale. This is followed in Fig. 3(a) by a rapid
drop at lower temperature which is nearly linear; it evolves
toward anomalous features in the amplitude or the sign of the
Seebeck coefficient depending on the distance to the critical
value t ′∗⊥ in the phase diagram. This will be discussed in more
detail below.

B. Low-temperature domain and quantum criticality

The results for the Seebeck coefficient in the metallic
low-temperature part of the phase diagram are presented in
Fig. 5(a) for different values of the antinesting parameter t ′⊥. On
the SDW side, for t ′⊥ relatively well below the critical t ′∗⊥ /kB

(=33 K), the decrease of the Seebeck coefficient with lowering
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FIG. 5. (a) The longitudinal Seebeck coefficient Qa and (b) the
ratio Qa/T as a function of T at low temperature and different values
of antinesting t ′

⊥. The value with an asterisk stands for the critical
t ′∗
⊥ . The dashed line corresponds to the Fermi liquid limit using a

momentum- and temperature-independent g3 (= 0.025) at t ′∗
⊥ . The

inset in (b) displays the enhancement on a logarithmic temperature
scale. The solid line refers to Qa/T ∼ ln T .

temperature is nearly linear, as indicated by the constant ratio
Qa/T in Fig. 5(b) when the temperature is lowered. Here
the slope for Qa is steeper than for the band contribution
Q0

a [dashed line in Fig. 3(a)]. The dominant contribution to
the Seebeck coefficient comes from Qc

a , which is positive,
resulting from a peak in the energy-dependent quasiparticle
scattering time located on the occupied side of the Fermi level
at E < 0, as shown in the top left panel of Fig. 6(a) above
the SDW instability. It is worth noting that in these metallic
conditions of the SDW state, the calculated scattering time
at the Fermi level (∼10−9 s) is significantly larger than the
one found from the Drude theory of the conductivity of the
Bechgaard salts above the SDW state [48] (see the note in
Ref. [49]).
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FIG. 6. (a) Variation of the normalized scattering time as a
function of energy near the Fermi level at low temperature. Here
t ′
⊥/kB = 25 and 35 K for the blue and red curves, respectively. (b)

The anisotropy of the normalized energy derivative of the scattering
time along the Fermi surface at low temperature for different t ′

⊥.

By raising t ′⊥, the temperature scale TSDW in Fig. 1 decays,
and at the approach of t ′∗⊥ from below, the Seebeck coefficient
develops an anomalous enhancement that is opposite in sign.
This is depicted by the green lines in Fig. 5. The effect is
reinforced when the electron system ultimately enters the
SCd domain at t ′∗⊥ where Tc is maximum. This indicates that
the collision contribution Qc

a is still negative or electronlike
in character and that it exceeds Q0

a in amplitude. The sign
reversal of the Seebeck coefficient refers to an increase of the
scattering time with energy and then to a different asymmetry
in the quasiparticle resonance peak of 〈φ̄E,k⊥〉. According to
Fig. 6(a), when the temperature is lowered, the latter is shifted
from the occupied to the unoccupied side just above the Fermi
level at E > 0. As for the anisotropy profile of φ̄′/φ̄ over the
Fermi surface, the third panel in Fig. 6(b) reveals that this
electronlike component of the Seebeck coefficient comes in
large part from the cold regions of scattering, namely, away
from the warmer spots centered in k⊥ = 0 and ±π in the SCd
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sector [see Fig. 2(b)]. In the latter regions large oscillations of
φ̄′/φ̄ between positive and negative values tend to average out
their contributions to a net positive contribution to the Seebeck
coefficient. It is worth noting that the change in sign of the
Seebeck coefficient, obtained by tuning t ′⊥ across t ′∗⊥ , occurs in
the metallic state, that is, in the absence of any reconstruction
of the Fermi surface.

Further above t ′∗⊥ , the negative enhancement of the Seebeck
coefficient weakens and finally transforms into a positive
upturn, as shown in Fig. 5. The latter is consistent with a quasi-
particle resonance in the scattering time whose peak shifts back
below the Fermi level with a negative slope in 〈φ̄′

E=0,k⊥〉k⊥ ,
as shown in the bottom panel in Fig. 6(b). This contributes
positively to Qc

a . At sufficiently large t ′⊥, namely, when nesting
alterations become large, the g3 coupling renormalizes less
and less with a concomitant weaker anisotropy, as illustrated
in Fig. 2(c). In these conditions the Seebeck coefficient should
tend to that of a Fermi liquid. This is confirmed when one
imposes a momentum- and temperature-independent g3 in the
calculations of the scattering time in (A6), which simulates
the conditions of a Fermi liquid. This is shown by the dashed
lines in Fig. 5. It is worth noting that the Fermi liquid result
for the quasi-1D electron-gas model differs from the linear-T
band term Q0

a . The corresponding ratio Qa/T in Fig. 5(b)
displays a low-temperature variation whose curvature in T

slightly exceeds a logarithmic enhancement [inset of Fig. 5(b)].
It is worth pointing out that for a quasi-1D Fermi liquid, the
scattering time is energy dependent and goes as ∼E2 ln E with
logarithmic corrections; it is also asymmetric with respect to
the Fermi level due to the presence of antinesting [36,50].
According to Fig. 5(b), the effect of umklapp renormalization
leads to enhancements also stronger than logarithmic. Note
that previous calculations of fluctuation effects, except this
time on the band or thermodynamic contribution Q0

a , predict
logarithmic corrections near a quantum critical point [4].

Following the example of resistivity [36], one can define
from t ′∗⊥ the zone of influence of quantum criticality where
anomalous signs and enhancement of the Seebeck coefficient
are found. This is portrayed in Fig. 7. As pointed out

FIG. 7. Amplitude of the Seebeck coefficient at low temperature
as a function of antinesting.

previously [31,33,34,36], t ′∗⊥ defines a quantum critical point
where the entanglement or mutual reinforcement between
SDW and SCd instabilities is the strongest, Tc is the highest,
and spin fluctuations are quantum critical down to Tc [33]. This
is apparently responsible for the electron-type asymmetry in
the energy dependence of electron-electron scattering time and
therefore for the sign reversal of the Seebeck coefficient.

The amplitude of reinforcement between SDW and SCd
pairings is correlated to the size of Tc. This is reflected in
Figs. 2(b) and 2(c) by the anisotropic flow of g3 responsible
for the growth SDW fluctuations, which scales with t ′⊥. As
discussed in detail in preceding works [33,34,51], this scaling
gives rise to an extended region of quantum critical SDW
effects in the phase diagram that goes over the edges of an
inverted-triangle-shaped domain usually expected when only
the SDW state is present and Cooper pairing is absent. Ac-
cording to Fig. 7, extended quantum criticality for the Seebeck
coefficient manifests by a domelike domain of negative Qa ,
characterized along the t ′⊥ axis by a broadened base at low
temperature and a top peaking above t ′∗⊥ at a sizable Tc [52]. The
crossover toward the region of positive Seebeck coefficients is
achieved at high enough t ′⊥. However, fluctuation effects and
deviations from Fermi liquid predictions down to the lowest
temperature still persist. It is only at large t ′⊥, when Tc is small
enough and g3 renormalizes sufficiently weakly, that the Fermi
liquid limit is recovered.

V. COMPARISON WITH EXPERIMENTS IN
LOW-DIMENSIONAL ORGANIC CONDUCTORS

We now turn to the comparison of the above results with
experiments. In this matter, it is instructive to first examine
the Seebeck coefficient for some members of the (TMTTF)2X

series, the so-called Fabre salts, which are known to exhibit
a more correlated normal phase than the Bechgaard salts in
normal pressure conditions as a result of stronger umklapp
scattering [23,53]. The weak-coupling RG can be used to
compute the flow of umklapp scattering down to the approach
of the Mott strong-coupling region. After this incursion in the
physics of the Fabre salts, we then proceed to the discussion
of the Seebeck coefficient experiments in the Bechgaard salts
in light of the results of the present calculations.

A. The Fabre salts (TMTTF)2 X

The Fabre salts, with X = PF6, AsF6, Br, . . ., form a
series of quasi-1D conductors characterized by the same
crystallographic structure as the Bechgaard salt (TMTSF)2X

series [54]. The difference between the two series lies in the
chemical composition of the TMTTF organic molecule for
which the sulfur atoms are substituted in place of selenium in
TMTSF. As a consequence, the amplitude of the dimerization
of TMTTF stacks turns out to be more pronounced in the
solid state, along with band parameters that are typically
smaller than those found in (TMTSF)2X (see Sec. III) [44,55].
In normal pressure conditions, the (TMTTF)2X are thus
more one-dimensional in character and also more correlated
than (TMTSF)2X through essentially a stronger influence of
electronic umklapp processes.
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FIG. 8. Temperature dependence of Seebeck coefficients in (a)
a few (TMTTF)2X salts at ambient pressure (after Ref. [37]) and
(b) (TMTSF)2X in the metallic state above TSDW, X = PF6, and Tc,
X = ClO4. The inset shows the sign reversal of the ratio Qa/T in
the low-temperature domain (after Ref. [15]).

This is exemplified by an upturn in electrical resistivity
at the intermediate temperature Tρ , indicative of strong
umklapp scattering that evolves towards an insulating 1D Mott
behavior [53,56–58]. Long-range ordered states can be found
at much lower temperature, which can involve charge, spin, and
even lattice degrees of freedom [23]. A remarkable property of
the series emerges when sufficiently high pressure is applied to
(TMTTF)2X, which ultimately maps their physical properties
to those of (TMTSF)2X at low pressure.

(TMTTF)2PF6 is a prototype compound of the Fabre series
characterized by the temperature scale Tρ � 220 K [56,57].
The measurements of the Seebeck coefficient by Mortensen
et al. [37] for this compound are reproduced in Fig. 8(a). The
data show a monotonic increase of the Seebeck coefficient
with decreasing temperature. The increase is consistent with
nonmetallic behavior shown by resistivity in the same range
of temperature [56,57].

The calculated results for a compound like (TMTTF)2PF6

are displayed in Fig. 3(b); when in accordance with band
calculations [44], smaller hopping terms (t/kB = 1300 K,
t⊥/kB = 100 K, EF /kB = 1500 K, t ′⊥/kB = 15 K) [59] and
larger amplitudes for the bare umklapp (g3 = 0.15) are used.
With these figures, the instability at TSDW occurs at much
higher temperature (TSDW = Tρ ∼ t⊥) and corresponds to the
1D Mott scale Tρ at the one-loop level of the RG [23,53].
The important reduction of the longitudinal hopping t is
responsible for a larger amplitude of the Seebeck coefficient,
which is mainly dominated by the band term Q0

a at high
temperature, as shown by the dashed line of Fig. 3(b). Note that
this term surpasses the total Qa , indicating that the contribution
of Qc

a coming from collisions is relatively small but negative at
very high temperature. The resulting Qa then shows a smooth
decrease with decreasing temperature, contrary to observation
in (TMTTF)2PF6. However, the effect of the collision term
quickly becomes positive and gives rise to an upturn of the
Seebeck coefficient with lowering temperature, as observed.

The case of (TMTTF)2Br is also of interest since, along
the pressure axis of a generalized phase diagram including
both families, this compound is chemically shifted at about
half the distance between (TMTTF)2PF6 and the members of
the (TMTSF)2X series at low pressure [23]. For normal-state
properties, for instance, this is illustrated by the intermediate-
scale Tρ � 100 K seen in resistivity [56,60], in line with a
smaller dimerization of the organic stacks for (TMTTF)2Br.
The temperature variation of the Seebeck coefficient for the
bromine salt is displayed in Fig. 8 [37]. At room temperature
the coefficient is smaller in amplitude compared to that of
(TMTTF)2PF6; it drops as temperature is lowered, consistent
with the more pronounced metallic character of this salt in
this temperature range. However, the variation is not linear
in temperature but reveals an enhancement with respect to
the free-carrier situation. A minimum for temperature under
Tρ is reached, followed by an increase that evolves toward
a characteristic 1/T behavior for Qa at sufficiently low
temperature [37], in agreement with a well-defined insulating
(Mott) gap.

By using intermediate figures for the band parameters
(t = 2000 K, t⊥ = 100 K, EF = 2200 K, t ′⊥/kB = 15 K) and
bare umklapp amplitude (g3 = 0.08), the amplitude of the
calculated Seebeck coefficient at ambient temperature in Fig. 3
is intermediate between (TMTTF)2PF6 and (TMTSF)2X, as
shown in Figs. 8(a) and 8(b). The calculated decrease of Qa ,
although enhanced compared to Q0

a due to inelastic scattering,
is less rapid than observed. The flow to strong umklapp
scattering then results in the upturn in the Seebeck coefficient.

B. The Bechgaard salts (TMTSF)2 X

The Seebeck coefficient measured for the X = PF6 and
ClO4 members of the Bechgaard salts is shown in Fig. 8(b).
Let us recall that in contrast to the sulfur-based (TMTTF)2X

compounds at low pressure, Tρ is an irrelevant 1D scale
for (TMTSF)2X since these materials are metallic down to
the temperature of onset of long-range order (TSDW,c � t⊥).
In this range of temperature the system becomes effectively
2D regarding one-particle coherence, although it is strongly
anisotropic. In Fig. 8(b) we reproduce the temperature
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dependence of Qa obtained by Chai et al. [15] (see also
Choi et al. [16], Sun et al. [17], Chaikin et al. [18], and
Gubser et al. [19]). (TMTSF)2PF6 shows SDW ordering at
TSDW � 12.5 K, whereas for (TMTSF)2ClO4 the anion (ClO4)
ordering in slow-cooling conditions pushes the compound
on the SC part of the phase diagram of series with Tc �
1.2 K [22,61].

Close to ambient temperature, the Seebeck coefficient
for both compounds reveals values relatively close to the
calculated band limit Q0

a given in Fig. 3 using the (TMTSF)2X

band parameters of Sec. III. At lower temperature a positive
enhancement with respect to a T -linear descent is observed for
both compounds, in qualitative agreement with the one found
in the present calculations in Fig. 3. However, in contrast to
predictions, no maximum for Qa is found experimentally;
the data in Fig. 8(b) rather show a shoulderlike structure
that precedes the low-temperature descent of the Seebeck
coefficient. This suggests that the energy variation of the
collision term is less rapid than predicted in this temperature
range. We do not exclude, however, that such a maximum
would show up if a small pressure was applied to a compound
like (TMTTF)2Br [see Fig. 8(a)], which would suppress
Tρ [60] and shift the compound on the left-hand side of
(TMTSF)2X along the pressure axis [23] (see also [62]).

For both compounds, Fig. 8(b) shows that the drop seen
at low temperature for the Seebeck coefficient does not
extrapolate toward zero but exhibits negative enhancement
from Qc

a that evolves toward a net sign reversal of the Seebeck
coefficient. Because Tc for (TMTSF)2ClO4 is small, this sign
reversal can occur down to a very low temperature of the
metallic state, as shown in the inset of Fig. 8(b) for the ratio
Qa/T . The sign reversal of the Seebeck coefficient occurs in
the metallic state in the absence of a Fermi surface reconstruc-
tion that would transform the nature of carriers from hole to
electron type. The crossing temperature T0 � 18 K observed
for the sign reversal is distinctly larger than calculated in Fig. 7.
Although the set of model parameters (hopping integral and
interaction strength) could be slightly modified in order to
increase T0 and make the comparison with the data in Fig. 8(b)
more favorable quantitatively, it must be stressed, however, that
as a crossover temperature, T0 is found to be appreciably lower
in other experiments [14,16–19]. The origin of this disparity in
the observed T0 is not clear, limiting the comparison between
theory and experiments to a more qualitative level.

The present calculations can thus provide an avenue of
explanation for the sign reversal of the Seebeck coefficient
in terms of an anomalous energy dependence of the inelastic
umklapp scattering time at the Fermi level which becomes
electronlike in character (see Fig. 6). This transformation has
its origin in the SDW fluctuations which act as the source
of enhancement of umklapp scattering. As we have seen in
Sec. III A, the development of these spin fluctuations can
be greatly enhanced over sizable intervals of temperature
and antinesting in the neighborhood of the quantum critical
point t ′∗⊥ [see, for example, Fig. 2(b)] [33], in qualitative
agreement with the spreading of the sign reversal of the
Seebeck coefficient found in Figs. 5 and 7. It is worth
stressing that NMR experiments for the temperature variation
of the nuclear spin lattice relaxation rate have provided
considerable evidence for the presence of spin fluctuations

for both compounds in the same temperature range and their
smooth decaying amplitude with pressure [25,28,29,41,63,64].

VI. SUMMARY AND CONCLUDING REMARKS

In the work developed above, a derivation of the Seebeck
coefficient in quasi-1D interacting electron systems has
been carried out from a numerical solution of the linearized
Boltzmann equation using the renormalization-group method
for the evaluation of the electron-electron scattering matrix
element. From a parametrization of the electron-gas model
compatible with the spin-density wave to the superconducting
sequence of orderings found in organic superconductors under
pressure, the temperature variation of the Seebeck coefficient
in the metallic phase was calculated. It was shown to develop
marked deviations with respect to the hole-band linear-T
prediction. These deviations exhibited striking expression in an
extended quantum critical region of the metallic phase linked
to the juncture of antiferromagnetic and superconducting
orders. It is where the enhancement of the Seebeck coefficient
undergoes a sign reversal, attributable to an anomalous low-
energy variation of the anisotropic electron-electron scattering
time becoming electronlike in character over most of the Fermi
surface. Spin fluctuations, which act as a source of inelastic
umklapp scattering, appear to be a key determinant for this
sign reversal, which occurs in the absence of a Fermi surface
reconstruction. It is only when the antinesting parameter,
which simulates the role of pressure in real materials, is tuned
sufficiently far away from the quantum critical point that a
Fermi liquid type of enhancement of the Seebeck coefficient is
recovered.

The results were shown to capture many features of
existing data in quasi-1D conductors like the Bechgaard salts
(TMTSF)2X, in particular the crossover to negative values of
the Seebeck coefficient at low temperature in the neighborhood
of their quantum critical point along the pressure axis. The
size of the enhancement with respect to the band prediction is
also fairly well taken into account, suggesting that electron-
electron scattering in the presence of electron-hole asymmetry
mainly due to nesting alterations is likely to be the most
important process governing the temperature dependence of
the thermoelectric response of these materials. The results of
the calculations are obtained at arbitrary antinesting distance
from the quantum critical point of the phase diagram, so
they can serve as a stimulus for future experiments of the
Seebeck coefficient in Bechgaard salts as a function of applied
hydrostatic pressure. Such a systematic study is lacking so far.
Following the example of previous electrical transport [27,65]
and NMR studies [25,28,29,66], it would be worthwhile to
check if the Fermi liquid behavior of the Seebeck coeffi-
cient is recovered sufficiently far above the quantum critical
pressure.

It is also important to confirm from other experimental
probes the anomalous particle-hole asymmetry in the inelastic
scattering time in systems like the Bechgaard salts. In this
respect, the quasiparticle lifetime extracted from the photoe-
mission cross section may be useful to directly probe the
anomalous energy profile of inelastic scattering near the Fermi
level. Among other possible probes is the Hall effect. The tem-
perature dependence of the Hall coefficient in the normal state
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may reveal asymmetry in the scattering dynamics, especially in
the absence of Fermi surface reconstruction that would affect
the carrier concentration. In this respect, it is worth mentioning
the anomalous temperature dependence of the Hall coefficient
reported for a compound like (TMTSF)2PF6. The coefficient
is found to strongly deviate from the band prediction at the
approach of TSDW [67].

The present theory of the Seebeck coefficient was also
applied to the more correlated Fabre (TMTTF)2X series,
whose members with centrosymmetrical anions X are known
to become Mott insulators at relatively high temperature
in normal pressure conditions. Stronger umklapp scattering
and narrower bands characterize these materials. This pre-
cipitates an instability toward an insulating state at much
higher temperature and, accordingly, yields a pronounced
enhancement of the Seebeck coefficient that is present in
experiments.
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APPENDIX: LINEARIZED BOLTZMANN EQUATION

In the presence of an external longitudinal thermal gradient
and induced electric field, the linearized Boltzmann equation
for the normalized deviations φ̄k (= φ̄

j=E,T

k ) can be put in the
single form of Eq. (14):

Lφ̄k =
4∑

i=1

∑
k′

L[i]
k,k′ φ̄k′ = 1. (A1)

The collision operator is expressed as the sum of four terms,

4∑
i=1

L[i]
k,k′ = 1

(LNP )2

∑
k2,k3,k4

1

2
|〈k,k2|g3|k3,k4〉 − 〈k,k2|g3|k4,k3〉|2 2π

�
δk+k2,k3+k4+pG

× δ
(
ε

p

k + ε
p2

k2
− ε

p3

k3
− ε

p4

k4

)f 0(k2)[1 − f 0(k3)][1 − f 0(k4)]

[1 − f 0(k)]
(δk,k′ + δk2,k′ − δk3,k′ − δk4,k′ ). (A2)

The amplitude of the umklapp vertex is evaluated by the RG in the framework of the quasi-1D electron-gas model,

〈k1,k2|g3|k3,k4〉 = π�vF g3
(
kp

F,1,k
p

F,2; k−p

F,3,k
−p

F,4

)
= π�vF g3(k⊥1,k⊥2; k⊥3,k⊥4), (A3)

where the position on the Fermi surface is parametrized by the transverse wave vectors. To solve the equation with the explicit
form of matrix elements shown in Eq. (A2), we separate the momentum conservation constraint into longitudinal and transverse
components [50],

δk+k2,k3+k4+pG = δk⊥+k⊥2,k⊥3+k⊥4

2π

L
�vF δ

(
ε

p

k + ε
p2

k2
+ ε

p3

k3
+ ε

p4

k4
− �

)
, (A4)

where � = ε⊥(k⊥) + ε⊥(k⊥2) + ε⊥(k⊥3) + ε⊥(k⊥4). The summation over the momentum vectors can be written as

1

LNP

∑
k

=
∑

p

∫
dε

p

k

2π�vF

1

NP

∑
k⊥

. (A5)

Carrying out the integration over ε
p′

k′ and rearranging the terms, we arrive at the final equation,

π

β�

1

N2
P

∑
k′
⊥,k⊥3,k⊥4

{
|g3(k⊥,k⊥3 + k⊥4 − k⊥; k⊥3,k⊥4) − g3(k⊥,k⊥3 + k⊥4 − k⊥; k⊥4,k⊥3)|2δk⊥,k′

⊥

× β�′/4 cosh(βE/2)

cosh[β(�′/4 − E/2)] sinh(β�′/4)
+ |g3(k⊥,k′

⊥; k⊥3,k⊥4) − g3(k⊥,k′
⊥; k⊥4,k⊥3)|2

× β�′′/4 cosh(βE/2)

cosh[β(�′′/4 − E/2)] sinh(β�′′/4)
δk⊥+k′

⊥,k⊥3+k⊥4 − 2|g3(k⊥,k⊥3; k′
⊥,k⊥4) − g3(k⊥,k⊥3; k⊥4,k

′
⊥)|2

× β�′′/4 cosh(βE/2)

cosh[β(�′′/4 − E/2)] sinh(β�′′/4)
δk⊥+k⊥3,k

′
⊥+k⊥4

}
φ̄E,k′

⊥ = 1, (A6)

where �′ = ε⊥(k⊥) + ε⊥(k⊥3 + k⊥4 − k⊥) + ε⊥(k⊥3) + ε⊥(k⊥4) and �′′ = ε⊥(k⊥) + ε⊥(k′
⊥) + ε⊥(k⊥3) + ε⊥(k⊥4). By inserting

the RG results of Sec. III A for the momentum-resolved umklapp scattering, the numerical solution of (A6) for φ̄E,k⊥ allows the
evaluation of the scattering contribution Qc

a to the Seebeck coefficient (13).
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Bechgaard, and J. M. Fabre, Eur. Phys. J. B 1, 39 (1998).

195153-12

https://doi.org/10.1051/jphys:019820043070105900
https://doi.org/10.1051/jphys:019820043070105900
https://doi.org/10.1051/jphys:019820043070105900
https://doi.org/10.1051/jphys:019820043070105900
https://doi.org/10.1051/jphyslet:01984004508039300
https://doi.org/10.1051/jphyslet:01984004508039300
https://doi.org/10.1051/jphyslet:01984004508039300
https://doi.org/10.1051/jphyslet:01984004508039300
https://doi.org/10.1103/PhysRevLett.75.2408
https://doi.org/10.1103/PhysRevLett.75.2408
https://doi.org/10.1103/PhysRevLett.75.2408
https://doi.org/10.1103/PhysRevLett.75.2408
https://doi.org/10.1103/PhysRevLett.46.852
https://doi.org/10.1103/PhysRevLett.46.852
https://doi.org/10.1103/PhysRevLett.46.852
https://doi.org/10.1103/PhysRevLett.46.852
https://doi.org/10.1051/jphyslet:019840045015075500
https://doi.org/10.1051/jphyslet:019840045015075500
https://doi.org/10.1051/jphyslet:019840045015075500
https://doi.org/10.1051/jphyslet:019840045015075500
https://doi.org/10.1103/PhysRevLett.98.147002
https://doi.org/10.1103/PhysRevLett.98.147002
https://doi.org/10.1103/PhysRevLett.98.147002
https://doi.org/10.1103/PhysRevLett.98.147002
https://doi.org/10.1140/epjb/e2010-10571-4
https://doi.org/10.1140/epjb/e2010-10571-4
https://doi.org/10.1140/epjb/e2010-10571-4
https://doi.org/10.1140/epjb/e2010-10571-4
https://doi.org/10.1088/0022-3719/18/26/010
https://doi.org/10.1088/0022-3719/18/26/010
https://doi.org/10.1088/0022-3719/18/26/010
https://doi.org/10.1088/0022-3719/18/26/010
https://doi.org/10.1103/PhysRevLett.84.2674
https://doi.org/10.1103/PhysRevLett.84.2674
https://doi.org/10.1103/PhysRevLett.84.2674
https://doi.org/10.1103/PhysRevLett.84.2674
https://doi.org/10.1007/s100510050150
https://doi.org/10.1007/s100510050150
https://doi.org/10.1007/s100510050150
https://doi.org/10.1007/s100510050150



