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The “parity” anomaly—more accurately described as an anomaly in time-reversal or reflection symmetry—
arises in certain theories of fermions coupled to gauge fields and/or gravity in a spacetime of odd dimension.
This anomaly has traditionally been studied on orientable manifolds only, but recent developments involving
topological superconductors have made it clear that one can get more information by asking what happens on an
unorientable manifold. In this paper, we give a full description of the “parity” anomaly for fermions coupled to
gauge fields and gravity in 2 + 1 dimensions on a possibly unorientable spacetime. We consider an application to
topological superconductors and another application to M theory. The application to topological superconductors
involves using knowledge of the “parity” anomaly as an ingredient in constructing gapped boundary states of
these systems and in particular in gapping the boundary of a ν = 16 system in a topologically trivial fashion.
The application to M theory involves showing the consistency of the path integral of an M theory membrane on
a possibly unorientable worldvolume. In the past, this has been done only in the orientable case.
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I. INTRODUCTION

A U(1) gauge theory in three spacetime dimensions,
coupled to a single massless Dirac fermion χ of charge
1, is invariant at the classical level under time-reversal and
reflection symmetry, which we will call T and R. However,
quantum mechanically there is an anomaly: To quantize this
theory in a gauge-invariant fashion, one must give up T
and R symmetry [1–3]. This anomaly is commonly called a
“parity” anomaly, but this terminology is somewhat misleading
as parity (a spatial inversion, acting as −1 on all spatial
coordinates) is in the connected component of the rotation
group in 2 + 1 dimensions. The anomaly is better understood
as an anomaly in T and R.

In this paper, we consider a refinement of the usual “parity”
anomaly. We will make this analysis for arbitrary gauge
groups, but for gauge group U(1), what we will learn can
be stated as follows. The usual statement of the anomaly is
that a U(1) gauge theory in 2 + 1 dimensions coupled to a
single Dirac fermion χ of charge 1 cannot be quantized in a
gauge-invariant way, consistent with R and T symmetry. If one
has two such Dirac fermions, both of charge 1, then the usual
“parity” anomaly is absent and, on an orientable manifold,
the theory can be quantized in a way that preserves U(1)
gauge-invariance as well as R and T. If R and T were ordinary
global symmetries (not acting on spacetime), one would now
ask: Can these symmetries be gauged? In general, for ordinary
global symmetries, the answer to such a question can be “No”:
Even if the symmetries are valid as global symmetries, there
may be an anomaly (sometimes called an ’t Hooft anomaly)
that would obstruct gauging them. For R and T, the closest
analog of gauging the symmetry is to use these symmetries to
formulate a theory on an unorientable manifold.1 Therefore,
to get a refined version of the usual “parity” anomaly, we
can consider a U(1) gauge theory with a general number y

1If a theory with R or T symmetry can be formulated on an
unorientable manifold, we say that R or T is gaugeable, while actually
gauging the symmetry in the context of quantum gravity would mean
summing over unorientable manifolds.

of Dirac fermions of charge 1 and ask for what values of y

can this theory be placed on an unorientable manifold without
violating gauge invariance. We shall answer this question and
find that y must be a multiple of 4. Thus, while the usual
“parity” anomaly is a mod 2 effect, its refinement in which
one “gauges” R and T symmetry is really a mod 4 effect.

The existence of this refinement should not come as
a surprise, since the purely gravitational analog is already
known.2 Consider a theory of ν Majorana fermions coupled
to gravity only. As long as one is on an orientable manifold,
the fermion path integral of this system is real in Euclidean
signature (because the Dirac operator is Hermitian). One
should worry about a possible problem in defining the sign
of the fermion path integral. However, as long as ν is even—to
ensure that the path integral is positive—the theory of ν

Majorana fermions is completely well defined and R and
T invariant on an orientable manifold.3 Can the R and T
symmetries be gauged, or, more precisely, is the theory well
defined when formulated on an unorientable manifold? The
answer to this question is that when the theory of ν Majorana
fermions is formulated on an unorientable manifold, one runs

2Also, it is already known from another point of view (see Sec. III C
of [4] and Appendix C of [5]) that a purely 2 + 1-dimensional
T-invariant U(1) gauge theory with 4n + 2 Dirac fermions of charge
1 is anomalous from the standpoint of condensed-matter physics.
The basic monopole operator of this theory, defined by a monopole
singularity of charge 1, is a bosonic operator that transforms under
T as a Kramers doublet. This is not possible in a purely 2 + 1-
dimensional system that is built microscopically from electrons and
nuclei. We discuss this issue in Sec. III B 2.

3In this introduction, we take all ν fermions ψ1, . . . ,ψν to transform
in the same way under T or R. Specifically, we define T by
Tψi(t,�x) = γ0ψi(−t,�x), i = 1, . . . ,ν, where here γμ, μ = 0, . . . ,2
are the Dirac γ matrices, and similarly for R. A fermion transforming
with the opposite sign—as Tψ(t,�x) = −γ0ψ(−t,�x)—would make a
contribution to the anomaly with the opposite sign. In general, ν

should be defined as the number of fermions that transform with a
+ sign minus the number that transform with a − sign. For more on
this, see [7], as well as Sec. II below.
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into an anomaly that involves an 8th root of 1 in the simplest
calculations [6] and a 16th root of 1 in a more systematic
analysis (see Sec. 4 of [7]).

The mod 16 anomaly for 2 + 1-dimensional Majorana
fermions coupled to gravity only is intimately related to the
theory of a topological superconductor in 3 + 1 dimensions. A
topological superconductor in 3 + 1 dimensions is character-
ized by an invariant usually called ν; in Euclidean signature,
it has a bulk partition function exp(−νπ iη/2), where η is
the eta invariant of the four-dimensional Dirac operator. One
can think of this factor, which was suggested in Ref. [8],
as coming from integrating out ν bands4 of gapped bulk
fermions [7,9]. Here exp(−π iη/2) is a topological invariant
if the worldvolume X of the topological superconductor has
no boundary; it is the partition function of a topological
field theory defined on closed four-dimensional spin (or more
precisely pin+) manifolds. This invariant is, in general, an
arbitrary 16th root of 1, so exp(−νπ iη/2) is trivial (for all X)
if and only if ν is divisible by 16. However, what happens
if X has a boundary? Then, if ν is not a multiple of 16,
exp(−νπ iη/2) cannot be defined as a topological invariant.
However, if we include ν massless Majorana fermions on the
boundary of X (and transforming under T as in footnote 3), the
anomaly of the fermions compensates for the ill-definedness
of the bulk partition function and the combined system is
well-defined and anomaly-free. In this paper, we will analyze
the generalization of this construction to include gauge fields,
either gauge fields that propagate in 3 + 1 dimensions or gauge
fields that propagate only on the boundary of a four-manifold.

In band theory, and as we have defined it above, ν is an
integer, but when fermion interactions in the bulk theory are
taken into account, it is known from several points of view
[4,5,10–12] that ν is only an invariant mod 16. One way to
understand this is by the fact that the partition function of the
bulk theory and the anomaly of the boundary theory depend
only on the value of ν mod 16.

This paper is organized as follows. We analyze the general
“parity” anomaly for gauge fields on an unorientable manifold5

in Sec. II. In the remainder of the paper, we describe two
applications of the result, one in condensed-matter physics
and one in string/M theory.

In Sec. III, we use our results to construct gapped,
symmetry-preserving boundary states of a topological super-
conductor. Such states and analogous ones for topological
insulators and for certain bosonic states of matter have been
analyzed in the literature from various points of view [4,5,13–
21]. We use here the same methods as in Ref. [22] and our
basic examples were already analyzed there. However, having
a more complete knowledge of which models are anomaly-free
enables us to be more precise on some points, and in particular,
it will help us to construct in a straightforward way a gapped
and topologically trivial boundary state at ν = 16. (If one
incorrectly believed that the “parity” anomaly is a mod 2 effect

4Or, more generally, any number of bands with a net invariant of ν.
5Mathematical background to this rather technical analysis can be

found in Ref. [7]. The applications in the rest of the paper can be
understood without a detailed reading of Sec. II, provided the reader
is willing to take a few statements on faith.

even on an unorientable manifold, one would incorrectly infer
the existence of a gapped and topologically trivial boundary
state at ν = 8.) We primarily consider models that are gapped
at the perturbative level, but in Sec. III B 6, we consider models
that are gapped with the help of nonperturbative effects. Here
we give two related constructions, both at ν = 16, one of which
uses the mass gap of SU(2) gauge theory and one of which uses
the Polyakov model [23] of compact QED in 2 + 1 dimensions.
(An interpolation between different bulk states at ν = 16 using
nonperturbative properties of four-dimensional gauge theory
has been described in Ref. [12].)

In Sec. IV, we apply some of the same ideas to a problem
in string/M theory. It has been known [24] that the “parity”
anomaly in 2 + 1 dimensions has implications for M2-branes
(membranes with 2 + 1-dimensional worldvolume that arise in
M theory). In fact, the fermions that propagate on the M2-brane
worldvolume do have an anomaly, which has to be canceled
by a version of anomaly inflow [25] involving a shifted
quantization law of the three-form field of M theory. In the past,
this analysis has been made only for the case that the M2-brane
worldvolume is orientable. Here we analyze the unorientable
case, showing that, with a slightly refined statement of the
shifted quantization law, anomalies still cancel. (Previously,
the path integral on an unorientable string worldsheet has been
analyzed in Refs. [26,27].) A short summary of the paper can
be found in Sec. V.

We conclude this introduction with a general comment.
Apart from technical details, the analysis in this paper differs
in the following way from more familiar discussions of
the “parity” anomaly. On an orientable manifold, the usual
“parity” anomaly is a conflict between T or R symmetry
and gauge invariance. However, when we use R symmetry
to formulate a theory on an unorientable manifold (we work
in Euclidean signature so R is more relevant here than T), that
symmetry is built in and it is too late to give it up. So the
anomalies we compute on unorientable manifolds represent
breakdowns of gauge symmetry or diffeomorphism symmetry
rather than conflicts between those local symmetries and T or
R symmetry.

II. ANALYSIS OF THE ANOMALY

A. Preliminaries

In this paper, we will consider fermions on a 2 + 1-
dimensional manifold W interacting with gauge fields of some
gauge group G and with gravity. In the main condensed-matter
application, W will be the boundary of a four-manifold X that
will be the worldvolume of a topological superconductor and
G will be a group of emergent gauge fields that propagate
only along W (and not X). In the string/M theory example,
W will be the worldvolume of an M2-brane, and G will be
the structure group of the normal bundle to W in the full
higher-dimensional spacetime.

In either case, we consider gauge fields a that transform
under time-reversal T in the natural-looking way

T(a0(x0,�x)) = − a0(−x0,�x),

T(ai(x
0,�x)) = ai(−x0,�x), i = 1,2. (2.1)
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In terms of differential forms, if τ is the time-reversal
transformation of spacetime x0,�x → −x0,�x, Eq. (2.1) would
be written T(a) = τ ∗(a). These conditions imply that the
gauge charge (which couples to a0) is odd under T, and the
“magnetic” flux (the integral of F12 = ∂1a2 − ∂2a1) is even.
This behavior under T will be assumed for all gauge fields
considered in the present paper.

The choice in Eq. (2.1) really requires some explanation. In
nature, there is also an operation C of charge conjugation, so
there are two possible time-reversal operations, namely T and
CT. The usual convention in particle physics and condensed-
matter physics is that the gauge field A of electromagnetism
transforms under T with an opposite sign to Eq. (2.1);
thus, T(A) = −τ ∗(A), as opposed to CT(A) = +τ ∗(A). This
definition ensures that electric charge is T-even. By contrast,
the choice (2.1) means that the conserved charge q that couples
to a0 is T-odd.

A rationale for the choice (2.1) is that in the present
paper we will consider problems in which there is no natural
operation corresponding to C. Since C reverses the sign
of the electric charge, and electric charge is not conserved
in a superconductor,6 there is no natural C operation in
the theory of a topological superconductor. Likewise, in the
string/M theory problem, there is no operation corresponding
to C.

Since there will be no analog of C in the problems that we
will consider, we will simply refer to the transformation (2.1)
as T. Actually, to analyze anomalies, which will be our goal
in the present section, it is convenient to work in Euclidean
signature. Here we consider a spatial reflection rather than time
reversal. We take R to act by reflection of one coordinate:

R(a1(x1,x2,x3)) = − a1(−x1,x2,x3),

R(ai(x1,x2,x3)) = ai(−x1,x2,x3), i > 1. (2.2)

Equivalently, R(a) = ρ∗(a), where ρ is the spatial reflection
x1,x2,x3 → −x1,x2,x3.

Thus, in going to an unorientable manifold, we will consider
gauge fields a that transform under an orientation-reversing
diffeomorphism ρ as a → ρ∗(a). As we will see, this leads to
a richer structure than the familiar “parity” anomaly that is seen
on an orientable manifold. By contrast, if one uses CR to go to
an unorientable manifold [for example, by considering a U(1)
gauge field a that transforms under an orientation-reversing
diffeomorphism as a → −ρ∗(a)], then one finds only the
standard “parity” anomaly. This has been explained in Sec. 4.7

6To be more precise, in a superconductor electric charge is
conserved mod 2, meaning that the sign of the charge is irrelevant
and thus there is no natural C operation. To say it differently,
a superconductor has fermionic quasiparticles but there is not a
meaningful sense in which their electric charge is positive or negative.
In terms of the electromagnetic gauge field A, one would say that in a
superconductor, as U(1) is broken to Z2, A becomes a Z2 gauge field,
so that 2A is gauge equivalent to 0 at long distances and the operation
C : A → −A is irrelevant. From a macroscopic point of view, this
is true even in the presence of flux lines. A fermionic excitation
propagates around a flux line with a change of sign regardless of
whether the flux line has flux π or −π .

of [7]. That is why the considerations of the present paper are
more directly relevant to topological superconductors (and M
theory) rather than to topological insulators.

We reiterate that in this paper we consider theories that have
no natural C operation at the microscopic level so the discrete
symmetries are T and R. Should we contemplate the possibility
of C as an emergent symmetry? In general, exact emergent
symmetries are gauge symmetries; an emergent C symmetry,
if it is an exact symmetry, would be part of the emergent gauge
group and could be incorporated as such in the analysis that
follows. It is certainly possible to have approximate emergent
global symmetries, but an approximate C symmetry would not
be relevant in the present paper; for example, we cannot use
CR in putting a theory on an unorientable manifold unless CR
is an exact symmetry.

A final comment is that what we call T and R in this paper
correspond more closely to what are usually called CT and R,
respectively, when electric charge conservation is relevant and
in theories with a microscopic C symmetry.7 In a theory that
does have a microscopic C symmetry, analytic continuation
from Lorentz signature to Euclidean signature relates CT to R
and T to CR.

B. The fermion path integral

In general, there is a choice of sign in the transformation of
a 2 + 1-dimensional fermion field ψ under T:

T(ψ(t,�x)) = ±γ0ψ(−t,�x). (2.3)

We note that for either choice of sign, one has T2 = (−1)F

[here (−1)F is the operator that counts the number of fermions
mod 2]. However, the two choices are physically inequivalent;
no linear transformation of ψ would reverse this sign.

There is a similar sign choice in the transformation under a
spatial reflection. In Euclidean signature,

R(ψ(x1,x2,x3)) = ±γ1ψ(−x1,x2,x3). (2.4)

In a relativistic theory, the signs in Eqs. (2.3) and (2.4) can be
equated, as the CRT theorem8 ensures that a theory has a T
symmetry with a given choice of sign if and only if it has an
R symmetry with the same choice of sign.

We consider a system of 2 + 1-dimensional massless
Majorana fermions � = (ψ1,ψ2, . . . ,ψn) transforming in an
n-dimensional real9 representation R of a gauge group G and

7For example, what we call T was called CT in Secs. 2–5 of [22],
which are devoted to a topological insulator (in which electric charge
is conserved). It was called Tsc in Sec. 6 of that paper, which is
devoted to a topological superconductor.

8Here C can be dropped if gauge fields transform under T and R
as stated in Eqs. (2.1) and (2.2). What we are calling T is called
CT in the usual statement of the theorem, so what is usually called
CRT reduces to RT with our choices. As explained in Sec. II A, we
are using conventions that are more natural in a context (such as the
theory of a topological superconductor) in which there is no natural
C operation.

9The representation is real because the global symmetry group of
n massless Majorana fermions in 2 + 1 dimensions is O(n). G is
necessarily a subgroup of O(n) and the representation R is the vector
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all transforming under T (or R) with a + sign. We want to know
whether this theory makes sense as a purely 2 + 1-dimensional
theory and to measure the anomaly if it does not. We will
schematically call that anomaly αR . One can think of this
anomaly as the change in phase of the path integral under a
diffeomorphism and/or gauge transformation, though we also
come later to a more powerful way to think about it involving
topological field theory.

Alternatively, we could assume that the fermions �

transform under T and R with a minus sign. This complex
conjugates the path integral, so it changes the sign of the
anomaly, replacing αR with −αR .

More generally, we could have one set of fermions � =
(ψ1,ψ2, . . . ,ψn) transforming in the representation R of G,
and transforming under T with a + sign, and a second
set � ′ = (ψ ′

1,ψ
′
2, . . . ,ψ

′
n′ ) transforming in some possibly

different representation R′ of G, and transforming under T
with a − sign. The net anomaly is then αR − αR′ . Clearly, then,
to understand the anomaly for an arbitrary system of fermions,
it suffices to compute αR; that is, it suffices to consider a system
of fermions � that all transform under T with a + sign.

Formally, the path integral Z� of a system of fermions,
with Dirac operator D = i /D, is the Pfaffian Pf(D). Our
approach to computing the anomaly will be based on the
Dai-Freed theorem [28]. This theorem10 gives a recipe (in
Euclidean signature) to define Z� in a gauge-invariant fashion,
compatible with general physical principles such as unitarity,
once some auxiliary choices are made. One then has to check
whether the result does depend on the choices. If it does not,
then one has succeeded in finding a satisfactory definition of
Z� and the 2 + 1-dimensional theory is anomaly-free. If Z� as
defined by the theorem does depend on the auxiliary choices,
then the theory is anomalous, and its anomaly can be measured
by how the theory depends on the choices.

Let W be a compact three-manifold endowed with a pin+
structure11 and a background gauge field. Suppose that we
wish to calculate the path integral Z� of the fermions �

on a possibly unorientable three-manifold W of Euclidean
signature. The Dai-Freed theorem gives us a definition of
Z� once we are given a four-dimensional manifold X with
boundary W such that the pin+ structure and the metric and
gauge field on W all extend over X. The definition is

Z� = |Pf(D)| exp(−π iηR/2). (2.5)

Here ηR is the Atiyah-Patodi-Singer [30] (APS) eta invariant
of the Dirac operator acting on four-dimensional Majorana
fermions in the representation R of G, and |Pf(D)| is simply
the absolute value of Pf(D) (this absolute value is always
anomaly-free for an arbitrary fermion system).

Mathematically, the justification for the formula is as
follows. First, the right-hand side is well defined and gauge

representation of O(n), restricted to G. This is a real representation
because the vector representation of O(n) is real.

10Some aspects of the Dai-Freed theorem were recently described
for physicists in Ref. [29].

11A pin+ structure is the generalization of a spin structure on a
possibly unorientable manifold for fermions with T2 = (−1)F. See
Appendix A of [7] for an introduction.

invariant. Second, the variation of the right-hand side is as
expected; that is, its variation in a change in the background
metric or gauge field on X depends only on the fields along
W and is given by the (regularized) one-point function of
the stress tensor or current in the fermion theory on W , as
expected. An important consequence of the second point is that
the right-hand side vanishes precisely when Z� is expected to
vanish, namely for metrics and gauge fields such that D has
a zero mode; and moreover, it varies smoothly near such a
point in field space [this is required in order for the formula to
be physically sensible and is nontrivial as neither |Pf(D)| nor
exp(−π iηR/2) varies smoothly near such a point]. Finally, in
view of the gluing theorem for the eta invariant [28], which will
be described below, the right-hand side has a behavior under
cutting and pasting that is compatible with physical principles
such as unitarity.

Physically, one might interpret the formula (2.5) as fol-
lows, by analogy with standard constructions in topological
band theory [31–33]. Consider on X a gapped system with
G symmetry consisting of massive Majorana fermions ϒ

transforming in the representation R of G. For one sign12 of the
ϒ mass parameter, this theory is topologically trivial and can
be given a boundary condition such that the theory remains
gapped along the boundary. For the opposite sign of the ϒ

mass parameter, the bulk theory is topologically nontrivial,
and gapless 2 + 1-dimensional Majorana fermions—with the
properties of the fields that we have called �—appear on the
boundary. The formula (2.5) for Z� should be understood as
the partition function for the combined system comprising the
gapped fermions ϒ in bulk and the gapless fermions � on the
boundary.

On a compact four-manifold X without boundary, the ϒ

path integral (after removing nonuniversal local terms) would
be Zϒ = exp(−π iηR/2). This fact goes back in essence to
[3] and has been exploited in several recent papers [7,9]. The
right-hand side is a topological invariant (invariant, that is,
under continuous variation of the metric and gauge field on
X). Indeed, the APS index theorem [30] implies13 that ηR

12In topological band theory, the description in terms of a massive
Majorana fermion is valid only near a point in the Brillouin zone
at which the band gap—controlled in relativistic terminology by a
fermion mass parameter—is small. Which sign of the mass parameter
corresponds to a trivial theory and which corresponds to a nontrivial
theory depends on the topology of the rest of the band. In a relativistic
theory, defined with Pauli-Villars regularization, the massive fermions
ϒ are accompanied by regulator fields ϒ̃ of opposite statistics. The
trivial case is that ϒ and ϒ̃ have mass parameters of the same sign,
and the nontrivial case is that the mass parameters have opposite
signs.

13See, for example, [7], especially Sec. 2 and Appendix A, for an
explanation of assertions made here. In brief, in even dimensions,
ηR is a topological invariant except that it jumps by ±2 when
an eigenvalue of the Dirac operator passes through 0. In four
dimensions, for a real representation R (which we have here since the
2 + 1-dimensional fermions that we started with are always in a real
representation of G), the eigenvalues of the Dirac operator have even
multiplicity because of a version of Kramers doubling. So the jumps
are by ±4 and ηR is a topological invariant mod 4.
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is a topological invariant mod 4, so that exp(−π iηR/2) is
a topological invariant. In fact, exp(−π iηR/2) is not just a
topological invariant, but a cobordism invariant (it equals 1 if
X is the boundary of a five-dimensional pin+ manifold over
which the G bundle over X extends). This again follows from
the APS index theorem. Cobordism invariance implies14 [34]
that exp(−π iηR/2) is the partition function of a topological
field theory (defined on a four-dimensional pin+ manifold
endowed with a G bundle). Cobordism invariance of the
eta invariant in four dimensions motivated the conjecture in
Ref. [8] that this function would be relevant to fermionic
symmetry-protected topological (SPT) phases.

However, if X is a manifold with nonempty boundary W ,
then it is not possible to define ηR to make exp(−π iηR/2)
a topological invariant. This means that there is a problem
in defining on a manifold with boundary the topological
field theory that on a manifold without boundary has par-
tition function exp(−π iηR/2). This problem does not have
a unique solution; the topological field theory in question
has different possible boundary states. However, it always
has one simple gapless boundary state, in which Majorana
fermions in the representation R propagate on the boundary.
Z� = |Pf(D)| exp(−π iηR/2) is the partition function of the
theory on X with this boundary state along W . Here ηR is
defined using APS boundary conditions. On a four-manifold
without boundary, exp(−π iηR/2) is a topological invariant;
on a four-manifold with boundary, it is not a topological
invariant, but varies in such a way that it makes sense in
conjunction with the boundary fermions in the combination
|Pf(D)| exp(−π iηR/2).

Now we can discuss whether the theory of the 2 + 1-
dimensional massless fermions � on W makes sense as
a purely 2 + 1-dimensional theory. In the present frame-
work, this amounts to asking whether the formula Z� =
|Pf(D)| exp(−π iηR/2) depends on the choices that were made
in defining ηR . There is a standard way to answer this sort of
question. Let X and X′ be two different four-manifolds with
boundary W , and with choices of extension over X and over
X′ of the pin+ structure of W and the G bundle over W . Let ηX

R

and ηX′
R be the eta invariants computed on X or on X′. To decide

whether the formula for Z� depends on X, we need to know
whether exp(−π iηX

R/2) is always equal to exp(−π iηX′
R /2).

The gluing theorem for the eta invariant [28] gives a
convenient way to answer this question. To motivate the
statement of this theorem, let us first recall the following basic
fact about local effective actions in quantum field theory. Let
IY

eff = ∫
Y

d4x
√

gL be any local effective action on a manifold
Y . Let Y and Y ′ be two manifolds with boundary such that W

is a boundary component of each. Suppose further that Y and
Y ′ can be glued together along W to make a manifold15 Y ∗, as
in Fig. 1. We assume that in this gluing, all structures on Y and
Y ′ that are used in defining the effective action are compatible.

14This assertion is closely related to the gluing theorem [28] for the
eta invariant, which we state shortly.

15W may be only one component of the boundary of Y and Y ′,
so that Y ∗ may be itself a manifold with boundary, as in the figure.
However, the boundary of Y ∗ will be empty in the application we
make momentarily.

FIG. 1. Two manifolds Y and Y ′ glued along a component of
their common boundary to make a manifold Y ∗ that itself may have
a boundary.

Thus, if Y and Y ′ are orientable (and the definition of the action
depends on the orientation), the orientations must agree in the
gluing; if they are spin manifolds, the spin structures must
agree, and if they are pin+ manifolds, the pin+ structures must
agree. Under these conditions, for any local effective action,
we have the gluing or factorization property

exp
(
iIY

eff

)
exp

(
iIY ′

eff

) = exp
(
iIY ∗

eff

)
, (2.6)

which is intimately connected with locality and unitarity in
physics. The gluing theorem for the eta invariant says that
even though ηR is not the integral of a local effective action,
exp(−π iηR/2) behaves as if it were:

exp
(−π iηY

R/2
)
exp

(−π iηY ′
R /2

) = exp
(−iπηY ∗

R /2
)
. (2.7)

It is because of this formula that it is physically sensible to
have a topological field theory with G symmetry that—when
defined on a manifold Y endowed with a G bundle—has
exp(−π iηY

R/2) as its partition function.
To apply this theorem to our problem, we have to be careful

with a minus sign. We start with two manifolds X and X′ that
each have the same boundary W (and an extension of the same
gauge bundle) as in Fig. 2(a). When we say that X and X′ have
the same boundary W , this is in a convention in which they
are on the “same side” of W , meaning (if they are orientable)
that they are oriented in the same way, and in general in the
context of our problem that their pin+ structures restrict to the
same pin+ structure on W . To glue them to make a manifold
X∗ without boundary, we first “flip over” X′, which means that
we reverse its orientation if it is orientable, and in general we

FIG. 2. Two manifolds X and X′ with common boundary W are
glued together along their common boundary to build a compact
manifold X∗ without boundary.
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replace its pin+ structure by the complementary one.16 Let us
write −X′ for the flipped version of X′. The gluing involves
joining X to −X′, as in Fig. 2(b). “Flipping” X′ reverses the
sign of its eta invariant. So in this context, the gluing formula
reads

exp
(−π iηX

R/2
)

exp
(−π iηX′

R /2
) = exp

(−iπηX∗
R

/
2
)
. (2.8)

Clearly, then, the left-hand side of Eq. (2.8) is always 1 if
and only if the right-hand side is always 1. So Z� as defined
in Eq. (2.5) is independent of the choice of X if and only if
exp(−π iηX∗

R /2) is 1 whenever X∗ has no boundary.
The physical interpretation is straightforward: The bound-

ary fermions make a consistent 2 + 1-dimensional theory by
themselves if and only if the bulk topological field theory with
partition function exp(−π iηX

R/2) is trivial.

C. A more precise question, and a strategy to answer it

The question that we have stated so far is a little too crude
for some of our applications. Even if the emergent gauge
group G is absent, the theory of n Majorana fermions in
2 + 1 dimensions (all transforming under T with a + sign)
is anomalous unless n is a multiple of 16. In this paper, we
are not mainly interested in this purely gravitational anomaly,
which is familiar from several points of view and has been
studied from the present point of view in Ref. [7] (following a
calculation in Ref. [6] in a particular example).

We can always reduce to the case that n is a multiple of 16 by
adding gauge-singlet fermions. This will eliminate the purely
gravitational anomaly and focus attention on the dependence
of the anomaly on the gauge bundle. Instead of doing this, let
us just agree to refine the question we ask. Instead of asking
whether exp(−π iηR/2) is always 1 (on a four-manifold X

without boundary), we will ask whether it has a nontrivial
dependence on the choice of a G bundle over X. A “no” answer
to this question means that the anomaly is purely gravitational
and does not depend on the gauge fields at all.

In our condensed-matter application, we will want to know
when it is possible to couple boundary fermions to emergent

16This notion is described in Ref. [7]. If P is a pin+ structure over
X, then there is a complementary pin+ structure P ′ such that the
monodromies of P ′ around any orientation-reversing loop in X are
the negatives of those of P . “Flipping” X′ exchanges P and P ′,
and this maps exp(−π iηX′

R /2) to its inverse, as stated in the text.
To understand why the flip exchanges P and P ′, let ψ be a Fermi
field on X and ψ ′ a Fermi field on X′. In gluing X to X′ along their
common boundary W , one sets ψ ′|W = /nψ |W , where /n = �γ · �n, �n
being the unit normal vector to W in X or X′ and �γ the Dirac γ

matrices. Since /n anticommutes with the γ matrices of W , acting
with /n reverses the pin+ structure of W . (A monodromy around an
orientation-reversing loop in W is represented by a γ matrix of W ,
so acting with /n changes the sign of this monodromy.) Thus, for the
gluing relation ψ ′|W = /nψ |W to make sense, X and X′ must have
opposite pin+ structures along W . Reversing the pin+ structure can
be accomplished by changing the sign of all gamma matrices. This
changes the sign of the Dirac operator, so it changes the sign of the
eta invariant, and replaces exp(−π iηX′

R /2) with its inverse.

gauge fields without any new contribution to the anomaly.
For this, we will need to know precisely when exp(−π iηR/2)
does not depend on the G bundle. Knowing how to analyze this
question will also provide the starting point for our application
to string/M theory.

For our purposes, a very simple criterion will be sufficient.
Let VR → X be the real vector bundle associated to the
representation R of X. (Thus, R-valued fermions are sections
of P ⊗ VR , where P is the pin+ bundle of X. Mathematically,
VR is called the vector bundle associated with the underlying G

bundle over X in the representation R.) Since exp(−π iηR/2)
can depend on a choice of gauge bundle only via the topology
of VR , if VR is always trivial, then exp(−π iηR/2) is certainly
independent of the choice of G bundle.

We can generalize this criterion slightly. Let o be a trivial
real line bundle over X, and let o⊕k be a trivial rank k bundle
constructed as the direct sum of k copies of o. It can happen
that VR is not always trivial but there is some k such that
VR ⊕ o⊕k is always trivial. This means that the field �, when
supplemented with k neutral Majorana fermions (coupled to
gravity only), has only a gravitational anomaly. However, the
neutral fermions that we had to add to get this result do not
couple to the gauge fields at all, so they only contributed to
the purely gravitational part of the anomaly. Hence, also under
these more general conditions, the anomaly does not depend
on the gauge bundle.

As a matter of terminology, if VR ⊕ o⊕k is trivial for some
k, we say that VR is stably trivial. Thus, a fermion system
such that VR is always stably trivial has only a gravitational
anomaly.17

We will use this criterion in Sec. II E to show that some
fermion systems in 2 + 1 dimensions have only a gravitational
anomaly, and in particular become entirely anomaly-free if a
suitable number of gauge-singlet fermions is added to cancel
the gravitational anomaly. These are the models that we
will use in Sec. III to construct gapped boundary states of
a topological superconductor. (The application to string/M
theory in Sec. IV involves similar but slightly different
considerations.) All models we study in which VR is not
stably trivial have the opposite property; for these models,
the anomaly does depend on the gauge bundle.

D. Some additional facts

A few more facts will greatly simplify the study of examples
in Sec. II E. As a preliminary, we ask the following question. In
what sense does the anomaly that we have described involving
the eta invariant generalize the more familiar “parity” anomaly
that can be seen on an orientable manifold?

17In general, two vector bundles V and V ′ over X are said to be
stably equivalent if V ⊕ ok is equivalent to V ′ ⊕ ok for some k. Thus,
for V to be stably trivial means that it is stably equivalent to a trivial
bundle. If V and V ′ are stably equivalent and have a rank greater than
the dimension of X, then they are actually equivalent. (This can be
proved using a triangulation of X; V and V ′ are certainly isomorphic
on the 0-skeleton of a triangulation and one proves inductively that
an isomorphism over the r skeleton can be extended over the r + 1
skeleton.) We will not need to know this in our analysis of the anomaly,
but it will be useful later in the paper.
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This question may be answered as follows (see Secs. 2 and
4 of [7] for more detail). If X is an orientable four-manifold,
and DR is the Dirac operator acting on R-valued spinors on X,
then18 the eta invariant ηR of DR receives contributions only
from zero modes of DR and is congruent mod 4 to the index
I of DR . This means that exp(−π iη/2) can be replaced by
exp(−π iI/2). Since I is an even integer, exp(−π iI/2) can
be written in a manifestly real (and thus T invariant) form as
(−1)I/2. The anomaly is thus a mod 2 question, involving
evenness or oddness of the integer I/2, just as in more
traditional treatments of the “parity” anomaly. The Atiyah-
Singer index theorem can be used to write the integer I/2
as a linear combination of gauge and gravitational instanton
numbers. The anomaly (−1)I/2 depends on the gauge bundle if
and only if (on a four-manifold X without boundary) the gauge
theory instanton number can make an odd contribution to I/2.
Now let us compare this to the usual “parity” anomaly in three
dimensions. This anomaly can be computed in terms of the
spectral flow of a one-parameter family of three-dimensional
Dirac operators, and that spectral flow is equal19 to I/2 on a
four-manifold (the mapping torus) constructed from the given
one-parameter family. So there is a gauge theory contribution
to the “parity” anomaly in three dimensions if and only if there
is a gauge theory contribution to (−1)I/2 in four dimensions.

So we can only get something beyond the standard “parity”
anomaly if X is unorientable. This actually leads to a useful
simplification. A real vector bundle VR over an unorientable
four-manifold X is stably trivial if and only if its Stieffel-
Whitney classes vanish:

w1(VR) = w2(VR) = w4(VR) = 0. (2.9)

(We need not consider w3, since it vanishes whenever w1 =
w2 = 0.) Necessity of this criterion is clear, since the Stieffel-
Whitney classes are stable characteristic classes of a real
vector bundle. Sufficiency is proved as follows starting with
a triangulation of X. Vanishing of w1(VR) ensures that VR

is stably trivial on the 1-skeleton of X; vanishing of w2(VR)
ensures that it is stably trivial on the 2-skeleton and [since
w3(VR) = 0] the 3-skeleton; and finally, vanishing of w4(VR)
ensures that VR is stably trivial on the 4-skeleton and thus on all
of X. In the last step, we use the fact that X is unorientable. If
X were orientable, then the integer-valued instanton number
of VR would be an obstruction to stable triviality of VR on
the 4-skeleton of X. However, with X unorientable, which
ensures that H 4(X,Z) = Z2, the instanton number of a real
vector bundle VR is only a Z2-valued invariant and can be
measured by w4(VR). (Instanton number is only a Z2-valued
invariant on an unorientable manifold, because an instanton,
when transported around an orientation-reversing loop, comes
back as an anti-instanton.)

18In brief, on an orientable manifold, the spectrum of DR has a
symmetry λ ↔ −λ that follows from considerations of chirality and
ensures that the nonzero modes make no net contribution to ηR . Let
n+ and n− be the numbers of zero modes ofDR of positive or negative
chirality; n+ and n− are both even because of a version of Kramers
doubling. Moreover, ηR = n+ + n−, while I = n+ − n−, so ηR is
congruent to I mod 4.

19See Sec. 2 of [7].

E. Examples

For our first example, we take G = U(1) or equivalently
SO(2).

Let R(c)
n be a complex one-dimensional representation of

U(1) with charge n. A one-dimensional complex vector space
can be viewed as a two-dimensional real vector space. So R(c)

n

can be regarded as a real two-dimensional representation of
SO(2); when we do this, we denote it as Rn.

A U(1) gauge field on a four-manifold X is a connection
on a complex line bundle L over X. A field of charge n is
a section of Ln. Ln can be regarded as a rank 2 real vector
bundle Vn over X. Vn is the real vector bundle associated to
the representation Rn of SO(2). Now let us specialize to the
case that X is unorientable and ask if Vn is stably trivial. As
explained in Sec. II D, this is so if and only if the Stieffel-
Whitney classes of Vn vanish.

In general, if U is any complex line bundle and V is the
corresponding rank 2 real vector bundle, then the only nonzero
Stieffel-Whitney class20 of V is the mod 2 reduction of c1(U),
the first Chern class of U :

w1(V ) = 0 = wi(V ), i > 2,

w2(V ) = c1(U) mod 2. (2.10)

[Here wi(V ) = 0 for i > 2 since, in general, the Stieffel-
Whitney classes ws(V ) of a rank r real vector bundle V

vanish for s > r .] In our case, this means that the only nonzero
Stieffel-Whitney class of Vn is

w2(Vn) = c1(Ln) = nc1(L) mod 2. (2.11)

If n is even, then since the Stieffel-Whitney classes are mod 2
classes, this result implies that w2(Vn) = 0. Hence, Vn is stably
trivial, in general (that is, on any four-manifold X and for any
gauge bundle), if n is even. For odd n, this is not true, since,
in general, nc1(L) does not vanish mod 2.

From this we learn that a U(1) or SO(2) gauge theory
in 2 + 1 dimensions with a single fermion multiplet of even
charge n is completely anomaly-free, even on an unorientable
manifold. For odd n, this is not true; in fact, for odd n, this
theory possesses the standard “parity” anomaly. (The “parity”
anomaly is most often considered for charge 1, but it is a mod
2 effect and only depends on the charge mod 2; see Sec. 3.6 of
[22] for a detailed explanation.)

More generally, let us consider a theory with gauge
group U(1) or SO(2) and with Dirac fermions χ1, . . . ,χk of
charges n1, . . . ,nk . Here the ni are integers that (after possibly
replacing some of the χ ’s with their charge conjugates) we can
take to be non-negative. The corresponding real representation
of SO(2) is R = ⊕k

i=1Rni
, and the corresponding real vector

bundle is VR = ⊕k
i=1Vni

. To compute the Stieffel-Whitney
classes of VR , we need the Whitney sum formula. If V is
a real vector bundle over a d-dimensional manifold X, the
total Stieffel-Whitney class of V is defined as w(V ) = 1 +
w1(V ) + w2(V ) + · · · + wd (V ). The Whitney sum formula
says that if V and V ′ are two such bundles, then

w(V ⊕ V ′) = w(V )w(V ′). (2.12)

20Apart from the trivial class w0(V ) = 1.
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This determines the Stieffel-Whitney classes of the direct sum
V ⊕ V ′ in terms of those of V and V ′. Repeated application of
the formula determines the Stieffel-Whitney classes of a direct
sum with more than two summands, such as VR = ⊕k

i=1Vni
.

We find

w2(VR) =
∑

i

nic1(L) mod 2,

w4(VR) =
∑
i<j

ninj c1(L)2 mod 2. (2.13)

In general, neither c1(L) nor c1(L)2 vanishes mod 2. So the
condition for VR to be stably trivial is

k∑
i=1

ni = 0 mod 2,

∑
1�i<j�k

ninj = 0 mod 2. (2.14)

Since these are mod 2 conditions, they receive contributions
only from those ni that are odd. Let y be the number of odd
ni’s. The first condition in Eq. (2.14) says that y is even, and
the second says that y(y − 1)/2 is even. Taken together, these
conditions say that y is divisible by 4:

y = 0 mod 4. (2.15)

VR is stably trivial if and only if this is true.
That y should be even to avoid a gauge anomaly is what

one would expect from the standard “parity” anomaly. The
requirement that y should be divisible by 4 is a stronger
condition that goes beyond what one finds on an orientable
manifold. The above argument shows only that a U(1) or SO(2)
gauge theory is completely anomaly-free if y is divisible by
4. However, the converse—there is an anomaly if y is not
divisible by 4—can be shown by an explicit example that
is described momentarily. Thus, in trying to define a U(1)
gauge theory on an unorientable manifold, we really do find
a condition stronger than the standard “parity” anomaly: The
number of fermion multiplets of odd charge must be not just
even but divisible by 4.

To demonstrate an anomaly when y is not divisible by
4, we should find a four-manifold X and a U(1) bundle L
over X such that, for a representation R with y congruent
to 2 mod 4, exp(−π iηR/2) is different from what it would
be if L is replaced by a trivial line bundle. For this, we
take X = RP4 (see Appendix C of [7] for background to
the following). On X, there are two pin+ structures, say P

and P ′. They can be distinguished by the eta invariant of
the Dirac operator (coupled to gravity only), which satisfies
exp(−π iη/2) = exp(±2π i/16), where the sign depends on the
pin+ structure; we choose P to be the pin+ structure with
exp(−π iη/2) = exp(−2π i/16). Since π1(RP4) = Z2, there
is over RP4 a nontrivial real line bundle ε, and the relation
between P ′ and P is P ′ = P ⊗ ε. The Dirac operator Dε for
a Majorana fermion, still with pin+ structure P , but coupled
to ε, is the same as the Dirac operator with pin+ structure P ′,
but coupled to gravity only. So, writing ηε for the eta invariant
of Dε, it satisfies

exp(−π iηε/2) = exp(+2π i/16). (2.16)

If we take the gauge bundle L to be trivial, then VR is a
trivial bundle of rank 2k and, hence, for pin+ structure P ,
exp(−π iηR) = exp(−2k · 2π i/16). Now, again using the fact
that π1(RP4) = Z2, take L to be a flat but nontrivial complex
line bundle over RP4. Then L2 is trivial and so Ln is trivial or
isomorphic toL for even or odd n. Likewise, the corresponding
rank 2 real vector bundle Vn is a trivial bundle of rank 2 or
a copy of ε ⊕ ε depending on whether n is even or odd. So
VR = ⊕k

i=1Vni
is the direct sum of a trivial real bundle of rank

2k − 2y and 2y copies of ε. Now using (2.16), for the gauge
bundle L we get exp(−π iηR/2) = exp[−(2k − 4y)2π i/16].
The condition for this to coincide with the result exp(−2k ·
2π i/16) that we get when L is trivial is simply that y should
be divisible by 4. So there is indeed an anomaly when that
condition is not satisfied.

In Sec. III, we will also want to know what happens for
G = Z2. In this case, there is only one nontrivial irreducible
representation, a one-dimensional real representation R0 on
which the nontrivial element of Z2 acts as −1. A Z2 bundle
over a four-manifold X associates to R0 a real line bundle that
we will call α. Now let the representation R consist of the
direct sum of k copies of R0. The corresponding vector bundle
VR is the direct sum of k copies of α. Its total Stieffel-Whitney
class is

w(VR) = w(α)k = [1 + w1(α)]k

= 1 + kw1(α) + k(k − 1)

2
w1(α)2

+ k(k − 1)(k − 2)

3!
w1(α)3

+ k(k − 1)(k − 2)(k − 3)

4!
w1(α)4. (2.17)

This equals 1 for all X and all α if and only if the coefficients
of positive powers of w1(α) are all even. This is so precisely
if k is a multiple of 8. We thus learn that VR is stably trivial if
and only if k is a multiple of 8. If k is a multiple of 8, it follows
that the theory has no gauge anomaly. If k is not a multiple of
8, there can be a gauge anomaly, as one can see again from
the example of X = RP4. In this example, with P as before,
exp(−π iηR/2) is equal to exp(−2kπ i/16) if α is trivial, but it
equals exp(+2kπ i/16) if α = ε. These are only equal if k is a
multiple of 8.

In Sec. III B 6, we will need further examples of the
following sort. Let G be any subgroup of SO(p), for some
p. We view the vector representation p of SO(p) as a real
representation R0 of G. Because G is a subgroup of the
connected group SO(p) [rather than O(p)], the gauge bundle
VR0 associated to this representation satisfies

w1
(
VR0

) = 0. (2.18)

Its higher Stieffel-Whitney classes may not vanish, and
Majorana fermions valued in the representation R0 may be
anomalous. However, let R = R0 ⊕ R0 ⊕ R0 ⊕ R0 be the
direct sum of four copies of R0. The corresponding real
vector bundle is likewise a fourfold direct sum: VR = VR0 ⊕
VR0 ⊕ VR0 ⊕ VR0 . Using (2.18) and the Whitney sum formula,
one finds that the Stieffel-Whitney classes of VR vanish in
four dimensions. Accordingly, VR is always stably trivial and
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2 + 1-dimensional fermions valued in the representation R

have no gauge anomaly.
In Sec. III B 6, we will make use of two cases of this

construction. For the first case, we take G = U(2), and we
take R0 to be the two-dimensional complex representation of
U(2), viewed as a four-dimensional real representation. For the
second case, we take G to be the maximal torus U(1) × U(1)
of U(2), with the same R0.

In either of these examples, if we take only two copies
of R0, we would have an anomaly. In fact, we would have
an anomaly even if we restrict the gauge group to the U(1)
subgroup of U(2) (or of its maximal torus) embedded as(∗ 0

0 1

)
. (2.19)

Under this subgroup, Majorana fermions valued in R0 are
equivalent to a pair of complex fermions of respective charges
1 and 0. So it we take two copies of R0, the charges are 1, 1, 0,
and 0. This is a U(1) theory with y = 2, and it is anomalous,
as we have seen.

F. The partition function

What we have found can potentially be applied in
condensed-matter physics in two ways.

If G and R are such that exp(−π iηR/2) depends on the
gauge bundle in a nontrivial way, then it is the partition
function of a four-dimensional topological field theory with
G symmetry (defined on pin+ manifolds and coupled to a
background gauge field). If this theory is formulated on a
manifold X with boundary W , then it has a boundary state in
which Majorana fermions in the representation R propagate on
W . The partition function of the combined system consisting
of the boundary fermions and the bulk topological field theory
is, as we have explained,

ZX = |Pf(D)| exp
(−π iηX

R

/
2
)
. (2.20)

(For a reason that will be clear in a moment, we here denote
the eta invariant as ηX

R and not just as ηR .)
If instead exp(−π iηX

R/2) is always independent of the
gauge bundle, then a system of Majorana fermions in 2 + 1
dimensions, transforming in the representation R of G (and
transforming with a + sign under time reversal), has only the
usual gravitational anomaly that the same number of neutral
fermions would have. It is a conceivable gapless boundary
state of a topological superconductor (with ν = dim R, the real
dimension of R) and can be the starting point in constructing
gapped symmetry-preserving boundary states, as we will
discuss in Sec. III. If the dimension of R is divisible by 16,
the gravitational anomaly is also absent, and this system is
a completely consistent and anomaly-free 2 + 1-dimensional
field theory, even on unorientable manifolds.

If the gauge bundle on W can be extended over X, then
the same formula (2.20) serves as the partition function
for the combined system consisting of a bulk topological
superconductor and the boundary fermions. The fact that
exp(−π iηX

R/2) is independent of the gauge bundle on a
manifold without boundary means, by virtue of the gluing
formula (2.8), that the choice of how the gauge bundle is
extended over X does not matter.

If the gauge bundle on W cannot be extended over X,
how can we describe the partition function of the combined
system consisting of the bulk topological superconductor on
X coupled to boundary fermions on W? It is easier to explain
what to do if there is some four-manifold X′ over which the
gauge bundle and pin+ structure of W can be extended, so
we begin with this case. Let ηX′

R be the eta invariant of the
Dirac operator on X′. For a further simplification, assume first
that the dimension of R is divisible by 16, so that the fermion
system on W is completely anomaly-free. Then X plays no
role, and since the partition function depends only on W , we
denote it as ZW . For ZW we can use the same formula as in
Eq. (2.20), but with ηX

R replaced by ηX′
R on the right-hand side:

ZW = |Pf(D)| exp
(−π iηX′

R

/
2
)
. (2.21)

The usual arguments show that this does not depend on the
choice of the pin+ manifold X′ and the extension of the gauge
bundle over X′.

What if ν = dim R is not a multiple of 16? Then the bulk
topological superconductor on X is nontrivial, and (2.21)
cannot be correct; it describes a topological superconductor
with boundary W whose worldvolume is X′ rather than X!
To fix the situation, let us recall the four-manifold X∗ without
boundary that is built by gluing X and X′ along their common
boundary (Fig. 2). Let ηX∗

0 be the eta invariant of the Dirac
operator on X∗ coupled to gravity only. Then the appropriate
generalization of (2.21) for the partition function is

ZW ;X = |Pf(D)| exp
(−π iηX′

R

/
2
)

exp
(−νπ iηX∗

0

/
2
)
. (2.22)

We denote this partition function as ZW ;X because—since the
bulk topological superconductor on X is now nontrivial—it
does depend on X, not just on W . The gluing theorem for the
eta invariant can be used to show that this formula does not
depend on the choice of the pin+ manifold X′ and the extension
over X′ of the gauge bundle and pin+ structure. [Equation
(2.22) is analogous to Eq. (3.41) in Ref. [22], where X was
assumed to be orientable and a coupling to electromagnetism
was incorporated.]

However, it may happen that a suitable X′ does not exist,
because W , with its G bundle, may represent a nontrivial
element of the group � that classifies up to cobordism three-
dimensional pin+ manifolds W endowed with a G bundle.
Note that W is always trivial in cobordism if we ignore the G

bundle (since it is given as the boundary of the worldvolume
X of the topological superconductor) but it may be that W

together with its G bundle is not a boundary.21 The physical
meaning of � is that [34] Hom(�,U(1)) parametrizes a fam-
ily of invertible three-dimensional topological field theories
defined on a pin+ manifold W with a G bundle. Concretely,
suppose we are given a homomorphism ϕ : � → U(1). The
associated topological field theory T may be described as
follows. Let W be a three-manifold with pin+ structure and a G

bundle. Then W has a class [W ] in � and the partition function
of the theory T on W is ϕ([W ]). This is relevant because
when such theories exist, we should not expect to get a unique

21An obstruction is given by the mod 2 index of the Dirac operator
on W with values in any real representation of G.
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answer for the theory of fermions on W in the representation
R of G coupled to the topological superconductor on X. We
could always modify any possible answer by tensoring by a
three-dimensional topological field theory that depends only
on the boundary data.

Actually, since in our application W is a boundary if we
forget the G bundle, � is not quite the right group to consider.
We should replace � by its subgroup �′ that classifies up
to cobordism pairs consisting of a pin+ manifold W with a G

bundle, such that W is a boundary if we forget the G bundle. To
explain how to proceed, suppose, for example, that �′ = Z2.
Let W0, together with some G bundle, generate �′. There is
then a three-dimensional topological field theory T , defined on
pin+ manifolds W with G bundle, such that W is a boundary
if we forget the G bundle, that assigns the value −1 to W0 and
is trivial if W with its G bundle is a boundary.

Pick a pin+ manifold X0 with boundary W0. (By hypothesis,
the G bundle over W0 does not extend over X0.) In this
situation, we should not expect to get a unique answer for
ZW0;X0 , because any answer could be modified by tensoring
with T . However, let X0 
 X0 be the disjoint union of two
copies of X0, with boundary W0 
 W0. Then W0 
 W0, together
with its gauge bundle, is a boundary (we have assumed that
�′ = Z2 so two copies of W0 make a boundary), so the
formula (2.22) can be used to determine the partition function
ZW0
W0;X0
X0 . We interpret this partition function as Z2

W0;X0

(the square of ZW0;X0 ) and we make some choice of the square
root to determine ZW0;X0 . Now let W be any three-dimensional
pin+ manifold with a G bundle. Then since W0 generates
�′, either W or W 
 W0 is (together with its G bundle) the
boundary of some X′. Hence, Eq. (2.22) can be used to
determine either ZW ;X or ZW
W0;X
X0 , which we interpret as
the product ZW ;XZW0;X0 . ZW0;X0 has already been determined,
so in any case we arrive at a result for ZW ;X. Thus, this gives
a complete description of the partition function in general.

In this construction, we made an arbitrary choice of sign of
ZW0;X0 . The two possible choices of sign will give results
that differ by tensoring with the purely 2 + 1-dimensional
invertible topological field theory T . We also assumed that
�′ = Z2. In general, �′ is always a finite Abelian group. The
above reasoning can be modified in a fairly obvious way for
any �′.

III. GAPPED T-INVARIANT BOUNDARY STATES OF A
TOPOLOGICAL SUPERCONDUCTOR

In this section, we describe gapped T-invariant boundary
states of a topological superconductor with even ν. (The
methods we use do not suffice to construct such states
for odd ν.) The class of models we consider and most of
the methods for analyzing them were already presented in
Ref. [22] (boundary states for topological superconductors are
treated in Sec. 6 of that paper, following a similar treatment
of topological insulators earlier in the paper). We can add
something here because of having a more complete knowledge
of which models are anomaly-free. However, we will be brief
because many points were already explained in Ref. [22]. See
also related analysis in Refs. [4,5,13–21].

We begin with an overview and then describe some
properties of models for different values of ν. As in Ref. [22],

it turns out that the main results for all values of ν can be
described using considerations of weak coupling.

A. Overview

We consider a bulk topological superconductor with a
given even ν. The standard boundary state would consist
of ν massless Majorana fermions, all transforming with a +
sign under T. As before, we denote the worldvolume of the
topological superconductor as X and its boundary as W .

To construct a new type of boundary state, we postulate
the appearance on W of an emergent gauge symmetry with
gauge group G. We also assume that on W there propagate
ν Majorana fermions, transforming with a + sign under T
and in some ν-dimensional real representation R of G. The
representation is chosen to have no gauge anomaly according
to a criterion explained in Sec. II. Thus, the only anomaly is
the standard gravitational anomaly of ν Majorana fermions that
transform the same way under T. This is then a conceivable
(gapless) boundary state of a topological superconductor with
the given value of ν.

More generally, we could pick a positive integer s and a pair
of real representations R and R′ of G of respective dimensions
ν + s and s. Then we introduce Majorana fermions � and � ′
transforming respectively with a + sign or a − sign under T
and respectively in the representations R and R′ of G. If the
anomalies cancel between22 R and R′, then this gives another
conceivable gapless boundary state of the same topological
superconductor. In the absence of the gauge symmetry, pairs
of Majorana fermions transforming oppositely under T can
combine and get a mass, but R and R′ can be chosen so that
the gauge symmetry prevents this.

Now we introduce two sets of charged scalar fields w and
φ, chosen to make possible two phases with the following
properties.

In one phase, the fields w have expectation values that
completely break the emergent gauge symmetry while pre-
serving T symmetry. For example, if G = U(1), w can consist
of a single complex scalar field of charge 1, with a suitable
transformation law under T. In the phase in which w has an
expectation value, the emergent gauge symmetry is completely
broken and disappears at low energy. Since we also assume
that φ is massive in this phase, it follows that in this phase,
the only gapless modes are ν Majorana fermions transforming
with a + sign under T (or ν + s transforming with a + sign
and s transforming with a − sign, for some s; once the gauge
symmetry is completely broken, such extra modes can combine
and get masses). Thus, this phase reduces at low energies to
the standard boundary state of a topological superconductor.

The second phase, in which φ gets an expectation value,
is supposed to be gapped and T conserving. Assuming that
the gap should be visible semiclassically, this means that
the expectation value of φ has to break the gauge symmetry

22According to the analysis in Sec. II, this cancellation means that
if X is a four-dimensional pin+ manifold without boundary, and ηR

and ηR′ are the eta invariants of the R- or R′-valued Dirac operator
on X, then exp[−π i(ηR − ηR′ )/2] is independent of the choice of G

bundle over X.
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down to a finite subgroup. An unbroken subgroup of positive
dimension would lead to a gapless spectrum in perturbation
theory. The possibility of an unbroken subgroup of positive
dimension that nevertheless leads to a gapped spectrum
through nonperturbative effects is the topic of Sec. III B 6.
In the present section, we assume that 〈φ〉 breaks G down
to a finite subgroup K. It will be clear in a moment that this
subgroup cannot be trivial.

To get a gapped state, φ must also have Yukawa couplings
to the fermions, so that the fermions acquire mass from the
expectation value of φ. A linear Yukawa coupling of scalar
fields φa , a = 1, . . . ,t to Majorana fermions ψi , i = 1, . . . ,ν

takes the general form

LYuk =
ν∑

i,j=1

t∑
a=1

ma
ijψiψjφa, (3.1)

for some constants ma
ij . The transformations of φa under G

and under T and the constants ma
ij must be chosen so that

this coupling (along with possible nonlinear couplings of φ to
the fermions) preserves the symmetries and gives mass to all
fermions in the phase with 〈φ〉 = 0.

One general comment is that in a phase in which the
fermions get a mass from the expectation value of φ, that
expectation value can never be invariant under the microscopic
time-reversal transformation that acts on the fermions as

T(ψ(t,�x)) = γ0ψ(−t,�x), (3.2)

regardless of how this symmetry is assumed to act on φ.
Indeed, any fermion bare mass term is odd under T acting
as in Eq. (3.2). Since LYuk is by hypothesis T invariant, the
expectation value of φ will necessarily be also odd under T.
The time-reversal transformation T that is a symmetry of the
gapped phase is therefore not the microscopic T that acts on
the fermions as in Eq. (3.2), but the combination of T with a
gauge symmetry, which we call K1/2:

T = TK1/2. (3.3)

For 〈φ〉 to be T invariant, given that it is odd under T, it must
be odd under K1/2.

From a microscopic point of view, one has T2 = (−1)F.
Therefore,

T 2 = (−1)FK. (3.4)

Note that K is an unbroken symmetry, since it leaves fixed the
expectation value of φ (by contrast, K1/2 is not an unbroken
gauge symmetry as the expectation value of φ is odd under
K1/2). We should note that, since K is an element of the group
G of emergent gauge symmetries, any state of a compact
sample has K = 1 and hence satisfies the standard relation
T 2 = (−1)F, as one would expect microscopically. However,
individual quasiparticles can have K = 1, and the relation (3.4)
is important in understanding their properties.

The definition of T is not unique, because in Eq. (3.3), we
could multiply K1/2 by any unbroken gauge symmetry S (that
is, any S ∈ G that leaves fixed 〈φ〉) without changing the fact
that T is a symmetry of the phase with 〈φ〉 = 0. However, it
turns out that no matter what choice of T we make, K is always
nontrivial if the bulk topological superconductor is nontrivial,
that is, if ν is not a multiple of 16. This is not immediately

obvious because, as K leaves fixed the expectation value of φ,
one can ask if it is possible to have K = 1. We may argue as
follows. If K = 1, then K1/2 generates a Z2 subgroup of the
gauge group G. All fermion fields are therefore either even
or odd under K1/2. Let φ0 be the component of φ that has an
expectation value; thus, φ0 is odd under K1/2. A K1/2-invariant
Yukawa coupling that involves φ0 has to take the form

ψeψoφ0, (3.5)

where ψe is even under K1/2 and ψo is odd. If all fermions
are supposed to gain mass in this way, the number of fermions
even under K1/2 must be the same as the number of fermions
that are odd. However, we have assumed that the full collection
of fermions has no gauge anomaly under the full G symmetry,
so certainly there is no anomaly under the Z2 subgroup of G

generated by K1/2. According to the analysis of anomaly-free
Z2 gauge theories in Sec. II E, to avoid a gauge anomaly, the
number of fermions odd under Z2 must be a multiple of 8;
allowing for an equal number of Z2-even fermions, the total
number of fermions is a multiple of 16 and the bulk topological
superconductor is trivial.

The fact that the unbroken gauge symmetry K is nontrivial
(if the bulk topological superconductor is nontrivial) means
that the boundary state, though gapped, is topologically
nontrivial. It supports a groupK of emergent gauge symmetries
that at least contains a cyclic subgroup generated by K.

In bulk, a topological superconductor has a symmetry
group T generated by T; it is isomorphic to Z4, the four
elements being T, T2 = (−1)F, T3 = T(−1)F, and T4 = 1.
The boundary state that we have described has a group K
of emergent unbroken gauge symmetries. However (assuming
that the bulk superconductor is topologically nontrivial), the
full symmetry group is not a product H = T × K. Rather, it
is a nontrivial extension

1 → K → H → T → 1. (3.6)

The extension is nontrivial because we have shown above that
no matter how we lift T ∈ T to T ∈ H, we get T 2 = (−1)FK
with K a nontrivial element of K. In other words, there is no
way to lift T to a subgroup of H.

B. Examples based on U(1)

1. Generalities

Following [22], to construct concrete examples, we will
take G = U(1) or equivalently SO(2). We denote the U(1)
gauge field as a and its field strength as f = da. We consider
only the simplest examples for different values of ν. It is conve-
nient to work with a basis of Dirac fermions; that is, instead of
considering a pair ψ1,ψ2 of Majorana fermions transforming
in a two-dimensional real representation of SO(2), we combine
them to a Dirac fermion χ = (ψ1 + iψ2)/

√
2 and its adjoint

χ . They have equal and opposite U(1) charge. Reversing the
sign of ψ2 would exchange χ and χ , so we can assume that χ

has non-negative U(1) charge.
As in Ref. [22], one does want not the macroscopic theory to

have an exact symmetry that has no microscopic origin, so one
does not want jμ = εμνλf

νλ/4π (where εμνλ is the Levi-Civita
tensor of the boundary) to be a conserved current. This is
prevented by adding a monopole operator to the Lagrangian
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or Hamiltonian. In all models that we will consider, there is
a symmetry-preserving monopole operator of unit magnetic
charge that can be added.

For G = U(1), we can take w to consist of a single
complex scalar field of charge 1, whose expectation value
would completely break the gauge theory. It will also suffice,
as in Ref. [22], to take φ to consist of a single complex scalar
field. Expanding w and φ in terms of real scalar fields as
w = (w1 + iw2)/

√
2, φ = (φ1 + iφ2)/

√
2, we take23 T to act

by T(wi) = wi , T(φi) = −φi . We describe this by saying that
w is T-even and φ is T-odd. The fact that the wi are T-even
means that the expectation value 〈w〉 can break the emergent
U(1) gauge symmetry completely while conserving T. The
fact that the φi are T-odd ensures T-invariance of the Yukawa
coupling (3.1).

Now suppose that φ has charge p under U(1). Then to
ensure that the expectation value of φ is invariant under
T = TK1/2, we can take K1/2 to be a gauge transformation by
exp(2π i/2p). K is then a gauge transformation by exp(2π i/p)
and generates the group K ∼= Zp of unbroken gauge symme-
tries.

If p is even and χ is a Dirac fermion of charge p/2, then a
Yukawa coupling

2∑
a,b=1

εabχaχbφ + H.c. (3.7)

(here a and b are spinor indices) is U(1) invariant and T
invariant and gives χ a mass. Similarly, if χ and χ ′ are two
Dirac fermions with charges t and p − t , then they can receive
a mass from a coupling

2∑
a,b=1

εabχaχ
′
bφ + H.c. (3.8)

We will construct models by combining these ingredients. It is
also possible to introduce pairs of fermions that receive masses
from couplings cubic or higher order in φ.

If φ has charge p, then a vortex in which the phase of φ

twists by 2π has a flux
∫

f/2π = 1/p. A monopole operator
shifts the flux by an integer, so after adding a monopole
operator of unit charge to the action, the vorticity is conserved
mod p. In fact, conservation of vorticity mod p is a feature of
low-energy Zp gauge theory.

2. Monopole operators

The assertion that vorticity is conserved precisely mod p

depends on existence of a charge 1 monopole operator that is a
Kramers singlet boson of spin 0 and hence can be added to the
action or Hamiltonian. Such an operator exists for any model
that lacks the generalized “parity” anomaly of Sec. II E, but the
point is somewhat subtle. This question has been addressed in
Refs. [4,5], in a slightly different language, for Dirac fermions

23The following transformations are the transformations under CT
given in Eqs. (3.3)–(3.6) of [22]. What we call T in the present paper
was called CT in Ref. [22], because that paper focused primarily on
topological insulators rather than superconductors.

of charge 1, and in Ref. [22] for fermions of even charge as well
as some other cases (the latter analysis was made mainly in the
context of a topological insulator rather than superconductor).

We first consider a Dirac fermion χ of even charge 2s, which
makes no contribution to the anomaly so it can be considered
by itself. We determine the quantum numbers of a charge 1
monopole operator in a standard way via radial quantization
on S2 [35]. In a sector with

∫
S2 f/2π = 1, the field χ has

2s zero modes ζa , a = 1, . . . ,2s of spin (2s − 1)/2 and U(1)
charge 2s, while its adjoint χ † has the same number of zero
modes ζ

†
a of the same spin and charge −2s. One can choose 4s

real linear combinations of these modes, but those real linear
combinations are not T invariant. That is because of the factor
of γ0 in the transformation of a Majorana fermion under time
reversal, which we have taken to be

Tψ(t,�x) = γ0ψ(−t,�x). (3.9)

However, it is possible to define a modified T transformation
under which the real zero modes are all invariant. This is

T ′ = T exp(−2π iq/8s), (3.10)

where q is the U(1) charge generator. The basis for this
statement is as follows. The zero modes of χ and χ † have
respectively positive and negative chirality along S2. The
chirality in the 2d sense is measured by the operator iγ1γ2.
In 2 + 1 dimensions, one can take the Dirac γ matrices
to be 2 × 2 real matrices that obey γ0γ1γ2 = 1, so actually
iγ1γ2 = −iγ0. Thus, the γ0 that appears in the transformation
law (3.9) acts as i on zero modes of χ and as −i on zero
modes of χ †. The factor exp(−2π iq/8s) in the definition of
T ′ compensates for this and ensures that T ′ acts on fermion
zero modes only by complex conjugation, leaving real zero
modes invariant.

The total number of χ and χ † zero modes is 4s. Quantizing
4s real fermion modes gives a Hilbert space H of dimension
22s . An antiunitary operator T ′ that commutes with all of the
real fermion modes acts on this space as

(T ′)2 = (−1)s . (3.11)

This reflects the fact that the spinor representation of Spin(4s)
is pseudoreal or real for odd or even s.

The state in H of lowest U(1) charge is a state |↓〉 that
is annihilated by the ζ

†
i ; its U(1) charge is −2s2 (as in a

classic analysis [36], this follows from T invariance, which
implies that the state |↑〉 = ζ1ζ2 · · · ζ2s |↓〉 of highest U(1)
charge must have opposite charge from |↓〉). The state |↓〉 is
the unique state in H of lowest charge, so it transforms under
rotations of S2 with spin zero. The U(1)-invariant states in H

are obtained by acting s times with the modes ζa: They have
the form |a1a2 · · · as〉 = ζa1ζa2 · · · ζas

|↓〉. Since the modes ζa

have spin (2s − 1)/2, these states have spin s/2 mod 1. For a
U(1)-invariant state, T ′ coincides with T, so Eq. (3.11) implies
that these states obey T2 = (−1)s . If s is even, these states
are Kramers singlet bosons, and a real linear combination of
the corresponding monopole operators can be added to the
action or Hamiltonian. If s is odd, the monopole operators
Ma1a2···as

corresponding to these states are Kramers doublet
fermions. However, we can get a charge 1 monopole operator
that is a Kramers singlet boson by multiplying Ma1a2···as

by
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an ordinary gauge-invariant local operator that is a Kramers
doublet fermion, such as w2sχ . So in all cases, there is a charge
1 monopole operator that is a boson and a Kramers singlet.

This argument shows that one or more Dirac fermions of
even U(1) charge produce no anomaly in the quantization of
the monopole operators, in the sense that those operators have
the same quantum numbers as ordinary local operators. So it
suffices to consider the case of Dirac fermions χ1, . . . ,χy that
all have odd charges n1, . . . ,ny . We cannot expect to make
the argument in quite the same way, because individual Dirac
fermions with odd charge do contribute anomalies, and we
have to combine them to demonstrate anomaly cancellation.
In imitating the above argument, one’s first thought might be
to replace 2s in the definition of T ′ by the fermion charge ni .
The trouble with this is that, in general, ni depends on i. In
demonstrating anomaly cancellation between different χi , one
really would like to use the same T ′ for all of them. It turns
out that there is a choice that works nicely, given that the ni

are all odd:

T ′ = T exp(−2π iq/4). (3.12)

With this choice, the zero modes of χi are T ′-even if ni is
congruent to 1 mod 4, and T ′-odd if ni is congruent to 3
mod 4. So let us rearrange the ni as integers u1, . . . ,up that
are congruent to 1 mod 4 and integers v1, . . . ,vp′ that are
congruent to 3 mod 4. (Thus, p + p′ = y.) The total number
of real fermion zero modes that are T ′-even is a+ = 2

∑
i ui ,

and the number that are T ′-odd is a− = 2
∑

j vj . When we
quantize all the zero modes, we get a Hilbert space H of
dimension 2

∑
i ui+

∑
j vj . The state of lowest U(1) charge in this

Hilbert space is a state |↓〉 annihilated by all modes of the χ
†
i ;

its charge is

q = −1

2

⎛
⎝∑

i

u2
i +

∑
j

v2
j

⎞
⎠. (3.13)

This is an integer if and only if the total number y of Dirac
fermions is even. If y is odd, then q is a half-integer and there is
no U(1)-invariant state in the whole Hilbert space (boson and
fermion modes of nonzero energy have integer q and do not
help). This is a manifestation of the usual “parity” anomaly.
Let us assume henceforth that y is even. This implies that
a+ + a− and a+ − a− are multiples of 4. When we quantize
a+ T ′-even real fermion modes and a− T ′-odd ones, with both
of these numbers multiples of 4, we get a Hilbert space H on
which24

(T ′)2 = (−1)t , (3.14)

24One way to see this is to observe that if ζ and ζ ′ are real fermion
modes that transform with opposite signs under T ′, then on the Hilbert
space H , we can define the T ′-invariant “Hamiltonian” h = iζ ζ ′.
Reducing to ground states of h, we can eliminate ζ and ζ ′ and replace
H with a subspace of one-half the dimension on which (T ′)2 acts
with the same sign as before. Continuing in this way, we reduce to
the case that a+ or a− is 0. If, say, a− = 0, to determine the sign we
must need to know if the spinor representation of Spin(a+) is real or
pseudoreal, and this leads to Eq. (3.14).

where

t = a+ − a−
4

= 1

2

⎛
⎝∑

i

ui −
∑

j

vj

⎞
⎠. (3.15)

Now we have to find a U(1)-invariant state of monopole charge
1. For completely general odd integers n1, . . . ,ny , there is no
such state in the Hilbert space H obtained by quantizing the
fermion zero modes. However, by using the charge 1 scalar
field w, we can make the U(1)-invariant state |�〉 = w−q |↓〉.
In a field of monopole charge 1, w has spin- 1

2 , so the state
|�〉 has spin q/2 mod 1. Since w is a Kramers singlet under
T and has charge 1, it is a Kramers doublet of T ′. From
Eq. (3.14), (T ′)2|↓〉 = (−1)t |↓〉, so (T ′)2|�〉 = (−1)t−q |�〉.
However, on the U(1)-invariant state �, T ′ is the same as T:

T2|�〉 = (−1)t−q |�〉. (3.16)

So |�〉 is a gauge-invariant state of spin q/2 mod 1 that
transforms under T2 with a sign (−1)t−q . The condition that
this state is either a Kramers singlet boson or a Kramers doublet
fermion is that t should be even. However, the formula (3.15)
shows that any of the χi of odd electric charge, whether its
charge is congruent to 1 or 3 mod 4, makes a contribution
to t that is 1/2 mod 2. Hence, requiring t to be even is the
same as requiring that the total number y of Dirac fermions of
odd charge is a multiple of 4. This was the condition found in
Sec. II E for the theory to be completely free of gauge anomaly
on an unorientable manifold.

As in our discussion of the even charge case, once we have
found a monopole operator M that is either a Kramers singlet
boson or a Kramers doublet fermion, by acting if necessary
with a gauge-invariant Kramers doublet fermion wni χi , we
get a monopole operator M ′ that is a Kramers singlet boson.
So such an operator exists whenever the generalized “parity”
anomaly is absent.

We turn next to examples for various values of ν.

3. ν Congruent to 2 mod 4

The most minimal model with ν = 2 was analyzed in detail
in Ref. [22]. One simply introduces one χ field with some
charge r , and to make a mass term possible, one takes φ to
have charge 2r . One chooses r to be an even number r = 2s

to avoid the “parity” anomaly. As we know from Sec. II E,
this gives a theory with no gauge anomaly, not even the more
subtle anomaly that can only be detected on an unorientable
manifold.

Since φ has charge 4s, the expectation value of φ reduces
the gauge symmetry from U(1) to Z4s . The low-energy theory,
however, is not just aZ4s gauge theory. In a vortex field, there is
a single Majorana fermion zero mode. As a result, the vortices
have non-Abelian statistics, and, as in the composite fermion
description [37] of the Moore-Read state [38], the theory can
be described, at least on an orientable manifold, as the quotient
by Z2 of a Z4s gauge theory times an Ising topological field
theory. For details, see [22].

For any even ν = 2t , one simple approach is to introduce
t χ fields, all with the same even charge and coupled in the
same way to φ. This family of models was discussed in Sec. 6.3
of [22] for odd t = 1,3,5,7, corresponding to ν = 2,6,10,14.
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As long as one is on an orientable manifold, the resulting
topological field theories are the same, but they have four
different actions of T (mainly because of subtleties in the
quantization of the vortices). On an unorientable manifold,
these models are inequivalent at low energies, as is clear both
from the different values of ν and from the different actions of
T.

For ν congruent to 2 mod 4, the unbroken gauge symmetry
is always Z4s for some integer s, even if the χ fields do not
all have the same charge. This follows from the constraints of
avoiding the “parity” anomaly and ensuring that all fermions
gain mass from the gauge symmetry breaking. (If φ has charge
4s + 2 for some integer s, then, to give masses to all χ fields,
the number of χ fields with odd charge will have to be odd,
leading to a “parity” anomaly.) In general, if formulated on an
orientable manifold, the Z4s gauge theory has a Chern-Simons
(or Dijkgraaf-Witten [39]) term, as analyzed in Ref. [22].

4. ν divisible by 4

For ν = 4, we need two χ fields. Naively, they can both
have odd charge, avoiding the usual “parity” anomaly, but we
learned in Sec. II E that this will actually lead to a more subtle
gauge anomaly. So we take them to have even charge.

Two Dirac fermion fields χ1,χ2 of charges 2r1 and 2r2 can
gain mass from a Yukawa coupling to a φ field of charge 2(r1 ±
r2). (The relevant Yukawa coupling is χ1χ2φ or χ1χ2φ.) Since
r1 ± r2 can be any integer r , the low-energy gauge symmetry
can be Z2r for any r .

As soon as ν is a multiple of 4, the number of χ fields
is even and likewise the number of fermion zero modes in
a vortex field is even, leading to Abelian statistics only. If
formulated on an orientable manifold, the low-energy theory
can be understood as a Z2r gauge theory with Chern-Simons
term, by arguments explained in Ref. [22].

For ν any multiple of 4, similar models are possible. The
first case in which we can take all of the χ fields to have odd
charge is ν = 8, which requires four χ fields. For example,
for ν = 8, we can introduce four χ fields all of charge 1, and
take φ to have charge 2. The low-energy theory is a Z2 gauge
theory (with no Chern-Simons term, as it turns out).

5. ν divisible by 16

ν = 16 is the first case in which the emergent gauge sym-
metry can be completely broken, as we learned in Sec. III A.
Accordingly, it is the first case that it might be possible to
obtain a gapped phase that is also topologically trivial. This is
consistent with the fact that the anomaly of the bulk topological
superconductor is trivial at ν = 16. Several constructions of
T-invariant, gapped, topologically trivial boundary states are
known at ν = 16.

In the present approach, at ν = 16, we can take four
Dirac fermion fields χi of charge 0 and four such fields
χ ′

i of charge 1. We also take φ to have charge 1. The
expectation value of φ completely breaks the gauge symmetry
and a Yukawa coupling

∑4
i=1 χiχ

′
i φ can give mass to all

fermions. A monopole operator that can be added to the
action or Hamiltonian completely destroys the conservation
of vorticity. The resulting low-energy theory is gapped,
symmetry-preserving, and topologically trivial.

6. Models at ν = 16 that are gapped via nonperturbative effects

All of the models described so far can be understood entirely
in the framework of weak coupling. The only effect beyond
conventional perturbation theory was to add to the action a
monopole operator with a small coefficient. The only role of
this operator was to explicitly break a symmetry, so it can itself
be treated perturbatively.

It is interesting to also consider models that become gapped
with the aid of nonperturbative effects.

For a first example, we take the gauge group to be G =
U(2). The center of G is thus a copy of U(1), embedded as
diag(eiα,eiα). We introduce four doublets of Dirac fermions
χ1, . . . ,χ4, each transforming in the 2 of U(2). The 2 is a two-
dimensional complex representation or equivalently a four-
dimensional real representation. We have shown in Sec. II E
that a model with fermions comprising four copies of the 2 has
no gauge anomaly. Since it has ν = 4 × 4 = 16, it also has no
gravitational anomaly and is completely anomaly-free.

To make possible complete Higgsing of U(2) to the standard
boundary state of the topological superconductor, we introduce
w fields consisting of two or more (T-even) doublets of U(2).
To make possible a flow to a symmetry-preserving, gapped,
topologically trivial state, we add another (T-odd) Higgs field φ

that is invariant under the subgroup SU(2) ⊂ G and transforms
with charge 2 under the center of G. This has been chosen
to make possible gauge-invariant and T-conserving Yukawa
couplings:

φεABεab

(
χAa

1 χBb
2 + χAa

3 χBb
4

) + H.c. (3.17)

[Here A,B = 1,2 and a,b = 1,2 are, respectively, U(2) indices
and spinor indices.] Once φ gets an expectation value, the
fermions become massive and the gauge symmetry is spon-
taneously broken from U(2) to SU(2). In perturbation theory,
therefore, one sees at low energy a pure SU(2) gauge theory,
with no massless charged fields. In the infrared, though there
is no explicit proof (except from numerical simulations), it is
strongly believed that this theory flows to a confining, gapped,
T-conserving, and topologically trivial phase. If so, this gives
another way to gap a ν = 16 system in a T-conserving way.

The reason that in this construction we had to start with an
emergent U(2) gauge symmetry rather than just the center U(1)
of U(2) is the following. Had we gauged only the central U(1),
then after the charge 2 Higgs field φ acquired an expectation
value, U(1) would have been spontaneously broken to Z2. The
low-energy physics would have been a Z2 gauge theory, rather
like other examples that were discussed earlier. The low-energy
time-reversal symmetry would satisfy the familiar relation

T 2 = (−1)FK, (3.18)

where K is the nontrivial element of Z2.
How might we get rid of the Z2 gauge symmetry? One idea

would be to let a scalar carrying Z2 charge get an expectation
value. However, this would necessarily break time-reversal
symmetry, because Eq. (3.18) shows that a scalar field that is
odd under K cannot be T invariant.
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An alternative might be to confine the Z2 gauge symmetry
rather than Higgsing it.25 The trouble is that although there is
no problem to see confinement of a discrete gauge symmetry
such as Z2 in a lattice theory, it is hard to interpret this idea in
a continuum field theory. One could take the emergent gauge
symmetry G to be defined on a lattice, but then how would we
couple it to the fermions? Unfortunately, it is very difficult to
explicitly construct a T-invariant lattice fermion theory with
nonzero ν. Because of the anomaly, one expects that it is only
possible to do this (if at all) if ν is a multiple of 16, and any
way to do it would probably itself lead immediately to a way
to see that the ν = 16 model is topologically trivial. Because
of issues such as this, one approach to gapping the ν = 16
problem in a T-invariant way has actually involved coupling
lattice bosons to continuum fermions [11]. It is conceivable
that this could be adapted to the present context.

Instead of that, in the above construction, we took the
emergent gauge symmetry G to be U(2) rather than its center
U(1). The effect of this was that the expectation value of φ

broke G not to the finite group Z2 but to the connected Lie
group SU(2), of which the Z2 in question is the center. Now
to gap the system, we want confinement in pure SU(2) gauge
theory and this involves no problem, except that it is hard to
understand.

There is a variant of this in which the emergent gauge group
G is taken to be not U(2) but U(1) × U(1), the maximal torus
of U(2). The fermion representation is taken to be the same,
viewed as a representation of the smaller gauge group, and
the same Higgs fields w and φ are introduced, with the same
couplings. The expectation value of φ now breaks G not to
SU(2) but to the maximal torus of SU(2), which is the subgroup
U(1)′ = diag(eiα,e−iα) of U(2). The low-energy theory is a
pure U(1)′ gauge theory. If we add to the Hamiltonian a
monopole operator of unit magnetic charge with a small
coefficient, then in the infrared we get the Polyakov model
[23] of compact QED. The infrared theory becomes confining,
gapped, and topologically trivial.

This claim depends on assuming that the monopole operator
has magnetic flux 1 with respect to U(1)′. Otherwise, after
confinement, we will be left over with a nontrivial “magnetic”
gauge group. The monopole operator must also satisfy Dirac
quantization with respect to the full underlying gauge symme-
try G. To satisfy these conditions, we simply take a monopole
operator of charges (1,0) [or (0,1)] in the original U(1) × U(1)
gauge theory.

In this approach, the Z2 that potentially is left unbroken
by the expectation value of a charge 2 Higgs field φ has been
embedded in the connected group U(1)′ and then has been
confined.

25The necessary dynamics is sometimes discussed under the name
of “vortex condensation.” Note that in the present context, there is
no local operator that creates a vortex of unit vorticity [in which the
phase of φ changes by 2π and the flux of the broken U(1) gauge field
is π ]. This would be a half-monopole operator, which does not exist.
The phrase “vortex condensation” can be understood as a reference
to confinement of the gauge symmetry.

C. Bosonic analog

1. Goal

An important part of the above story is the extension of
symmetry groups

1 → K → H → T → 1 (3.19)

that is implied by the relation T2 = (−1)FK. Here, as explained
in Sec. III A,T is the bulk symmetry group generated by T,K is
the group of emergent gauge symmetries on the boundary, and
H is a nontrivial extension of T by K. This group extension
does not explain everything about these models, since, for
example, it does not account for the non-Abelian statistics that
occur when ν is congruent to 2 mod 4. However, it accounts
for a great deal, especially when ν is a multiple of 4.

It is therefore of interest that this part of the story has
an analog for purely bosonic SPT phases. Here we consider
a purely bosonic theory in D spacetime dimensions with a
global symmetry group F . To keep things simple, we will
assume that F is a finite group of purely internal symmetries,
not including reflection or time-reversal symmetries. We will
describe boundary states for such theories constructed using
group extensions analogous to (3.19).

2. Review

A unified description of a large class of SPT phases was
presented in Ref. [40] in terms of group cohomology. These
are theories with a global symmetry F that can be gauged26

(as opposed to theories with a global symmetry F that cannot
be gauged because of an anomaly). Gapped phases with a
gaugeable F symmetry are then classified by their response
to being gauged. What this means is that one specifies the
partition function the theory has if formulated on a compact,
oriented D-manifold X, endowed with an F bundle (which is
automatically flat, since F is assumed to be a finite group).

To specify the partition function in the presence of a
background gauge field, the starting point is a cohomology
class in HD(F ,U(1)) that we will write as eiγ . For any X as
above endowed with an F bundle, eiγ can be “pulled back” to
a class eiβ ∈ HD(X,U(1)). [A slightly abstract explanation of
this pullback operation is presented in the paragraph preceding
Eq. (3.23).] The class eiβ can be “integrated” over X, and this
integral is supposed to be the partition function.27 We write
the integral evocatively as Zβ = exp(i

∫
X

β). The motivation

26In the framework of [40], F is assumed to be an “on-site”
symmetry, which ensures that it can be gauged. There is a somewhat
similar reason that T in a topological superconductor can be gauged, in
the sense that the effective description makes sense on an unorientable
spacetime. The Schrödinger equation of electrons and nuclei makes
sense on an unorientable spatial manifold, so a T- and R-invariant
phase of matter derived from it that has an emergent relativistic
symmetry that puts space and time on the same footing will always
make sense on an unorientable spacetime.

27Gauge theories of a finite gauge group in which the contribution
of a particular flat bundle to the partition function is the integral of
eiβ (divided by the order of the automorphism group of the bundle)
were constructed in Ref. [39], without envisaging the application to
condensed-matter physics.
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for the notation ei
∫
X

β is that although what we are formally
writing as

∫
X

β is not the integral over X of a gauge-invariant
local effective action,28 Zβ has the same formal properties
as if it were. For example, after making some gauge choices
or introducing a more abstract language to avoid having to
do this,29 one can extend the definition of ei

∫
X

β to the case
that the manifold X has a boundary, and then it satisfies a
gluing law precisely of the form of the usual gluing relation
for the integrand of the Feynman path integral [Eq. (2.6)],
which as we have discussed also has a counterpart for the
eta invariant [Eq. (2.7)]. The gluing formula says that if an
oriented D-manifold Y ∗ is built by gluing together two such
manifolds Y and Y ′ along a component W of their common
boundary, as in Fig. 1 of Sec. II B, then

exp

(
i
∫

Y

β

)
exp

(
i
∫

Y ′
β

)
= exp

(
i
∫

Y ∗
β

)
. (3.20)

The gluing formula is one way to understand the fact that
Zβ = exp(i

∫
X

β) is the partition function of a topological field
theory.

Likewise,30 exp(i
∫
X

β) is a cobordism invariant (of an
oriented D-manifold with an F bundle) rather as in even
dimensions exp(−π iηR/2) is a cobordism invariant (of a pin+
D-manifold with a gauge bundle). This cobordism property
of exp(−π iηR/2) has not been made explicit in the present
paper; it can be deduced from the APS index theorem [30],
as is explained in Ref. [7], Sec. 4.2. In general, a U(1)-valued
cobordism invariant is the partition function of an invertible
topological field theory (see [41], Sec. 5.5, and [34]), and,
in particular, cobordism invariance implies that exp(i

∫
X

β)
and exp(−π iηR/2) are the partition functions of suitable
topological field theories. That exp(−π iηR/2) is the analog of
exp(i

∫
X

β) for a T-invariant theory with fermions satisfying
T2 = (−1)F was the main idea31 in Ref. [7] (this was inspired

28To be more exact, there is no general, natural procedure to write it
that way. In a specific case, one may be able to add additional fields
and gauge invariances and write β as some sort of local integral.

29The more abstract language involves introducing a one-
dimensional vector space HW of “physical states” for every boundary
component W of X (HW is one-dimensional because we are
describing an SPT phase with no intrinsic topological order) and
interpreting exp(i

∫
Y

β) as a quantum mechanical transition amplitude
between initial and final states rather than a complex number. Thus,
this more abstract language is actually essential in developing the
theory more fully. Nevertheless, we will not develop that language
here.

30Cobordism invariance of exp(i
∫

X
β) means that if the oriented

manifold X, equipped with an F bundle, is the boundary of an
oriented manifold Z, over which the given F bundle extends, then
exp(i

∫
X

β) = 1. This amounts to Stokes’s theorem together with
dβ = 0. (To be more exact, it follows from facts valid in any
cohomology theory that reduce for differential forms to Stokes’s
theorem and dβ = 0.)

31As explained there, in some important examples, a more elemen-
tary description is possible in which one uses an ordinary index or a
mod 2 index of the Dirac operator instead of the eta invariant. The
eta invariant provides a general framework to understand all possible
examples.

by an earlier remark [8] concerning cobordism invariance of
the eta invariant in four dimensions).

3. Gapped boundaries for bosonic SPT states

To pursue the analogy, we will describe a simple class
of gapped, symmetry-preserving boundary states for bosonic
SPT phases that are analogous to the fermionic states described
in Sec. III B. We consider a worldvolume X of D spacetime
dimensions with a boundary W of one dimension less. We
assume that we are given a nontrivial group extension

1 → K → H → F → 1, (3.21)

where, as before, F is a (gaugeable) finite group of global
symmetries of a system in D spacetime dimensions and K
is a finite group of emergent gauge symmetries that appear
on W . The reason that we assume that the symmetries in K
are gauge symmetries is the following. The symmetries in K
have to be exact symmetries or the construction that follows
will not make sense. In condensed-matter physics, it is natural
for approximate global symmetries to emerge in the infrared;
they are explicitly violated by interactions that are irrelevant
in the renormalization group sense. For gauge symmetries,
the situation is the opposite; it does not make much sense
to have an emergent gauge symmetry in the infrared that is
explicitly broken by irrelevant interactions. On the contrary,
exact emergent gauge symmetries are often postulated in
models of condensed-matter systems, for example, in models
of the fractional quantum Hall effect.

How can we use the group extension (3.21) to construct a
gapped boundary state? Given a homomorphism H → F , the
class eiγ ∈ HD(F ,U(1)) can be pulled back to a class eiγ̂ ∈
HD(H,U(1)). [See the discussion of Eq. (3.23) for a slightly
abstract explanation.] If eiγ̂ is trivial, then any trivialization of
this class can be used to construct a gapped boundary state,
as we will explain. Note, however, that if eiγ is nontrivial (so
that the bulk SPT phase for which we are trying to construct a
gapped boundary state is nontrivial), then to make eiγ̂ trivial,
the group extension (3.21) will have to be nontrivial. (If the
full symmetry group is just a product K × F , the existence
of K will not help us trivialize a cohomology class of F .) So
to construct a gapped, symmetry-preserving boundary state in
this way requires a nontrivial group extension at the starting
point. For a simple concrete example, take F = K = Z2, H =
Z4. These fit in a nontrivial extension:

0 → Z2
2→ Z4

r→ Z2 → 0. (3.22)

The first map is multiplication by 2 and the second is reduction
mod 2. [Because the groups involved are all Abelian, we have
used an additive notation rather than the multiplicative notation
in Eq. (3.21).] This particular example is interesting in D =
3 spacetime dimensions, since H 3(F ,U(1)) ∼= Z2, and the
nontrivial class eiγ in H 3(F ,U(1)) is trivial when pulled back
to eiγ̂ ∈ H 3(H,U(1)). [In this example, H 2(K,U(1)) = 0, so
the trivialization of eiγ̂ is essentially unique, and, accordingly,
the following construction will give only one gapped boundary
state.]

If eiγ̂ is trivial, then its trivializations form topological
classes that differ by elements of HD−1(H,U(1)). As we
will see, any class of trivialization will give a gapped
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symmetry-preserving boundary state for the topological field
theory with partition function eiβ . So the number of such
boundary states that can be constructed in this way [once the
group extension (3.21) is chosen] is simply the order of the
finite group HD−1(H,U(1)). The physical meaning of this is
straightforward. An element of HD−1(H,U(1)) determines a
purely D − 1-dimensional invertible topological field theory
T with symmetry group H. Any boundary state we define
can be modified by tensoring it with T . So if we can make
any boundary states at all, the number of such boundary states
that we can make will be the order of HD−1(H,U(1)). What
we have just said can be compared with what was explained
in Sec. II F. Triviality of exp(iγ̂ ) is the analog of triviality of
exp(−π iηR/2). HD−1(H,U(1)) is the analog of the finite group
Hom(�′,U(1)) that appeared in Sec. II F. Given that exp(iγ̂ ) or
exp(−π iηR/2) is trivial, the number of symmetry-preserving
gapped boundary states that can be constructed using this fact
is the order of HD−1(H,U(1)) or of Hom(�′,U(1)).

We will now explain a few mathematical points that have
been omitted so far. One way to describe group cohomology is
that it is cohomology of the classifying space. The classifying
space BF of a groupF is defined as the quotient EF/F , where
EF is a contractible space with a free action of F . (Such a
space always exists, and any two choices are homotopic, so
it does not matter which one is chosen.) Then, by definition,
HD(F ,U(1)) = HD(BF ,U(1)). The space BF is endowed
with a principal F bundle, which is simply the total space of
the fibration EF → BF . This F bundle is “universal” in the
sense that if X is any topological space with an F bundle,
then that F bundle is the pullback to X of the universal F
bundle over BF by some map � : X → BF (defined up to
homotopy and called the classifying map). Accordingly, if we
are given a class eiγ ∈ HD(F ,U(1)) = HD(BF ,U(1)), we can
pull this class back to eiβ ∈ HD(X,U(1)). This is the pullback
operation that we used in Sec. III C 2 in the initial construction
of an SPT phase based on the cohomology class eiγ . On an
oriented manifold X without boundary, the partition function
of the SPT phase associated with eiγ ∈ HD(F ,U(1)) is then
exp(i

∫
X

β).
Now let us consider the group extension (3.21). By

definition, H acts freely on the contractible space EH. Since
the group extension H entails a homomorphism H → F , H
also acts on any space that F acts on, and in particular H acts
(but not freely) on EF . Consequently, H acts on EH × EF ,
and this action is free because it is free on the first factor.
Hence, we can define BH = (EH × EF)/H. By forgetting
the first sector, BH projects to EF/H = EF/F = BF . The
fiber is EH/K, where K (like all of H) acts freely on EH, so
we can set EH/K = BK. Thus, there is a fibration

BK i−→ BH⏐⏐�π

BF .

(3.23)

Now we can describe the “pullback” operation that is
part of the definition of the boundary state. Given eiγ ∈
HD(BF ,U(1)), we simply pull it back to eiγ̂ = π∗(eiγ ) ∈
HD(BH,U(1)).

We are almost ready to define the boundary state. To
describe a boundary state for a theory whose partition function

would be ei
∫
X

β if X has no boundary, we have to describe
what is meant by ei

∫
X

β when X has a boundary. There is no
symmetry-preserving definition without introducing some new
variables on the boundary. On what sort of boundary data will
ei

∫
X

β depend? The bulk physics on X has F symmetry, and
we assume it has been coupled to some background F bundle
(possibly trivial). This means that the bulk theory on X has
been coupled to a background gauge field of the finite group
F . However, on W we postulate the existence of fields whose
role is to “lift” the background F bundle (or more precisely its
restriction to W ) to an H bundle. (These fields are analogous
to φ in the fermionic models that were introduced in Sec. III A
above.) Accordingly, we assume that on W we are given an
H bundle which, under the projection H → F that is part of
the extension (3.21), is mapped to (the restriction to W of)
the background F bundle. The definition of exp(i

∫
X

β) will
depend on this H bundle.

A givenF bundle over X, when restricted to W , may not lift
to H at all. Such a bundle contributes 0 to the path integral for
the boundary state that we will define; it is not compatible with
this boundary state. Alternatively, a given F bundle, restricted
to W , may lift to H in more than one way. If H is Abelian,
then any liftable F bundle can be lifted in precisely N ways,
where N is the order of the finite group H 1(W,K). There is
no equally simple statement if H is not Abelian. Regardless,
assuming that the background F bundle over X is liftable to
H, we compute the partition function, in the presence of the
boundary state on W , by summing over the possible lifts, with
the contribution of each lift being 1

n
ei

∫
X

β ; here n is the order32

of the subgroup of K that acts by automorphisms on a given
lift, and we explain next what is meant by ei

∫
X

β . That will
complete the definition of the boundary state.

To integrate the cohomology class eiβ over a manifold
X with boundary, we need a trivialization of this class over
W = ∂X. That is precisely what we have if we are given a
trivialization of eiγ̂ . Indeed, given the background F bundle
over X and a lift to H of the restriction of this bundle to W ,
we have the following commutative diagram:

W
j−→ X⏐⏐��̂

⏐⏐��

BH π−→ BF .

(3.24)

Here j is the inclusion of W in X, π was described in
Eq. (3.23), the background F bundle over X is the pullback
by � of the universal F bundle over BF , and the lifted H
bundle over W is similarly a pullback by �̂ of the universal
H bundle over BH. Since by definition eiβ = �∗(eiγ ), the
restriction to W of eiβ is j ∗�∗(eiγ ). Commutativity of the
diagram means that this is the same as �̂∗π∗(eiγ ) = �̂∗(eiγ̂ ).
Hence, any trivialization of eiγ̂ gives a trivialization of the
restriction to W of eiβ and enables us to define ei

∫
X

β .

32The reason to divide by n is thatK is a group of gauge symmetries.
In quantizing a gauge symmetry, one always has to divide by the
volume of the automorphism group.
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4. The boundary topological field theory

This construction has at least one more important facet.
Going back to the fibration (3.23), we see that BK is the fiber
of the fibration BH → BF , and thus we can think of BK
as the inverse image in BH of a point p0 ∈ BF . The class
eiγ ∈ HD(BF ,U(1)) is trivial when restricted to a point, and
this gives it a natural trivialization when pulled back to BK.
In other words, the restriction to BK of eiγ̂ ∈ HD(BH,U(1))
is naturally trivial, whether eiγ̂ is trivial or not. On the other
hand, if we are given a global trivialization of eiγ̂ , we can
restrict this trivialization to BK, and therefore we now have
two trivializations of the restriction to BK of eiγ̂ . The ratio of
two trivializations of eiγ̂ |BK ∈ HD(BK,U(1)) is a class eiδ ∈
HD−1(BK,U(1)).

Such a class is precisely what we need to describe a version
ofK gauge theory on a D − 1-dimensional spacetime manifold
such as W . This theory is a nontrivial topological field theory,
and we claim that it is realized along W in the boundary state
that we have described. The justification for this statement is
as follows. Let us take the background F bundle over X to be
trivial. Then its restriction to W is, of course, also trivial. For
a lift of the trivial F bundle to H, we can simply take any K
bundle over W . In this situation, we can take � : X → BF
to map X to a point, which we can take to be p0. Then eiβ =
�∗(eiγ ) is naturally trivial along X, and in particular along W ,
since a pullback of a class of positive degree by a constant
map is always naturally trivial. This trivialization agrees along
W with the one that comes from the fact that eiγ̂ is naturally
trivial when restricted to BK. (They are both derived from the
fact that eiγ is trivial when restricted to a point.) We can further
take �̂ : W → BH to be a map to BK ⊂ BH. If we use the
trivialization of eiβ along W that comes from constancy of �

to define ei
∫
X

β , we get the answer 1, because this trivialization
extends over all of X. We are instead supposed to use along W

the other trivialization of eiβ , the one that comes by restricting
to BK the global trivialization of eiγ̂ that was used to define
the boundary state. By definition, the two differ by eiδ and
therefore ei

∫
X

β computed using the second trivialization of eiβ

along W is equal to ei
∫
W

δ .
So our boundary state can be defined by taking on W a K

gauge theory defined with the cohomology class eiδ and cou-
pling it the global symmetry F in bulk. This coupling uses the
class eiγ ∈ HD(BF ,U(1)) and a trivialization of the pullback
of this class to BH. This coupling of the D − 1-dimensional
boundary gauge theory to the global symmetryF is anomalous
in the sense that it cannot be defined in D − 1 dimensions. A
purely D − 1-dimensional coupling of the boundary gauge
theory to an F global symmetry would be made using a class
eiγ ′ ∈ HD−1(BH,U(1)) whose restriction to BK is eiδ . This
gives what is known as a symmetry-enriched topological (SET)
phase of matter [42–45].33 Obviously, the type of theory we
have described is not a purely D − 1-dimensional theory of

33The idea behind the name is that a nontrivial topological field
theory in D − 1 dimensions—the K gauge theory defined with the
cohomology class eiδ—has been enriched with a global symmetry
F . Note that since K is a group of gauge symmetries, the global
symmetry group that acts on gauge-invariant excitations in a model

this kind. It was obtained by a sort of anomalous coupling of
a topological field theory on the boundary of a D-manifold to
an SPT phase in the bulk of that D-manifold, and the starting
point was a class in HD(BF ,U(1)), not in HD−1(BH,U(1)).
(It has been suggested by J. Wang that the model in Ref. [46]
may be an example of the class of states described here.)

We started this analysis with the bulk physics—controlled
by a class eiγ ∈ HD(BF ,U(1))—and not the bound-
ary topological field theory—controlled by a class eiδ ∈
HD−1(BK,U(1))—because this made the analysis much more
straightforward.

IV. APPLICATION TO M2-BRANES

M theory is defined on an 11-dimensional spacetime
manifold that we will call Y . Y is not necessarily orientable;
in general,34w1(Y ) = 0. However, Y is a pin+ manifold and,
in particular,

w2(Y ) = 0. (4.1)

M theory also has “membranes,” known as M2-branes. An
M2-brane is a two-dimensional object; at a given time, it fills
out a two-manifold � in space. (� has no boundary unless Y

itself has a boundary or one considers M5-branes; we will not
consider these possibilities here.) Taking the time into account,
the worldvolume of an M2-brane is a three-manifold that we
will call W . As usual, in analyzing anomalies, it is convenient
to work in Euclidean signature and to take W to be compact.
We write T W for the tangent bundle to W and N for its normal
bundle in Y . N has rank 11 − 3 = 8.

A. The classical picture

We will first describe M2-branes at the classical level,
and then explain how this picture is modified by a quantum
anomaly.

There is no restriction at all on the topology of W , which can
be a completely general three-manifold. However, there is a
topological restriction on how W is embedded in Y : Its normal
bundle N must be oriented. Orientability of N is equivalent to

w1(N ) = 0. (4.2)

We stress, however, that N is not just orientable but oriented:
It comes with a choice of orientation. The orientation of N

determines whether what is wrapped on W is an M2-brane or
an M2-antibrane.35 (By convention, we will call the wrapped
object an M2-brane.)

of this type is indeed precisely F . An SET phase reduces to an SPT
phase if the topological field theory is trivial.

34Stieffel-Whitney classes wk(V ) (which entered our analysis in
Secs. II D and II E) are defined for any real vector bundle V over a
space Z. If Z is a manifold and T Z is its tangent bundle, one writes
wk(Z) (or just wk if the context is clear) for wk(T Z).

35If the C field, which we introduce momentarily, were an ordinary
rather than twisted three-form field, then W would have to be
orientable and the difference between wrapping an M2-brane or an
M2-antibrane on W would involve a choice of orientation of W ,
which would determine the sign of

∫
W

C. Because C is a twisted
three-form, it is the normal bundle to W that has to be orientable,
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The tangent bundle of Y decomposes along W as T Y |W =
T W ⊕ N (where the symbol |W represents restriction to W ).
Together with the Whitney sum formula (2.12) and w1(N ) =
w2(Y ) = 0, this implies that

w1(W ) = w1(Y )|W (4.3)

and

w2(N ) = w2(W ). (4.4)

Equation (4.3) implies that W is orientable if and only if Y

is. The orientation of W is reversed in going around a loop
� ⊂ W if and only if the orientation of Y is reversed in going
around that loop. More specifically, since N is oriented (and
not just orientable), a local orientation of Y determines a local
orientation of W . A fancy way to describe the situation is to
say that the orientation bundle of Y restricts along W to the
orientation bundle36 of W .

M theory also has a field C that, roughly speaking, is a
three-form gauge field (twisted in a sense that we will discuss).
We will first describe the properties of this field at the classical
level and then describe how they are modified by a quantum
anomaly.

The C field has a gauge invariance C → C + d�, where
� is a two-form, and it has a gauge-invariant four-form field
strength G = dC. C is a three-form analog of an Abelian gauge
field A, which locally is a one-form that has a gauge-invariance
A → A + dφ and that has a gauge-invariant two-form field
strength F = dA. In addition, “big” gauge transformations
are allowed that shift the periods of either A or C (i.e., their
integrals over closed one-manifolds or three-manifolds) by
integer multiples of 2π . [In the one-form case, allowing “big”
gauge transformations amounts to saying that the gauge group
is U(1) rather than R. This has a three-form analog.]

A crucial difference is that C is a “twisted” three-form,
twisted by the orientation bundle of Y . This means that a choice
of a local orientation of Y turns C into an ordinary three-form,
but in going around an orientation-reversing loop � ⊂ Y , C

comes back with the opposite sign. An ordinary three-form
on Y could be integrated on an oriented three-dimensional
submanifold Q ⊂ Y , but a three-form that is twisted in the
sense just described can be integrated instead on a submanifold
W with the property stated just after Eq. (4.4) (a local
orientation of Y determines a local orientation of W , so that C

changes sign whenever the orientation of W is reversed). Thus,

and whose orientation determines whether what is wrapped is an
M2-brane or M2-antibrane.

36We can think of the orientation bundle as a principal Z2 bundle ζ

over Y whose local sections correspond to local choices of orientation
of Y . The holonomy of ζ around an orientation-reversing loop � ⊂ Y

is (in multiplicative notation) −1, while its holonomy around an
orientation-preserving loop is +1. Later, we introduce a twisted sheaf
of integers Z̃. Once one picks a local orientation, Z̃ is equivalent to
the constant sheaf Z of integers, but reversal of orientation acts as
−1 on Z̃. A fancy definition is Z̃ = ζ ×Z2 Z, where Z2 acts on Z
as multiplication by −1. If here one replaces Z with a trivial real
line bundle o, again with Z2 acting on o as multiplication by −1,
one can define a real line bundle ε = ζ ×Z2 o. It can be identified
topologically with det T Y and will play a role in Sec. IV E.

FIG. 3. Schematic depiction of a four-manifold U = S3 × S1.

we can consider an integral
∫
W

C, where W is an M2-brane
worldvolume. We call this (if W is compact) a “period” of
C. However, as the period of C can be shifted by an integer
multiple of 2π by a “big” gauge transformation, the natural
quantity is really the exponential exp(i

∫
W

C). This exponential
is analogous to the holonomy exp(i

∮
�
A) of an Abelian gauge

field A around a closed loop �.
Because C is twisted, its curvature G = dC is not an

ordinary four-form but a twisted one, which changes sign in
going around an orientation-reversing loop.

The M2-brane is “charged” with respect to W , meaning that
it couples to C via a factor exp(i

∫
W

C). For this coupling to
be well-defined in the absence of fermion anomalies, G must
obey an analog of Dirac quantization of magnetic flux. This
states that if U ⊂ Y is any suitably twisted four-cycle,37 then
the flux on U of G/2π must be an integer:∫

U

G

2π
∈ Z. (4.5)

The reason for this condition is similar to the reason for Dirac
quantization in Abelian gauge theory. Consider, for example,
the case that U = S3 × S1, as is schematically shown in Fig. 3.
Let W = S3 × p, with p a point in S1. We want the coupling
of W to the C field, namely exp(i

∫
W

C), to be single valued
when p makes a loop around S1 and returns to the starting
point. The condition for this is

exp

(
i
∫

S3×S1
G

)
= 1, (4.6)

which is equivalent to the flux quantization condition (4.5).
The analogy between the three-form field C and an Abelian

gauge field A can be further extended as follows. An Abelian
gauge field on a manifold Y (or more accurately the complex
line bundle on which the gauge field is a connection) has a char-
acteristic class c1 (the first Chern class), valued in H 2(Y,Z).
At the level of differential forms, c1 is represented by the
de Rham cohomology class of F/2π , but c1 also contains
torsion information that is not captured by de Rham coho-
mology. The C field has an analogous characteristic class that
we will call x. Modulo torsion, x is represented by the de

37That is, U must have the same property as W : Its normal bundle
is oriented, so that the orientation bundle of Y pulls back along U to
the orientation bundle of U .
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Rham cohomology class of G/2π , which is integral by virtue
of Dirac quantization. However, as G is a twisted four-form,
x takes values not in the ordinary cohomology H 4(Y,Z) but
in a twisted cohomology group that we will call H 4(Y,Z̃).
Here (see footnote 36) Z̃ is a twisted sheaf of integers over
Y , twisted by the orientation bundle of Y . The assertion that
x takes values in this twisted cohomology rather than in the
ordinary cohomology of Y just reflects the fact that C and G

are not ordinary differential forms but twisted ones.
The topological choice of an Abelian gauge field on a

manifold Y is completely classified by the first Chern class,
which can be an arbitrary element of H 2(Y,Z), and likewise
the topological choice of the M theory C field is completely
classified, at the classical level, and ignoring the fermion
anomaly, by the characteristic class x, which can be an arbitrary
element of H 4(Y,Z̃).

B. Worldvolume fermions and the anomaly

The M2-brane volume W also supports fermions. Roughly
speaking, these fermions are spin- 1

2 fermions on W , with
values in positive chirality spinors of the normal bundle N

to W .
A more precise description is as follows. Since the full

spacetime manifold Y is a pin+ manifold, it is endowed with
a pin+ bundle P → Y . In 11 dimensions, the rank of P is 32.

Since the normal bundle N to W in Y is oriented and
of rank 8, it is endowed with an antisymmetric Levi-Civita
tensor εj1j2···j8 . At a point p ∈ Y , there are Dirac γ matrices
�I , I = 1, . . . ,11 acting on P . For p ∈ W , we can split the
�I into a triplet γi , i = 1 · · · 3 that are tangent to W , and an
additional eight γ matrices γ̃j , j = 1, . . . ,8 that are normal to
W . We introduce the chirality operator of N :

�̂ = 1

8!
εj1···j8 γ̃j1 γ̃j2 · · · γ̃j8 . (4.7)

The M2-brane worldvolume fermion field � is a section of P ,
or more exactly of P |W (the restriction of P to W ) that obeys

�̂� = �. (4.8)

This can be described roughly by saying that � is a spinor on W

with values in positive chirality spinors of N , but that is only a
rough description since, in general, w2(W ) and w2(N ) are both
nonzero [they are equal as in Eq. (4.4)], in which case there
exist neither spinors of W nor spinors of N . However, given
the pin+ structure of Y and the orientation of N , there is never
a problem in defining the bundle P+ → W whose sections are
sections of P |W that satisfy Eq. (4.8). The M2-brane fermions
are sections of P+. Note that the rank of P+ is 1

2 · 32 = 16.
The Dirac operator that acts on the M2-brane fermions is
the obvious D = i /D = iγ iDi , where Di is the Riemannian
connection on P , projected to P+.

The reason that the classical picture of Sec. IV A requires
modification is that the path integral of the fermion field � on
W has anomalies. To orient the reader, we will describe these
anomalies in two opposite cases.

First, let us assume that w2(W ) = 0, but allow for the
possibility that w1(W ) = 0. Since w2(W ) = 0, we have
w1(N ) = w2(N ) = 0 [Eqs. (4.2) and (4.4)]. That means that

N is topologically trivial.38 Let us then restrict to the special
case that Y = W × R8. In this case, the pin+ structure on Y

determines a pin+ structure PW over W , and the field � just
consists of eight Majorana fermions all valued in PW .

This is a familiar system in the theory of topological
superconductors. Consider a topological insulator with the
value ν = 8 of the usual mod 16 invariant. The standard
boundary state of this system consists of 8 Majorana fermions,
all taking values in the pin+ bundle of the boundary. In general,
for any value of ν, a system of ν Majorana fermions on a
possibly unorientable three-dimensional pin+ manifold W has
a partition function that is only well defined up to a power of
exp(−2π iν/16) [6,7]. For ν = 8, this means that the partition
function is only well defined up to sign. Something must cancel
this anomaly. As will become clear, the anomaly cancellation
mechanism is similar in spirit to what happens in a topological
superconductor, though different in detail.

For an example of an opposite kind, suppose that Y and
therefore also W is orientable and pick orientations. Then the
pin+ structure of Y becomes a spin structure. Suppose further
that w2(W ) = w2(N ) = 0. One can then pick a spin structure
on W , with spin bundle S, and once this is done, the normal
bundle N to W also acquires a spin structure. This means that
one can define the spinor bundle of N , which we call S(N )
[S(N ) is the vector bundle over W that is associated to N via
the spinor representation of Spin(8)]. In this situation, the spin
bundle of Y , restricted to W , isS ⊗ S(N ). Moreover,S(N ) has
a decomposition S(N ) = S+(N ) ⊕ S−(N ) in eigenspaces of
the chirality operator �̂ [Eq. (4.7)]. Equation (4.8) now means
that � is valued in S ⊗ S+(N ), that is, it is a spinor on W

valued in positive chirality spinors of the normal bundle N .
From the point of view of fermion anomalies, � is simply

a fermion field on W coupled to a Spin(8) gauge field. The
Spin(8) gauge field is the Levi-Civita connection of the normal
bundle N of W , lifted from SO(8) to Spin(8) via the choice
of spin structure. The microscopic origin of the effective
gauge field as part of the gravitational connection in higher
dimensions does not affect the analysis of the fermion anomaly,
so we can borrow standard results. The spinor representation
of Spin(8) is subject to the standard “parity” anomaly, which
is a problem in defining the sign of the fermion path integral.
An anomaly cancellation mechanism is again needed.

A concrete example of this type in which the “parity”
anomaly affects the sign of the M2-brane path integral is as
follows. We return to the example of Fig. 3, with Y containing
an embedded copy of U = S3 × S1. Assume that Y is the total
space of a rank 7 vector bundle Q over U . The structure group
of Q is SO(7), which lifts to Spin(7) via the choices of spin
structure, and we take it to have instanton number 1 (or more
generally any odd instanton number). As before, we take W

to be S3 × p, with p a point in S1. As p is drawn in a loop
around S1 and returns to its starting point, the spectrum of the

38As in the discussion of Eq. (2.9), a real vector bundle N over a
three-manifold W is stably classified by w1(N ) and w2(N ). If the
rank of N is large enough to be in the “stable range,” then the stable
classification of N is the same as a topological classification. For W

of any dimension, a real vector bundle N is in the stable range if its
rank exceeds the dimension of W .
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Dirac operator on W undergoes a spectral flow and the fermion
path integral on W changes sign. This sign change is the usual
“parity” anomaly, whose description via spectral flow can be
found in section 2 of [7].

It is notable that in the two examples we considered, the
anomaly only affects the sign of the M2-brane fermion path
integral. In general, a fermion path integral in a spacetime
of odd dimension has only discrete, “global” anomalies. In
dimension 3, the anomaly is in general a 16th root of 1.
However, for the M2-brane, the anomaly, in general, is just
a sign ±1, as we will see.

C. Anomaly cancellation on an orientable manifold

In Ref. [24], a natural anomaly cancellation mechanism was
described for the case that Y is orientable. This mechanism was
also shown to solve several other problems (such as canceling
an anomaly in the overall M theory path integral).

We will explain this mechanism in the context of the
example of Fig. 3 and later generalize it. Anomaly cancellation
depends on combining the fermion path integral, which we
formally denote as Pf( /D) (where /D is the Dirac operator that
acts on � and Pf is the Pfaffian), with the classical coupling
of W to the C field. Formally, the product of the two is

Pf( /D)exp

(
i
∫

W

C

)
. (4.9)

It is this product that must be well defined, rather than either
factor separately. So if Pf( /D) changes sign when p is taken
around a loop in S1, we want exp(i

∫
W

C) to likewise change
sign. In Eq. (4.5), we imposed an integrality condition on∫
S3×S1 G/2π in order to ensure that exp(i

∫
W

C) is well defined.
However, now we want exp(i

∫
W

C) to change sign when W

goes around the loop precisely when the instanton number on
U , which we will call �, is odd. This will happen if

∫
U

G/2π

is a half integer when the instanton number is odd:∫
U

G

2π
= �

2
mod Z. (4.10)

This condition can be reformulated as follows. Since Y is
orientable in the example under discussion, the pin+ structure
of Y reduces to a spin structure. On a spin manifold Y , there
is a four-dimensional characteristic class39 λ that measures
the instanton number of the tangent bundle, in the sense that
for any oriented four-manifold U ⊂ Y without boundary, the
instanton number of the tangent bundle of Y , integrated over
U , is

∫
U

λ. Thus, the condition (4.10) can be written∫
U

G

2π
= 1

2

∫
U

λ mod Z, (4.11)

and we impose on G this modified quantization condition (for
any embedded four-manifold U without boundary). It is shown
in Eq. (4.9) that for Y orientable, the M2-brane path integral

39λ does not coincide with p1(Y ), the first Pontryagin class of Y .
Rather, the relation between them is p1 = 2λ. On a spin manifold,
p1 can be divided by 2 in a canonical way and we write λ for
p1/2. Modulo torsion, λ can be characterized by the condition on
the instanton number that is mentioned shortly.

is well defined if Eq. (4.11) is satisfied. Our main goal in
what follows is to generalize this analysis to the case that Y is
not necessarily orientable. (We will also make some technical
improvements in the derivation even in the orientable case.)

The shifted quantization condition (4.10) has a one-form
analog that is possibly more familiar. If A is a U(1) gauge
field with field strength F = dA, then the periods of F/2π are
integers. Suppose instead that A is not an ordinary U(1) gauge
field, but a spinc connection (a notion that was important in
Ref. [22]). Then, on a manifold Z that is not necessarily a spin
manifold, F obeys a shifted version of Dirac quantization. For
any two-cycle V ⊂ Z,∫

V

F

2π
= 1

2

∫
V

w2(Z) mod Z. (4.12)

To make the analogy even closer, we note that the mod 2
reduction of λ is the Stieffel-Whitney class w4. Hence, we can
reformulate (4.10) as follows:∫

U

G

2π
= 1

2

∫
U

w4(Y ) mod Z. (4.13)

Thus, the shifted quantization condition means that C is a sort
of three-form analog of a spinc connection. The formulation
(4.13) has the advantage of making sense on an unorientable
manifold. [The condition (4.11) does not make much sense if
Y is unorientable, because in that case λ can be integrated on
an embedded submanifold U ⊂ Y if U is oriented, while G

can be integrated on U if U has oriented normal bundle.]
The notion of a spinc connection can be stated somewhat

more precisely as follows. Suppose that A is a spinc con-
nection. Then 2A is an ordinary U(1) gauge field, with field
strength 2F . In terms of 2F , the condition (4.12) reads∫

U

2F

2π
=

∫
V

w2(X) mod 2. (4.14)

This may be interpreted as follows. The gauge field 2A has a
first Chern class that we will call ĉ1, represented in de Rham
cohomology by 2F/2π . We interpret Eq. (4.14) to mean that
the mod 2 reduction of ĉ1 is w2:

ĉ1
∼= w2 mod 2. (4.15)

This is often described by saying that ĉ1 is an integer lift
of w2. A spinc structure, for our purposes, is the topological
class of a spinc connection. Similarly, if G = dC obeys the
modified quantization law (4.13), then 2C is a conventional
twisted three-form gauge field, with a characteristic class x̂,
represented in de Rham cohomology by 2G/2π . We interpret
Eq. (4.13) to mean that the mod 2 reduction of x̂ is w4:

x̂ ∼= w4 mod 2. (4.16)

So x̂ is a twisted integer lift of w4 [a lift to the twisted integer
cohomology H 4(Y ; Z̃)]. By analogy with the terminology
“spinc connection,” and for lack of any other name, we will
refer to an M theory C field that obeys the condition (4.16)
and enables one to define the M2-brane path integral as an mc
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connection. By an mc structure, we will mean the topological
class of an mc connection.40

Not every manifold admits a spinc structure or an mc

structure. In the spinc case, the obstruction is as follows.
Consider the short exact sequence of groups

0 → Z
2−→ Z

r−→ Z2 → 0, (4.17)

where the first map is multiplication by 2 and the second
is reduction mod 2. This leads to a long exact sequence of
cohomology groups that reads, in part,

· · · → H 2(X;Z)
r−→ H 2(X;Z2)

j−→ H 3(X;Z)
2−→ H 3(X;Z) → · · · . (4.18)

Here j is called the connecting homomorphism, and j (w2(X))
is called W3(X). The composition of successive maps in
Eq. (4.18) vanishes, so 2W3 = 2 ◦ j (w2) = 0 and thus W3 is
a 2-torsion class. The exactness of the sequence (4.18) says
that w2 is the mod 2 reduction of some ĉ1 ∈ H 2(X,Z) if and
only if W3 = 0. This is the obstruction to existence of a spinc

structure. (For a simple example of a manifold in which this
obstruction is nontrivial, one may take a CP2 bundle over S1

such that CP2 is complex conjugated in going around S1.)
The obstruction to an mc structure is similar. The exact

sequence of (4.17), after being tensored with the orientation
bundle of Y , leads to a long exact sequence of twisted
cohomology groups of Y that reads, in part,

· · · → H 4(Y ; Z̃)
r−→ H 4(Y ;Z2)

j−→ H 5(Y ; Z̃)
2−→ H 5(Y ; Z̃) → · · · . (4.19)

As before, we define W̃5 = j (w4); it is a 2-torsion element
of H 5(Y,Z̃). Exactness of the sequence tells us that w4 can
be lifted to an integral class x̂ if and only if W̃5 = 0. Thus,
M theory can be formulated on a pin+ manifold Y only
if41 W̃5(Y ) = 0. For an example of a pin+ manifold with
W̃5 = 0, one may take RP8 or (to get an 11-dimensional
example) RP8 × R3. Indeed, w4(RP8) is the nonzero element
of H 4(RP8;Z2) ∼= Z2 and cannot be lifted to a twisted integral
class, since H 4(RP8; Z̃) = 0.

D. Formula for the M2-brane path-integral measure

In this section, we will propose a formula for the path-
integral measure of an M2-brane wrapped on W ⊂ Y . The
consistency of this formula will be demonstrated in Sec. IV E.

40What we have said so far is less than a full definition of an mc

connection, because specifying the curvature G and the characteristic
class x̂ do not specify C completely: One can still add to C a flat
twisted three-form field. We implicitly complete the definition of an
mc connection in Sec. IV D by describing exactly how C couples to
an M2-brane and verify the consistency of the picture in Sec. IV E.
However, it would be desirable to have a more succinct definition of
an mc connection.

41This condition has apparently not been stated previously. How-
ever, a somewhat similar condition W7 = 0 [where as in the previous
examples W7 = j (w6)] was argued in Ref. [47].

Naively, as in Eq. (4.9), the path-integral measure is
Pf( /D) exp(i

∫
W

C). However, both factors have ambiguous
signs: Pf( /D) has a sign problem because of the anomaly, and
exp(i

∫
W

C) has a sign problem because C is an mc connection
rather than an ordinary three-form gauge field. We aim to make
sense of the product of these two factors.

To begin with, let us assume that W is the boundary of
a submanifold U ⊂ Y that has the same property as W : Its
normal bundle is oriented. To be precise about this, note that
once U is given, the normal bundle N to W in Y decomposes
as o ⊕ N ′|W , where o is a trivial real line bundle (generated
by the outward normal to W in U ), N ′ is the normal bundle
to U in Y , and N ′|W is the restriction of N ′ to W . Because of
this splitting, an orientation of N determines an orientation of
N ′|W and the condition we want on U is that this orientation
of N ′|W extends to an orientation of N ′. This condition, along
with w2(Y ) = 0, implies the obvious analog of Eqs. (4.2) and
(4.4):

w1(N ′) = 0, w2(N ′) = w2(U ). (4.20)

Given the choice of U , we will replace the ill-defined quantities
exp(i

∫
W

C) and Pf( /D) with well-defined expressions. Then
we will argue that the product of these expressions does not
depend on the choice of U .

Once U is picked, we can simply replace the ill-defined
exp(i

∫
W

C) with the well-defined exp(i
∫
U

G). The motivation
for this replacement is that the two would be equal if C were
an ordinary three-form gauge field, with G obeying standard
Dirac quantization. As it is, exp(i

∫
U

G) is well-defined for
given U , and is invariant under small displacements of
U because dG = 0. However, exp(i

∫
U

G) does depend on
the topological choice of U , because G obeys the shifted
quantization condition (4.11).

As usual, to make sense of Pf( /D) once U is given, we invoke
the Dai-Freed theorem [28]. This theorem is applicable if we
are given on U a Dirac operator /D

′ that is related to /D in a
suitable fashion along W = ∂U . In the present case, we take /D

′

to be the natural Dirac operator on U acting on P |U (that is, on
the restriction to U of the pin+ bundle P of Y ). The Dai-Freed
theorem suggests replacing Pf( /D) with |Pf( /D)| exp(−iπη/2),
where here η = η( /D

′) is the eta invariant of the operator /D
′,

with APS boundary conditions along W = ∂U . As usual, the
justification for this step is that |Pf( /D)| exp(−iπη/2) is gauge
invariant and well defined (once U is picked), depends on
the metric only along W and not along U , and depends in a
physically sensible42 way on the metric of W .

The upshot of this is to replace Pf( /D) exp(i
∫
W

C) with

ZU = |Pf( /D)| exp(−iπηU/2) exp

(
i
∫

U

G

)
. (4.21)

Here we denote the eta invariant as ηU to emphasize its
dependence on U . To show that the formula ZU for the

42“Physically sensible” means that when the metric of U is varied,
the variation of |Pf( /D)| exp(−iπη/2) depends only on the variation of
the metric of W . Moreover, this variation is given in the expected way
by a matrix element of the stress tensor. An important consequence is
that |Pf( /D)| exp(−iπη/2) varies smoothly with the expected simple
zero when the metric variation is such that /D acquires a zero mode.

195150-22



THE “PARITY” ANOMALY ON AN UNORIENTABLE MANIFOLD PHYSICAL REVIEW B 94, 195150 (2016)

measure of the M2-brane path integral makes sense, we have
to show that it is independent of the choice of U . There is a
standard strategy to prove this, essentially illustrated in Fig. 2
of Sec. II B. We let U ′ be some other submanifold of Y with
boundary W and let U ∗ be the closed manifold43 obtained
by gluing U to −U ′. Because of the gluing law for the eta
invariant, the desired relation ZU = ZU ′ is equivalent to

exp(−iπηU∗/2)exp

(
i
∫

U∗
G

)
= 1. (4.22)

This can be restated without reference to G using the flux
quantization condition (4.13):

exp(−iπηU∗/2) = (−1)
∫
U∗ w4(Y ). (4.23)

This relation will be demonstrated in Sec. IV E.
At the outset of this section, we assumed that W is the

boundary of some U ⊂ Y . If this is not so, we are in a situation
somewhat like what was considered at the end of Sec. II F. If W

is not a boundary, and thus represents a nontrivial element of
the twisted homology H3(Y ; Z̃), then the path integral measure
of an M2-brane wrapped on W cannot be determined from a
knowledge of G only and not C. It would be possible to add
to C a flat three-form gauge field with

∫
W

C = 0, leaving G

unchanged but rotating by a constant phase the path-integral
measure for an M2-brane wrapped on W . To understand how
to proceed, suppose, for example, that H3(Y ; Z̃) ∼= Z and pick
a generator W0. The phase of the path-integral measure for
an M2-brane wrapped on W0 can be changed in an arbitrary
fashion by adding to C a flat three-form gauge field. Thus, we
proceed by making an arbitrary choice of this phase, and then
we attempt to use Eq. (4.21) to determine the path-integral
measure for an M2-brane wrapped on any other W ⊂ Y . For
this, we observe first that, since W0 generates H3(Y ; Z̃), there
is some integer n such that the disjoint union of W with n

copies44 of W0 is the boundary of some U ⊂ Y . This means
that the formula (4.21) determines the path-integral measure
for a collection of M2-branes consisting of one brane wrapped
on W and n others wrapped on (slightly separated copies of)
W0. Since the M2-brane path-integral measure is known for
W0, this determines it for W .

This procedure generalizes in a fairly obvious way for any
H3(Y ; Z̃) and uniquely determines the M2-brane path-integral
measure for any W , up to the possibility of twisting by a flat
C field.

43For dimensional reasons, one can assume that U and U ′ do not
intersect away from W so that U ∗ is embedded in Y . However, the
following would actually make sense without this assumption.

44We can displace these n copies slightly so that they do not intersect
each other or W , and for dimensional reasons we can assume that U is
embedded in Y . Once the phase of the path-integral measure is fixed
for W0, it can be determined for any small displacement of W0 by
evolving it continuously, relying on the fact that the M2-brane path
integral suffers only from global anomalies. An alternative way to
determine what happens in a small displacement of W0 is to note that
if W can be reached from W0 by a small displacement, this means that
the disjoint union of W and −W0 is a boundary in Y ; the argument
in the text will then show that the path-integral measure for W is
determined in terms of W0.

E. Consistency of the formula

The statement (4.23) that we wish to justify depends only on
the four-manifold U ∗ ⊂ Y and the normal bundle N ′ to U ∗ in
Y . Here Y is completely arbitrary except for the constraint that
w2(Y ) = 0, and the only condition on N ′ is that it is oriented.
The upshot is that Eq. (4.23) must hold with U ∗ replaced by
absolutely any compact four-manifold X (without boundary)
and N ′ replaced by any oriented rank 7 real vector bundle
B → X that satisfies

w1(B) = 0, w2(B) = w2(X). (4.24)

For Y we can simply take the total space of the vector bundle
B. We want to prove Eq. (4.23) in this generality. (In what
follows, we write just η for ηX = ηU∗ .)

The conditions (4.24) ensure that w2(T X ⊕ B) = 0, and
therefore there is a corresponding pin+ bundle P . On this
pin+ bundle P , there act γ matrices γμ,μ = 1, . . . ,4 of T X

and additional γ matrices γ̃a , a = 1, . . . ,7 of B, obeying the
Clifford algebra

{γμ,γν} = 2gμν, {γ̃a,γ̃b} = 2δab, {γμ,γ̃a} = 0. (4.25)

Here gμν and δab are, respectively, the Riemannian metric of
X and the metric of B.

Assuming that fermions transform under spatial reflection
by the four-dimensional analog of Eq. (2.4),

R(ψ(x1,x2,x3,x4)) = ±γ1ψ(−x1,x2,x3,x4), (4.26)

the standard Dirac operator i /D = i
∑

μ γ μDμ (where Dμ is the
connection on P ) is actually odd under a reflection, and the
natural self-adjoint Dirac operator on a possibly unorientable
four-manifold is not i /D but

D = γ /D. (4.27)

(In going around an orientation-reversing loop in X, both γ

and /D change sign so D is well defined.) On an orientable
four-manifold, D is conjugate to i /D by (1 + iγ )/

√
2, so the

choice between them does not matter, but D is the version that
generalizes to an unorientable four-manifold. Informally, D is
the Dirac operator on X with values in spinors of B, but that
is a rough description as, in general, w2(T X) and w2(B) are
nonzero, so that P exists but cannot be decomposed as the
tensor product of a spin bundle of T X and one of B.

We have written Eq. (4.26) in four-dimensional terms, but
from an 11-dimensional point of view, R may act as a reflection
on some of the normal directions in B. For future reference,
we will write the 11-dimensional version of the formula. If
in local coordinates x1,x2, . . . ,x11, a diffeomorphism ρ acts
as −1 on some subset of coordinates xI1 ,xI2 , . . . ,xIs

, then a
section � of P transforms under ρ as

ρ�(x) = ±�I1�I2 · · ·�Is
�(ρ(x)). (4.28)

Here �I , I = 1, . . . ,11 are the whole set of γ matrices
γ1, . . . ,γ4,γ̃1, . . . ,γ̃7. The undetermined sign ± is present, as
usual, because the group that acts on spinors is a double cover
of the orthogonal group.

Aiming to prove the identity (4.23), our first step is just
to give, for any X, an example of a bundle B that obeys the
conditions (4.24). This example may seem rather special, but
it will turn out that studying it will give almost all we need. To

195150-23



EDWARD WITTEN PHYSICAL REVIEW B 94, 195150 (2016)

construct such an example, let T X be the tangent bundle of X,
define the real line bundle45ε = det T X, and let o be a trivial
real line bundle. Then an example of an allowed B is

B = ε ⊗ T X ⊕ ε ⊕ o ⊕ o. (4.29)

To show that w1(B) = 0, w2(B) = w2(T X), suppose first that
T X = ⊕4

i=1zi is a direct sum of real line bundles zi ; this
implies that ε = ⊗4

i=1zi . In this case, one can verify the desired
relations w1(B) = 0, w2(B) = w2(T X) using the Whitney
sum formula (2.12) and the relation w1(⊗αzα) = ∑

α w1(zα),
valid for an arbitrary collection of real line bundles. The
“splitting formula” for characteristic classes of vector bundles
implies that the general result we want follows from this
seemingly very special case.

For this particular B, the pin+ bundle of T X ⊕ B can be
described in a particularly simple and useful way. However,
this will take a number of steps. Let us begin with the case that
X is orientable, so (ignoring for now the action of orientation-
reversing diffeomorphisms) we can set ε = o and B becomes
B ′ ⊕ o⊕3, with B ′ = T X. Moreover, to start with, let us omit
the trivial summand o⊕3 and just consider the spinors of T X ⊕
B ′ = T X ⊕ T X. Thus, the Clifford algebra of T X ⊕ B ′ in this
special case is just the product of two copies of the Clifford
algebra of T X. So we have two sets of γ matrices γμ and γ̃μ,
μ = 1, . . . ,4, and the algebra (4.25) becomes

{γμ,γν} = {γ̃μ,γ̃ν} = 2gμν,

{γμ,γ̃ν} = 0. (4.30)

It is fairly well known that the doubled Clifford algebra
(4.30) is related to differential forms on X, but there is a small
twist that may come as a surprise. On differential forms on
X, there acts a Clifford algebra that is generated, in a local
coordinate system, by dxμ (that is, by the wedge product with
the one-form dxμ) and the corresponding contraction operator
ιdxμ . They obey

{dxμ,dxν} = 0 = {ιdxμ,ιdxν }, {dxμ,ιdxν } = δμ
ν , (4.31)

and this algebra acts irreducibly on the differential forms
�∗(X) = ⊕4

j=0�
j (X) [here �j (X) is the bundle of j forms on

X]. We can reproduce this algebra from the doubled Clifford
algebra (4.30) by setting

dxμ = 1√
2

(iγ μ + γ̃ μ), ιdxν = 1√
2

(−iγν + γ̃ν). (4.32)

Thus, the doubled Clifford algebra (4.30) acts on the space
�∗(X) of differential forms on X.

However, as the doubled Clifford algebra (4.30) and the
corresponding algebra generated by dxμ and ιdxν are both real,
the factors of i = √−1 that appear in Eq. (4.32) are unnatural.
Technically, those factors mean that by this mapping, we can
identify the complexification of �∗(X) with a complexification
of a spin bundle of T X ⊕ T X.

We can do better if we introduce an orientation of X and
introduce the chirality operators γ = γ1γ2γ3γ4, γ ′ = γ̃1γ̃2γ̃3γ̃4

45Here ε, defined in another way in footnote 36, is a trivial real line
bundle on which an orientation-reversing symmetry acts as −1.

of the first and second summands of T X ⊕ T X. We replace i
with γ so that (4.32) becomes

dxμ = 1√
2

(γ γ μ + γ̃ μ), ιdxν = 1√
2

(−γ γν + γ̃ν). (4.33)

This map is real and is simply an isomorphism between
the doubled Clifford algebra of T X and the natural Clifford
algebra that acts on �∗X.

Up to this point, there is a different isomorphism that we
could have made instead:

dxμ = 1√
2

(γ μ + γ ′γ̃ μ), ιdxν = 1√
2

(γν − γ ′γ̃ν). (4.34)

This also gives an isomorphism of the Clifford algebra of
T X ⊕ T X with the algebra generated by dxμ and ιdxν .
However, the mapping (4.33) is the one we want, because under
this mapping, the Dirac operator D defined in Eq. (4.27) maps
to the natural Dirac-like operator d + d∗ = (dxμ − gμνιdxν )Dμ

acting on �∗(X).
An important operator on �∗(X) is the operator (−1)F that

takes the value (−1)d on a differential form of degree d. This
operator anticommutes with dxμ and ιdxμ , and thus with all the
γ matrices. So it is the overall chirality operator

� = γ γ ′ = γ1γ2γ2γ4γ
′
1γ

′
2γ

′
3γ

′
4. (4.35)

[In a moment, it will be important that this operator can be
defined globally even if X is unorientable. That is because
w1(T X ⊕ ε ⊗ T X) = 0.]

As a step toward considering what happens if X is
unorientable, we will now analyze the effects of an orientation-
reversing diffeomorphism of X in the above story. With this in
view, we return to Eq. (4.29) and note that the first summand
B ′ of B is really ε ⊗ T X rather than T X. Here ε is a trivial
line bundle if X is orientable, so we have omitted it so far,
but an orientation-reversing diffeomorphism of X acts as
−1 on ε, so it will be important henceforth to include this
factor. Also, it will be important to include the additional
summand ε of B. Thus, when X is possibly unorientable,
we will compare �∗(X) to a pin+ bundle of T X ⊕ B ′′, where
B ′′ = B ′ ⊕ ε = ε ⊗ T X ⊕ ε.

For the moment, however, we still assume that X is
orientable and describe the spin bundle of T X ⊕ B ′′ = T X ⊕
ε ⊗ T X ⊕ ε. To do this, we need to extend the Clifford
algebra that we used before by adding a ninth generator γε,
corresponding to the summand ε of B ′′. This ninth γ matrix
must anticommute with the eight that we already have, so it
must be46 γε = �, where � was defined in Eq. (4.35). Note that
we can add this new generator to the Clifford algebra without
changing the bundle that the algebra acts on.

Next we compare the action of an orientation-reversing
diffeomorphism on a spin bundle of T X ⊕ B ′′ to its action on
�∗(X). Let us consider an orientation-reversing reflection of
X that in local coordinates acts as

ρ(x1,x2,x3,x4) = (−x1,x2,x3,x4), (4.36)

46We could reverse the sign of γε , but we will be including both
signs momentarily anyway.
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and acts accordingly on B. By virtue of Eq. (4.28), the element
of the Clifford algebra that will represent this reflection is
ρ = γ1γ̃2γ̃3γ̃4γε. (Here we include γ1 and not γi for i = 2,3,4
because only x1 is being reflected; for the γ̃μ, we make the
opposite choice and include γ̃i , i = 2,3,4, because these are
γ matrices of ε ⊗ T X, where the reflection acts as −1 on ε;
and likewise because ε is odd under the reflection, we include
γε .) With γε = �, we get ρ = γ2γ3γ4γ̃1. Using the definitions
(4.34), this means that ρ anticommutes with dx1 and ιdx1 and
commutes with dxi and ιdxi for i > 1. This is exactly the
expected action of ρ on differential forms.

Thus, the identification between the spin bundle
of T X ⊕ B ′′ and �∗(X) maps the action of an
orientation-reversing diffeomorphism on one side to the
action of such a diffeomorphism on the other side. Now we
are finally ready to state a similar identification for the case
that X is not necessarily orientable.

Suppose that the unorientable manifold X is the quotient
of an orientable manifold X′ by a Z2 symmetry generated by
a freely acting orientation-reversing diffeomorphism ρ. After
identifying as before the spin bundle of T X′ ⊕ ε ⊗ T X′ ⊕ ε

with �∗(X′), and then dividing by ρ on both sides, we learn
that, as promised, we can identify a pin+ bundle of T X ⊕ B ′′
with �∗(X).

To be more precise, this argument shows that there is a
particular pin+ bundle of T X ⊕ B ′′ that can be identified with
�∗(X). Any other pin+ bundle is obtained by twisting this one
with a real line bundle α over X. Thus, a general pin+ bundle
of T X ⊕ B ′′ is what we might call �∗

α(X), the differential
forms on X twisted by the real line bundle α. For example, if
as before we construct X as X′/Z2, where Z2 is generated by
ρ, then starting with the differential forms �∗(X′) and dividing
by Z2, the two choices of sign in the action of ρ on the pin+
bundle �∗(X′) will give us on the quotient either �∗(X) or
�∗

ε(X), the differential forms on X twisted by ε.
Finally, let us discuss the effect of including the last

two summands o ⊕ o in Eq. (4.29). To do this, we have to
double the rank of the pin+ bundle. There is a straightforward
construction. Let �′

I , I = 1, . . . ,9 be the whole set of γ

matrices of T X ⊕ B ′′ (thus, the �′
I are γμ and γ̃μ for μ =

1, . . . ,4 and γε). For the full set of 11 γ matrices of T X ⊕ B,
we can take

�I = �′
I ⊗

(
1 0
0 −1

)
,

I = 1, . . . ,9,

�10 = I ⊗
(

0 1
1 0

)
,

�11 = I ⊗
(

0 −i
i 0

)
. (4.37)

[Here I is the identity matrix. It is not possible to choose
all 11 γ matrices to be real, as the spinors of Spin(11) are
pseudoreal.] If we ignore the last two γ matrices, which do
not enter the construction of the Dirac operator, this tells us
that the pin+ bundle of T X ⊕ B is the direct sum of two pin+
bundles of T X ⊕ B ′′ except that in one copy the γ matrices of
T X ⊕ B ′ all have opposite sign. What is the effect of this sign
reversal? Reversing the signs of γμ and γ̃ν , μ,ν = 1, . . . ,4, is
not very consequential since one can compensate for this by

conjugating by γε. However, changing the sign of γε reverses
the sign of the element of the Clifford algebra that represents an
orientation-reversing symmetry. (For instance, in the example
considered earlier, reversing the sign of γε changes the sign
of ρ = γ1γ̃2γ̃3γ̃4γε.) This has the effect of replacing �∗(X)
by �∗

ε(X) and more generally for any real line bundle α of
replacing �∗

α(X) by �∗
α⊗ε(X).

The upshot then is that one particular pin+ bundle P of
T X ⊕ B is equivalent to �∗(X) ⊕ �∗

ε(X) and a general pin+
bundle Pα of T X ⊕ B, obtained by twisting P by a real line
bundle α, is �∗

α(X) ⊕ �∗
α⊗ε(X).

Now we can calculate the eta invariant and verify the
identity (4.23). We use the fact that the Dirac operatorD acting
on P reduces to the operator d + d∗ acting on �∗(X) ⊕ �∗

ε(X)
(or a version of this twisted by some α, as we discuss shortly).
Moreover, d + d∗ anticommutes with the operator (−1)F that
measures the degree of a differential form mod 2. Accordingly,
the spectrum of the operator d + d∗ is invariant under λ ↔ −λ.
This implies that nonzero eigenvalues of D make no net
contribution to the eta invariant. This invariant is therefore
simply the number of zero modes of D.

Let bi , i = 1, . . . ,4 be the ith Betti number of X [the
number of i-form zero modes of d ⊕ d∗ acting on �∗(X)].
The total number of zero modes of d + d∗ is

∑4
i=1 bi , and this

is the eta invariant of D acting on �∗(X). When d ⊕ d∗ acts
on �∗

ε(X), the number of i-form zero modes is47b4−i , and the
total number of zero modes is again

∑4
i=1 bi . Thus, the eta

invariant of D acting on the pin+ bundle �∗(X) ⊕ �∗
ε(X) is

η = 2
∑4

i=1 bi .
Let us compare this to the Euler characteristic of X, defined

as χ = ∑4
i=0(−1)ibi . We see immediately that

η = 2χ mod 4. (4.38)

Therefore, we can evaluate the left-hand side of the identity
(4.23) that we are trying to verify:

exp(−π iη/2) = (−1)χ . (4.39)

To evaluate the right-hand side of this identity, we let χ̂ be
the Euler class of T X. The Euler characteristic of X is χ =∫
X

χ̂ , and, on the other hand, the mod 2 reduction of χ̂ is the
Stieffel-Whitney class w4. So (−1)χ = (−1)

∫
X

w4 and we get
the desired identity,

exp(−π iη/2) = (−1)
∫
X

w4 . (4.40)

It is straightforward to extend this computation to the
general case that D = d + d∗ acts on �∗

α(X) ⊕ �∗
α⊗ε for some

α. Let bi,α be the number of zero modes of d + d∗ acting on
�∗

α(X). One might call these the Betti numbers of the α-twisted
cohomology. Then bi,α⊗ε = b4−i,α as in footnote 47. Just as
before, η = 2

∑
i bi,α and hence is congruent mod 4 to the

47On an orientable manifold, the Hodge � operator establishes an
isomorphism between �i(X) and �4−i(X), leading to an identity
bi = b4−i . However, because � is odd under reversal of orientation,
on an unorientable manifold, it maps �i(X) to �4−i

ε (X), showing that
the number of i-form zero modes of d + d∗ acting on �∗(X) is the
number of (4 − i)-form zero modes of d + d∗ acting on �∗

ε (X), and
vice versa.

195150-25



EDWARD WITTEN PHYSICAL REVIEW B 94, 195150 (2016)

Euler characteristic of the α-twisted cohomology, which is
defined as χα = ∑4

i=0(−1)ibi,α . However, the Gauss-Bonnet
formula expressing the Euler characteristic as a curvature
integral is valid for any α and shows that χα is independent of
α. Hence, exp(−π iη/2) is independent of α and the identity
(4.40) holds for all α.

So far we have shown that for any X, there is some choice
of B—described in Eq. (4.29)—such that the identity (4.40)
holds. To complete the argument, we will now show the
following: For a given X, the identity (4.40) holds for one
choice of B if and only if it holds for any B. In proving
this, we will use the fact that the left- and right-hand sides of
Eq. (4.40) are both cobordism invariant. Cobordism invariance
means that they equal 1 if X is the boundary of a five-manifold
Z that is endowed with appropriate structure. Concerning the
right-hand side of Eq. (4.40), no additional structure is needed;
the cobordism invariance of (−1)

∫
X

w4 is a special case of
cobordism invariance of Stieffel-Whitney numbers (integrals
of products of Stieffel-Whitney classes). On the left-hand side,
we are given X and B and a pin+ structure of T X ⊕ B. We
have to require that the rank 7 real vector bundle B over X

extends to a rank 7 real vector bundle BZ over Z, such that there
is a pin+ structure of T Z ⊕ BZ that restricts on the boundary
to the given pin+ structure of T X ⊕ B. (These conditions are
straightforwardly satisfied in the example considered in the
next paragraph.) Under these circumstances, we can define a
Dirac operator DZ on Z that is related to the Dirac operator D
of X in a way that will let us invoke the Atiyah-Patodi-Singer
index theorem [30]. Let η be the eta invariant of the Dirac
operator on X andI the index48 ofDZ . The APS index theorem
says that η/2 = I, but, on the other hand, I is even because
of a version of Kramers doubling. So η is a multiple of 4 and
exp(−π iη/2) = 1, establishing the cobordism invariance of
the left-hand side of Eq. (4.40).

Now we will use cobordism invariance to show that for
a given X the identity (4.40) is true for all B if it is true for
one B. Given a triangulation of B, the constraints w1(B) = 0,
w2(B) = w2(X), determine B on the two-skeleton of X.
Since π2(SO(7)) = 0, there is no further choice to be made
on the three-skeleton of X. So any possible B differs from the
particular choice in Eq. (4.29) at most by a local modification
made near a point p ∈ X. The local modification is made by
gluing in a certain number of instantons.49 These are ordinary

48On a pin+ manifold of odd dimension, the Dirac operator maps
sections of one pin+ bundle to sections of the complementary pin+

bundle. Thus, it is not self-adjoint (that is why the anomaly studied
in the three-dimensional case in Sec. II is possible) and, in particular,
can have a nonzero index. This index vanishes on a compact manifold
without boundary (this statement is a special case of the ordinary
Atiyah-Singer index theorem), but on a manifold with boundary, with
APS boundary conditions, the index can be nonzero. For example,
see Appendixes B.4 and C of [7].

49If X is unorientable—which is the most relevant case as the
identity of interest was already proved in Ref. [24] for orientable X—
then the number of instantons that are glued in is only an invariant mod
2. (An instanton that is transported around an orientation-reversing
loop in X comes back as an anti-instanton.) So for unorientable X,
there are actually only two possible choices of B up to isomorphism:

FIG. 4. Like peas in a pod, the disjoint union of a four-manifold
X and a four-sphere S4 is cobordant to their connected sum X′. The
connected sum is defined by cutting an open ball out of each and
gluing them together along their boundaries. The normal bundles are
trivialized in the cutting and gluing region before this is done.

gauge theory instantons, classified by π3(SO(7)) = Z, where
SO(7) is the structure group of B. To use these facts, start
with a copy of X, endowed with some normal bundle B for
which we know that the identity (4.40) holds, and a copy of
S4, endowed with a normal bundle of some instanton number
n. Since S4 is orientable, the identity (4.40) holds for S4 with
any normal bundle by virtue of the computation in Ref. [24]
(the basic idea was explained in Sec. IV C). Now we form
the connected sum of X and S4, by cutting a small open
ball out of each and gluing them together along the resulting
boundaries.50 The connected sum is a manifold X′ that is
topologically equivalent to X, but with a local modification of
B that shifts the instanton number by n. The identity we want
is true for X and for S4 and therefore for their disjoint union,
and X′ is cobordant to the disjoint union of X and S4 (Fig. 4).
So the identity is true for X′. Notice that this argument works
for any choice of the pin+ structure of T X ⊕ B.

It is possible to make a similar argument using the gluing
theorem for the eta invariant, rather than its cobordism
invariance.

V. SUMMARY

In Sec. II of this paper, we extended the standard analysis
of the “parity” anomaly for fermions in a spacetime of odd
dimension to the case of a possibly unorientable manifold.
We gave a general description of the anomaly, valid in any
dimension, in terms of the eta invariant in one dimension
more. In the important case of 2 + 1 dimensions, we made this
formula more concrete for gauge theories with gauge group
Z2, U(1), or SU(2) and described methods by which this could
be done for any gauge group.

A key result of Sec. II was to show that the usual “parity”
anomaly on an orientable manifold is not the whole story,
and that a theory which is anomaly-free if considered on an
orientable manifold only may be anomalous if formulated on
an unorientable manifold.

The rest of the paper was devoted to two applications.
Section III was devoted to an application to topological

the one in Eq. (4.29) and one with a different value of w4, reached
by gluing in a single instanton. The proof given in the text does not
require a knowledge of this fact.

50The normal bundle B to X in Y and the analogous normal bundle
to S4 are trivialized along these small balls before the cutting and
gluing is done.
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superconductors. Gapped boundary states of topological insu-
lators and superconductors can be constructed by postulating
suitable emergent gauge fields, matter fields, and symmetry-
breaking patterns on the surface of a material. This approach
was developed in Ref. [22], mainly but not entirely in the con-
text of a topological insulator. To fully exploit this approach in
the case of a topological superconductor requires a more com-
plete understanding of the “parity” anomaly than was available
previously. In Sec. III, we use the results of Sec. II to ana-
lyze more fully and precisely the gapped boundary states of a
topological superconductor that can be constructed using these
methods. A typical application is to show that the boundary
of a topological superconductor with ν = 16, but not one with
ν = 8, can be gapped in a topologically trivial way (that is,
without introducing topological order on the boundary).

The existing literature on gapped boundary states of topo-
logical insulators and superconductors is extensive and varied;
see, for example, [4,5,10,11,13–17,19–21]. One difference
between the present paper (and the previous one [22]) and some
other approaches is that our treatment is completely explicit,
based on weak coupling, with no reliance on nonexplicit
dynamics.51

51There is one partial exception to this. In Secs. III B 5 and III B 6,
we describe three ways to gap the boundary of a ν = 16 topological
superconductor in a without introducing topological order. One of
the three approaches relies on standard but nonexplicit dynamics,
namely confinement in SU(2) gauge theory without matter fields in
2 + 1 dimensions.

The explicit nature of the dynamics has made it possible
to see in Ref. [22] and in the present paper an important
feature of these boundary states. This is a group extension: The
bulk relation T2 = (−1)F is generalized along the boundary
to T 2 = (−1)F K, where K generates a discrete group of
unbroken gauge symmetries. It is not clear to the author to
what extent this has been understood in the previous literature.
In Sec. III C, we show that an analogous group extension gives
a unified way to construct gapped boundary states of bosonic
SPT states. The presentation in this section is somewhat
abstract, but this will hopefully be remedied in forthcoming
work.

Section IV applies similar methods to a problem in
M theory. M theory describes, among other things, mem-
branes, usually called M2-branes, with 2 + 1-dimensional
worldvolume. It has been known for some time [24] that
consistency of the M2-brane path integral depends on a fairly
subtle cancellation of the “parity” anomaly. However, this
cancellation has hitherto been understood only for the case
that the M2-brane worldvolume is orientable. With the help of
the tools developed in Sec. II, the unorientable case is treated
in Sec. IV.
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