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We implemented the derivative of the free energy functional with respect to the atom displacements, so called
force, within the combination of density functional theory and the embedded dynamical mean-field theory. We
show that in combination with the numerically exact quantum Monte Carlo (MC) impurity solver, the MC noise
cancels to a great extend, so that the method can be used very efficiently for structural optimization of correlated
electron materials. As an application of the method, we show how strengthening of the fluctuating moment in
FeSe superconductor leads to a substantial increase of the anion height, and consequently to a very large effective
mass, and also strong orbital differentiation.
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I. INTRODUCTION

The theoretical crystal structure prediction is one of the
most fundamental challenge in condensed matter physics and
material science, but it was not until 90s that computers became
sufficiently powerful to allow predictions of crystal structures
from first principles of very simple materials [1,2]. The last
decade has witnessed a tremendous advance in our ability to
predict crystal structures from ab initio, mostly due to the
development of efficient minimization algorithms for finding
minimums in complex total energy landscape of solids [3–5],
and because of prior development of efficient implementations
of the density functional theory (DFT) methods. The core of
almost all these algorithms is based on the DFT stationary
functional, which delivers the total energy of the solid and
the forces on all atoms in the unit cell. However DFT, in its
semilocal approximations such as the local density approxi-
mation (LDA) or generalized gradient approximation (GGA),
fails to predict the ground state of many correlated electron
materials, such as the Mott insulators and correlated metals,
therefore the crystal structure predictions in such systems are
severely hampered by inaccuracy of available DFT functionals.

It is well known that the DFT total energies are many
times surprisingly good, even when the electronic structure
is completely wrong, such as for example in high-Tc cuprates.
This is because the DFT total energy functional is stationary,
i.e., the first derivative of the energy with respect to electronic
charge vanishes. Therefore a relatively small reorganization
of the low-energy valence charge density gives not too large
correction to the total energy.

There are nevertheless many documented failures of LDA
and GGA in predicting crystal structures of correlated ma-
terials such as in Ce metal, Pu, and transition metal oxides
such as FeO. In some correlated systems, which are not close
to the boundary between the localized and itinerant state, the
extensions of DFT, such as LDA+U and hybrid functionals
are quite successful in describing the structure, but both have
difficulty close to the localization-delocalization transition.
For the Hund’s metals [6,7], such as the iron superconductors,
the pnictogen height is grossly underestimated by DFT for
about 0.15 Å.

To account for the correlation effects beyond semilocal ap-
proximations of DFT, more sophisticated many body methods

have been developed. Among them, one of the most successful
algorithms is the combination of the dynamical mean-field
theory (DMFT) and DFT [8–10], which is also based on the
idea of locality of correlations, but in the case of DMFT,
only the locality of correlations to a given atom is explored,
which is much less restrictive than locality to a point in 3D
space in DFT semilocal approximations. This DFT+DMFT
method has achieved great success in numerous correlated
materials (for a review, see Ref. [10]), but its potential for
structural optimization has not been much explored. This is
mostly because the majority of the implementations of this
method are not implementing the DFT+DMFT functional.
Instead they typically build the low-energy model first, and
then solve the Hubbard-like model by the DMFT method,
thus losing the stationarity property, and hence the precision
of the resulting total energies. The stationary implementation
of the DFT+embedded DMFT functional has been achieved
recently [11], which opened the possibility of computing
forces to high-enough precision for theoretical optimization of
structures. The present manuscript details how this is achieved
very efficiently within all electron linearized augmented plane-
wave (LAPW) implementation. As is well known, complex
structures can be optimized only with methods that allow
calculation of forces, because a single calculation with forces
gives information equivalent to 3N direct calculations, where
N is the number of atoms in the unit cell.

We will also show that in combination with the quantum
Monte Carlo (QMC) impurity solver, the forces can be
converged to even higher accuracy than the free energy itself,
which seems surprising at first, as only the free energy is
stationary, while the forces are not. However, as explained
below, this is because some quantities can be more accurately
computed by QMC than others. As QMC method has inherent
statistical noise, such noise cancellation in computing forces is
very wellcome and extremely useful for practical implemen-
tations.

The reason that the free energy is hard to compute by
the exact QMC impurity solver, is that it is not possible
to accurately sample the interacting part of the free energy
functional, the so-called Baym-Kadanoff functional �[G].
Essentially, �[G] contains the entropy of the system, which is
notoriously hard to compute within the Monte Carlo methods
[12]. An alternative approach was invented in Ref. [11], which

2469-9950/2016/94(19)/195146(16) 195146-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.195146


KRISTJAN HAULE AND GHEORGHE L. PASCUT PHYSICAL REVIEW B 94, 195146 (2016)

still requires integration over temperature for the entropy term.
However, as we will show below, the force requires only the
first derivative δ�[G]/δG, which is the familiar self-energy
�, and which can be computed to very high accuracy in
QMC method. It turns out that only the first derivative of
the free energy functional, i.e., the force, can be so accurately
implemented. To compute the free energy itself, one needs
�[G], which is hard to compute. For the phonon spectra,
which is the second derivative, one needs δ2�[G]/δG2, which
is the two particle vertex, and is again very hard to accurately
compute in practice. Therefore only the force on atoms can
be computed very precisely in the DFT+embedded DMFT
functional (DFT+EDMFTF) method when the exact QMC
method is used as the impurity solver.

As a consequence, the frozen phonon approach is more
tractable than the generalization of the density functional
perturbation theory [13]. Also the integration of the force will
likely be the best way to calculate phase diagrams of correlated
solids, as the force can be converged to much higher precision
than the free energy itself.

We are aware of two prior reports on computing forces
and other derivatives within DFT+DMFT method. The work
of Savrasov and Kotliar [14] considered only the second
derivative of the DFT+DMFT functional with respect to atom
displacement, to obtain the phonon spectra. They considered
only the finite wave vector q, to avoid the need of differen-
tiating the Kohn-Sham eigenenergies, which are needed for
evaluating the forces. Moreover, using the Hubbard-I impurity
solver, they also neglected the change of the DMFT self-energy
with respect to the atom displacement (δ�/δG = δ2�/δG2),
which plays an important role in our method. The work of
Leonov et. al. [15] reported computation of forces within
DFT+DMFT, however, their implementation is not based on
stationary functional. The derivative of nonstationary DMFT
total energy was computed, in which the two-particle vertex is
needed at all frequencies, which is extremely hard to compute
accurately enough by the present day impurity solvers, to be
useful for the structural optimizations. Moreover, the method
of Leonov et al. [15] is a based on the two step process, where
the low-energy model is build first and then a Hubbard model
is solved by the DMFT method. Also the influence of the
DMFT correlations on the electronic charge, needed in the
DFT step, is usually neglected. These two approximations are
a source of inaccuracy, which is hard to overcome, even when
the impurity is solved with a very high precision so that the
two-particle vertex is converged within meV accuracy. Hence
alternative approaches are needed for practical predictions of
crystal structures for correlated electron solids.

The manuscript is organized as follows. In Sec. II, we derive
the equations for the forces within DFT+Embedded DMFT
functional. In part II A, we introduce the Luttinger-Ward func-
tional and its derivative with respect to the atom displacement,
which is the well known Hellmann-Feynman force. In part II B,
we derive a basis set independent expression for the Pulay
force, the additional force due to basis set discretization. In
part II C, we show how is this formula evaluated in a mixed
basis set, in which the basis has both the atom-centered and
origin-less functions. In part II D, we derive Pulay forces in
one such basis, namely the LAPW basis. In Sec. III, we apply
this method to FeSe, and show how quantum Monte Carlo

noise cancels to large extent when computing the force. In
Sec. III, we also show that FeSe is positioned in the critical
region where a small increase of the fluctuating moment on
Fe leads to substantial increase of Se height, and consequently
also of the correlation strength. In Appendix A, we give details
of the force evaluation within the LAPW basis set.

II. DERIVATION OF THE FORCE WITHIN
DFT+EDMFTF

The force on an atom is defined as minus the change
of the total free energy when its nucleus is displaced by a
small amount. The Hellmann-Feynman theorem [16] states
that this force is equal to the electrostatic force on the nucleus,
but due to discretization of the problem, which involves
convenient atom centered basis and atom centered projector,
the actual force on an atom has additional contributions,
which are usually called Pulay forces [17]. Note that if
the functional being differentiated is stationary, only the
Hellmann-Feynman force, and the Pulay force can appear.
The latter contains only terms that come from the derivative of
the basis functions, but can not contain the second derivative
of the functional with respect to the Green’s function or
density. In DFT, for example, the total energy functional
is stationary, and the force therefore does not contain the
second derivative of the exchange-correlation functional with
respect to the density, i.e., exchange-correlation kernel fxc =
δ2Exc[ρ]/δρ2. Similarly we expect that when differentiating
the DFT+DMFT stationary functional, the two particle-vertex
function � = δ2�/δG2 must cancel out, and we will show that
explicitly below. For the discussion on computing force from
a nonstationary functional, see Appendix B.

A. The Luttinger-Ward approach

In ab initio electronic structure methods, the force is
computed by evaluating the analytical derivative of the total
energy functional. In order to compute such derivatives, it
is very convenient to use a stationary functional, in which a
small change of the electron density (and the Green’s function),
leaves functional invariant. Indeed, if the implementation of the
functional is exact, one could evaluate the force by considering
a small displacement of nuclei at fixed electron charge density
(and fixed Green’s function). Namely, the total derivative of
the free energy functional �[G] can be split into two terms,
the partial derivatives with respect to the Green’s function at
fixed atomic positions, and the partial derivatives with respect
to displacements at fixed Green’s function, i.e.,
δ�[G]

δRμ

=
(

∂�[G]

∂Rμ

)
G

+
∫

drdr′ δG(rr′)
δRμ

(
∂�[G]

∂G(rr′)

)
Rμ

.

(1)

If the functional is stationary, it follows that ( ∂�[G]
∂G

)
Rμ

= 0, and
therefore only the first term contributes, and gives so-called
Hellmann-Feynman forces.

In the Green’s function approaches, such as the dynamical
mean-field theory, the free energy functional is best expressed
by the stationary Luttinger-Ward functional, which takes the
form
�[G] = Tr ln(−G) − Tr

((
G−1

0 − G−1
)
G
)+ �[G] + Enuclei.

(2)
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Here, Tr runs over spatial degrees of freedom, the spin, and
when quantities are dynamic, also over Matsubara frequencies.
Note that the derivative with respect to the Green’s function
at constant ion position ( ∂�[G]

∂G
)
Rμ

is G−1 − G−1
0 + δ�[G]

δG
, and

as expected vanishes, because the system satisfies the Dyson
equation G−1 = G−1

0 − δ�[G]
δG

. The only term that explicitly
depends on the nucleus position is contained in G0 and Enuclei,
and the force thus becomes

δ�[G]

δRμ

= −Tr

(
G

∂G−1
0

∂Rμ

)
+ ∂Enuclei

Rμ

= Tr

(
ρ

∂Vnuclei

∂Rμ

)
+ ∂Enuclei

Rμ

, (3)

where G−1
0 = iωn + μ − T − Vnuclei, T and Vnuclei are the

kinetic energy operator and the potential due to nuclei,
respectively. Because Vnuclei is frequency independent, we
performed a partial trace over Matsubara frequency to replace
the Green’s function with the charge density in the first term
Tr(GδVnuclei) = Tr(δVnuclei

1
β

∑
iωn

G(iωn)) = Tr(ρVnuclei).
The derivative in Eq. (3) then gives

FHF = −Tr

(
ρ

∂Vnuclei

∂Rμ

)
− ∂Enuclei

Rμ

, (4)

which is the Hellmann-Feynman force.

B. Forces within DFT+EDMFTF approach

The exact Baym-Kadanoff � functional is the sum of
all skeleton Feynman diagrams, which can not be computed
exactly for the solid state systems we are interested in.
Within DFT+embedded DMFT functional (DFT+EDMFTF)
approach, the � functional is approximated by the following
superposition of terms:

�[G] = EH [ρ] + Exc[ρ] +
∑
Rμ

�DMFT
[
G

μ

loc

]− �DC
[
ρ

μ

loc

]
.

(5)

Here the first two terms give rise to usual DFT equations, the
third term adds all Feynman diagrams, local to selected set
of atoms at Rμ. The last term subtracts the interaction, which
is accounted for by both approximations. The latter is now
known exactly [18].

Notice that �DMFT[Gμ

loc] has the same functional form
as the exact functional �exact

VC
[G], however, to obtain �DMFT

from �exact
VC

[G], the Green’s function G is truncated to its
local component G → Gloc, and Coulomb correlation VC is
screened, due to this truncation. Such truncation of variable
of interest parallels the LDA and GGA type approximation
to DFT, where Exc is similarly taken to be local (semilocal)
to each point in 3D space, which is clearly a more restrictive
approximation. The combined DFT+EDMFTF is thus a good
compromise between speed and accuracy, as most of the
degrees of freedom are treated on semilocal level, while
the correlated orbitals are augmented by the best local
approximation to a given correlated atom. Notice also that
it is possible to define somewhat different functional �, which
gives the exact local Green’s function and the exact free energy
in its stationary point [19], and for which the diagrammatic

rules were also developed in Ref. [19]. In practice, however,
a successful approximation that would go beyond DMFT and
would not add an exponential cost (like cluster extensions) has
not been developed yet from this formalism.

To define the “locality to an atom” in Eq. (5), we need
to define the DMFT projector, and in the embedded DMFT
approach, this projector is chosen to be a set of atom centered
functions |φμ

m〉, so that

G
μ

loc(r,r′) =
∑
mm′

〈
r
∣∣φμ

m

〉 〈
φμ

m

∣∣G∣∣φμ

m′
〉 〈

φ
μ

m′
∣∣r′〉 . (6)

If these functions |φμ
m〉 form a complete basis, then DMFT

method is projector independent, except that it dependents on
the range of the projector (the sphere size). In practice, the so-
lutions of the radial Schroedinger equation that correspond to
the 3d, 2p, and 4s solutions, of say an Fe atom, are sufficiently
separated in energy so that only 3d states need to be treated
dynamically, while the rest of the orbitals can safely be treated
statically within the exchange-correlation approximation.

The stationarity of the functional �[G], when using �[G]
of the DFT+EDMFTF [Eq. (5)], gives the Dyson equation

G−1 − G−1
0 + (VH + Vxc)δ(r − r′)δ(τ − τ ′)

+
∑

mm′,Rμ

〈
r
∣∣φμ

m

〉 〈
φμ

m

∣∣� − VDC

∣∣φμ

m′
〉 〈

φ
μ

m′
∣∣r′〉 = 0, (7)

hence the electron Green’s function must satisfy

G−1 = iωn + μ − T − (Vnuclei + VH + Vxc)

−
∑

mm′Rμ

∣∣φμ
m

〉 〈
φμ

m

∣∣�iωn
− VDC

∣∣φμ

m′
〉 〈

φ
μ

m′
∣∣ (8)

and the functional �[G] reaches extremum for this G. When
inserting extremal G back into �[G] [Eq. (2)], the value of �

gives the free energy of the system [20], which hence becomes

F = Tr ln (−G) − Tr((VH + Vxc)ρ) + EH [ρ]

+Exc[ρ] + Enuclei − Tr((� − VDC) 〈φ|G|φ〉)
+
∑
Rμ

�DMFT
[
G

μ

loc

]− �DC
[
ρ

μ

loc

]+ μN. (9)

Notice that (〈φ|G|φ〉)mm′ are the matrix elements of the local
Green’s function 〈φμ

m|G|φμ

m′ 〉.
In the all-electron calculations of the free energy, the spatial

degrees of freedom are expanded in terms of a mixed basis set,
which includes atom centered basis functions, therefore the
Hellmann-Feynman force is very different from the derivative
of the implemented free energy Eq. (9). It is therefore essential
to find the analytic derivative of the actually implemented free
energy Eq. (9). This is derived below. We will concentrate
on the valence electron contribution, as the core contribution
within DFT+EDMFTF is the same as in DFT.

To evaluate the logarithm of the Green’s function in Eq. (9),
we first solve the following frequency dependent eigenvalue
problem:〈

ψjkωn

∣∣ (T + Vnuclei + VH + Vxc +
∑

mm′Rμ

∣∣φμ
m

〉 〈
φμ

m

∣∣�iωn

−VDC

∣∣φμ

m′
〉 〈

φ
μ

m′
∣∣ ) ∣∣ψikωn

〉 = δij εkωn,i , (10)
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so that the Green’s function is simply given by

〈
ψjkωn

∣∣G∣∣ψikωn

〉 = δij

iωn + μ − εkωn,i

(11)

and the free energy is evaluated by

F = −Tr ln
(−iωn − μ + εkωn

)− Tr((VH + Vxc)ρ)

+EH [ρ] + Exc[ρ] + Enuclei − Tr((� − VDC) 〈φ|G|φ〉)
+
∑
Rμ

�DMFT
[
G

μ

loc

]− �DC[ρμ

loc] + μN. (12)

This is the actual expression implemented in DFT+EDMFTF
code. To get the force on an atom, we need to consider a small
variation of this energy when moving an atom at position Rμ

δF = Tr

(
δεkωn

− δμ

iωn + μ − εkωn

)
− Tr(ρ(δVH + δVxc))

− Tr(Gloc(δ� − δVDC)) + δEnuclei + Nδμ, (13)

where we used the fact that

δ(EH + Exc) = Tr((VH + Vxc)δρ)∑
Rμ

δ�DMFT
[
G

μ

loc

]+ δ�DC
[
ρ

μ

loc

] = Tr((�−VDC)δGloc), (14)

and, as we work at constant electron density, δN = 0. Inserting
the Hellmann-Feynman forces Eq. (4), we arrive at

δF = Tr

(
δεkωn

iωn + μ − εkωn

)
− Tr(ρ δVKS)

− Tr(Gloc(δ� − δVDC)) −
∑

μ

FHF
μ δRμ, (15)

where VKS = VH + Vxc + Vnuclei.
Finally, we define the Pulay force on an atom FPuly as the

addition to the Hellmann-Feynman force (due to the basis set
in which the functional is implemented) δF = −∑μ(FHF

μ +
FPuly

μ )δRμ. From Eq. (15), it follows that the Pulay forces are

FPuly
μ = −Tr

(
1

iωn + μ − εkωn

δεkωn

dRμ

)
+ Tr

(
ρ

δVKS

δRμ

)
+ Tr

(
Gloc

δ� − δVDC

δRμ

)
. (16)

This equation is still completely general expression for the
force within the DFT+EDMFTF, irrespectively of the basis
set employed.

C. Pulay forces expressed in a mixed basis set

To proceed, we need to choose a basis to express the electron
Green’s function. We will here denote it by |χK〉, (as we have
in mind LAPW basis set) but the details of the basis are not
important here, so this derivation is relevant for any mixed
basis set.

The DMFT eigenvectors |ψikωn
〉 are than expanded in the

chosen basis in the usual way∣∣ψikωn

〉 =∑
K

|χK〉 AR
Ki , (17)〈

ψikωn

∣∣ =∑
K

AL
iK 〈χK| . (18)

Note that the eigenvectors |ψikωn
〉 are momentum and fre-

quency dependent, hence AR
Ki also inherit this momentum and

frequency dependence, i.e., AR
Ki = AR

Ki(k,ωn). Note also that
the eigenvalue problem is not Hermitian, therefore we need to
distinguish between the right and the left eigenvectors. Using
expansion Eqs. (17) and (18), the DMFT eigenvalue problem
Eq. (10) reads∑

KK′
AL

jK′
[
H 0

K′K + VK′K
]
AR

Ki = δij εkωn,i , (19)

where

H 0
K′K = 〈χK′ |T + Vnuclei + VH + Vxc|χK〉 ,

VK′K =
∑

mm′Rμ

〈
χK′
∣∣φμ

m

〉 〈
φμ

m

∣∣� − VDC

∣∣φμ

m′
〉 〈

φ
μ

m′
∣∣χK
〉
. (20)

Here, H 0 stands for the DFT part of the Hamiltonian, and V

for the additional DMFT contributions.
The eigenvectors are orthogonalized in the usual way∑

KK′
AL

iK′OK′KAR
Kj = δij ,

where OK′K = 〈χK′ |χK〉 is the overlap matrix, hence the
eigenvalue problem Eq. (19) can be cast in the following form:∑

K

[
H 0

K′K + VK′K
]
AR

Ki =
∑

K

OK′KAR
Ki εkωn,i (21)

or in short notation

[H 0 + V ]AR = OARε.

Equation (21) is enforced for any position of atoms Rμ, hence
its variation vanishes. We thus have

[(δH 0) + (δV )]AR + [H 0 + V ]δAR

= (δO)ARε + O(δAR)ε + OARδε (22)

and, multiplying with AL, we get

AL[(δH 0) + (δV )]AR + AL[H 0 + V ]δAR

= AL(δO)ARε + ALO(δAR)ε + δε. (23)

We also use the fact that AL[H 0 + V ] = εALO to obtain

δε = AL[(δH 0) + (δV )]AR − AL(δO)ARε

+ εALO(δAR) − ALO(δAR)ε. (24)

In Eq. (16), we only need the diagonal variation of the eigen-
values (δε)ii , for which the last two terms cancel because ε is
diagonal matrix, hence εi(ALO(δAR))ii − (ALO(δAR)iiεi =
0. We thus obtain(

δεkωn

)
ii

=
∑
KK′

AL
iK′
[
δH 0

K′K + δVK′K
]
AR

Ki

−AL
iK′ δOK′K AR

Ki εkωn,i . (25)
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This is a dynamic generalization of the DFT expression,
derived in Ref. [21].

Next we split the DMFT eigenvectors into the static
(Kohn-Sham) part, and the frequency dependent part

AR
Ki =

∑
j

A0
Kj

(
BR

ωn

)
ji

, (26)

AL
iK =

∑
j

(
BL

ωn

)
ij
A

0 †
jK, (27)

or short AR = A0BR
ωn

and AL = BL
ωn

A0†. Here, A0 satisfies the
Kohn-Sham eigenvalue problem A0†H 0A0 = ε0.

In terms of the above defined quantities Eq. (16) takes the
form

FPuly
μ = −Tr

{
GdBL

ωn

[
A0†
(

δH 0

δRμ

+ δV

δRμ

)
A0BR

ωn

−A0† δO

δRμ

A0BR
ωn

εkωn

]}
+ Tr

(
ρ

δVKS

δRμ

)
+ Tr

(
Gloc

δ� − δVDC

δRμ

)
, (28)

where we denoted

Gd = 1

iωn + μ − εkωn

,

and Gd is the Green’s function in diagonal representation. Next
we define the following DMFT density matrices:

ρ̃ ≡ 1

β

∑
iωn

BR
ωn

1

iωn + μ − εkωn

BL
ωn

, (29)

(̃ρε) ≡ 1

β

∑
iωn

BR
ωn

εkωn

iωn + μ − εkωn

BL
ωn

, (30)

which are the usual DMFT density matrices, but here written in
the Kohn-Sham basis. Note that the density matrix ρ̃ can also
be expressed by ρ̃ij = 〈ψ0

i |ρ|ψ0
j 〉 where |ψ0〉 are Kohn-Sham

eigenvectors of H 0 and ρ is the self-consistent charge density
of DFT+EDMFTF method. We also recognize the Green’s
functions written in the |χK〉 basis

ḠKK′ =
(

A0BR
ωn

1

iωn + μ − εkωn

BL
ωn

A0†
)

KK′
. (31)

The overline here is used to stress that the Green’s function is
expressed in the basis of |χK〉 (rather than in real space). This
allows us to simplify

FPuly
μ = −Tr

(
ρ̃A0† δH 0

dRμ

A0 − (̃ρε)A0† δO

δRμ

A0

)
+ Tr

(
ρ

δVKS

δRμ

)
− Tr

(
Ḡ

δV

δRμ

)
+ Tr

(
Gloc

δ� − δVDC

δRμ

)
. (32)

We next simplify the interacting part (the third term above),
which contains interaction V [defined by Eq. (20)]:

Tr(ḠδV )

= 1

β

∑
iω,m′m

KK′

ḠKK′δ(〈χK′ |φm′ 〉 (� − VDC)m′m 〈φm|χK〉)

= 1

β

∑
iωn,m

′m
KK′

ḠKK′(� − VDC)m′mδ(〈χK′ |φm′ 〉 〈φm|χK〉)

+Tr(Gloc(δ� − δVDC)), (33)

where we used the fact that

(Gloc)mm′ =
∑
KK′

〈φm|χK〉 ḠKK′ 〈χK′ |φm′ 〉 .

Finally, the Pulay forces become

FPuly
μ = −Tr

(
ρ̃A0† δH

0

δRμ

A0−(̃ρε)A0† δO

δRμ

A0

)
+Tr

(
ρ

δVKS

δRμ

)
− 1

β

∑
iωn

∑
KK′,m′m

ḠKK′(�−VDC)m′m

× δ(〈χK′ |φm′ 〉 〈φm|χK〉)
δRμ

. (34)

This is still a basis independent expression of the Pulay force,
as we abstain discussing specifics of a given basis set, but
we nevertheless managed to avoid the expensive frequency
summations in all but the last term. To perform the expensive
K and frequency summation in the last term, we need to
determine the derivative of the projector, which depends on
the basis set and the choice of a projector.

D. Pulay forces within LAPW basis and quasi
atomic orbital projector

Within the LAPW method [22,23] the interstitial space
is spanned by the plane waves χ̃K, while inside the muffin-
tin spheres, the plane waves are augmented and expanded
as a linear superposition of the atom-centered solutions
of the Schroedinger equation. We name these augmented
functions χK, and inside muffin-tin spheres we express them
in the atom centered coordinate system with the proper
phase factor χK(r) = ei(K+k)Rμ χ̄K(r − Rμ). For convenience
of the derivation, we chose χ̄K to be the basis function in
the muffin-tin sphere, but without the phase factor. The matrix
elements of the Hamiltonian are then computed by an integral
of the form

〈χK′ |V |χK〉 =
∫

int
d3rχ̃∗

K′(r)V (r)χ̃K(r) +
∑

μ

ei(K−K′)Rμ

×
∫

MTμ

d3rχ̄∗
K′(r)V (r + Rμ)χ̄K(r). (35)

The first term runs over interstitial space between muffin-
tin (MT) spheres, while the second term is the MT part. We
are looking for a change when we move a single atom μ

at Rμ for a small amount (δRμ). The plane-wave functions
χ̃K do not change, while the augmented χ̄K in the second
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integral move with the atom. In addition, because the nucleus
moves, the charge gets deformed and the potential changes for
an unknown amount δV . We will keep track of this change,
but we know that it must eventually cancel out, since we are
taking derivative of a stationary functional. This is the crucial
advantage of a stationary functional, as otherwise one would
need to evaluate terms like (δ�/δG)δG = (δ2�/δG2)δG, i.e.,
the two particle vertex δ2�/δG2 would need to be computed at
all frequencies, which is numerically extremely hard to achieve
using existing impurity solvers.

Finally, we will make the usual approximation [21,24] that
the LAPW basis functions χ̄K(r − Rμ) rigidly shift with the
displacement of the atom but do not deform, in the so-called
frozen radial augmentation function approximation.

Under this assumptions, the change of a matrix elements is

δ 〈χK′ |V |χK〉
δRμ

= 〈χK′ | δV

δRμ

|χK〉 −
∮

MTμ

dS χ̃∗
K′ V χ̃K

+ i(K − K′) 〈χK′ |V |χK〉MTμ

+ 〈χK′ |∇V |χK〉MTμ
. (36)

The first term is due to the movement of the nucleus, and
associated change of the charge and the potential. The integral
in this term is extended over the entire space. The second term
is due to the change of the integration area for the interstitial
component, and extends over the surface of the moving MT
sphere. The third term is due to the phase factor in Eq. (35), and
the last term arises due to the fact that the potential in the sphere
is expressed in the moving coordinate system centered on the
moving atom. We used here a short notation 〈χK′ |V |χK〉MTμ

for the integral over the MT sphere
∫

MTμ
d3rχ∗

K′V χK.
The matrix element for the kinetic energy operator, which

takes the form

〈χK′ |T |χK〉 =
∫

int

d3r(∇χ̃∗
K′(r)) · (∇χ̃K(r))

+
∑

μ

ei(K−K′)Rμ

∫
MTμ

d3r∇(χ̄∗
K′(r)) · ∇(χ̄K(r)).

(37)

does not have the first and the last term of Eq. (36), as the
form of ∇ · ∇ is originless, and hence does not change with
the movement of the nucleus, nor with the movement of the
coordinate system. We thus have

δ 〈χK′ |T |χK〉
δRμ

= −
∮

MTμ

dS χ̃∗
K′ T χ̃K

+ i(K − K′) 〈χK′ |T |χK〉MTμ
. (38)

Similarly, the overlap has only the following two terms:

δ 〈χK′ |χK〉
δRμ

= −
∮

MTμ

dS χ̃∗
K′ χ̃K

+ i(K − K′) 〈χK′ |χK〉MTμ
. (39)

Finally, we also need the derivative of the DMFT projector
δ(〈χK′ |φm′ 〉 〈φm|χK〉)/δRμ. This can be looked at as a matrix
element computed in Eq. (35), where the potential is replaced
by V → 〈r′|φm′ 〉 〈φm|r〉 = φm′(r′)φ∗

m(r). In our implementa-
tion of embedded-DMFT, the projector vanishes outside the

MT-sphere, hence the integrals over the interstitials vanishes.
Inside the MT sphere, we rigidly shift the localized functions
φm(r) and not deform them, hence δ(φm′φ∗

m) = −∇(φm′φ∗
m),

so that the first and the last term in Eq. (36) cancel, hence we
have

δ(〈χK′ |φm′ 〉 〈φm|χK〉)
δRμ

= i(K − K′) 〈χK′ |φm′ 〉 〈φm|χK〉 .

(40)

Note that Wannier orbitals do not rigidly shift with the atom,
as they explicitly depend on the electron charge, hence the
derivative of the projector in the Wannier basis is not so simple.
Hence the Pulay forces within the DFT+DMFT approach,
implemented in Wannier basis, is much more complicated than
derived here.

Finally, let us note that the equivalent expressions for the
derivatives Eqs. (36), (38), and (39) were derived by Soler and
Williams [25], as well as by Yu, Singh, and Krakauer [21].
The two formalisms were shown to be equivalent in Ref. [26].

Next we use the Gauss theorem to simplify

〈χK′ |∇V |χK〉MT =
∮

MT
dS χ∗

K′ V χK

−
∫

MT
d3rV ∇(χ∗

K′χK) (41)

and derive a convenient expression for the change of the static
part of the Hamiltonian H 0 = T + VKS:

δH 0
K′K

δRμ

= 〈χK′ |δVKS

δRμ

|χK〉 + i(K − K′) 〈χK′ |H 0|χK〉MTμ

−
∮

MTμ

dS (∇χ̃∗
K′ ) · (∇χ̃K)

−
∫

MT
d3rVKS ∇(χ∗

K′χK) +
∮

MT
dS [χ∗

K′ VKS χK

− χ̃∗
K′ VKS χ̃K], (42)

where

〈χK′ |H 0|χK〉MTμ

= 〈χK′ |T + VKS|χK〉MTμ

=
∫

MTμ

d3r(∇χ∗
K′) · (∇χK) + 〈χK′ |VKS|χK〉MTμ

= 〈χK′ | − ∇2 + VKS|χK〉MTμ
+
∮

MTμ

dS χ∗
K′∇χK.

(43)

The last term in Eq. (42) vanishes if the basis functions χk are
continuous across the MT-sphere. The continuity is enforced
in both LAPW and APW+lo method. There is however
always a very small discontinuity, which is due to the fact
hat the harmonics expansion contains finite number of spheric
harmonics. We usually take large enough cutoff l ≈ 10 so that
this term is around two orders of magnitude smaller than the
rest of the terms, and can therefore be safely ignored.
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Next, we insert Eq. (42) into Eq. (34), and evaluate term by
term. The first term Tr(ρ̃A0†δVKSA

0) can be greatly simplified

Tr

(
ρ̃A0† δVKS

δRμ

A0

)
=
∑
ijKK′

ρ̃ijA
0†
jK′ 〈χK′ |δVKS

δRμ

|χK〉 A0
Kj

=
∑
ij

〈
ψ0

i

∣∣ρ∣∣ψ0
j

〉 〈
ψ0

j

∣∣δVKS

δRμ

∣∣ψ0
i

〉
= Tr

(
ρ

δVKS

δRμ

)
. (44)

This is because the Kohn-Sham solution |ψ0
i 〉 =∑K |χK〉 A0

Ki

and ρ̃ = 〈ψ0|ρ|ψ0〉 is the density matrix expressed in the
Kohn-Sham basis. Clearly this term cancels a term in Eq. (34),
as expected for stationary functional, hence the real change
of the Kohn-Sham potential due to movement of nucleus (and
not due to movement of the basis attached to the sphere) is not
needed in the force calculation.

Next we simplify the forth term of Eq. (42) when inserted
into Eq. (34). We have

Tr

(
ρ̃A0†

∫
VKS∇(χ∗χ )A0

)
=
∑

KK′,ij

ρ̃ijA
0†
iK′

∫
d3rVKS(r)∇(χ∗

K′χK)A0
Kj

=
∫

d3rVKS(r)
∑
ij

〈
ψ0

i

∣∣ρ∣∣ψ0
j

〉∇(ψ0∗
j (r)ψ0

i (r)
)

=
∫

d3rVKS(r)∇ρ(r) = Tr(VKS∇ρ). (45)

Finally, we also simplify the last term in the Pulay forces
Eq. (34), which comes from the DMFT dynamic corrections

Fdynam ≡ − 1

β

∑
iωn

∑
KK′,m′m

ḠKK′(� − VDC)m′m

× δ(〈χK′ |φm′ 〉 〈φm|χK〉)
δRμ

(46)

Using Eq. (40) and the fact that the Green’s function Eq. (31)
can also be expressed in the smaller Kohn-Sham basis

G̃ij =
(

BR
ωn

1

iωn + μ − εkωn

BL
ωn

)
ij

= 〈ψ0
i

∣∣G∣∣ψ0
j

〉
, (47)

so that ḠK′K = (A0G̃A0†)K′K we arrive at

Fdynam = − 1

β

∑
iωn

∑
ij,m′m

G̃ij (� − VDC)m′m

×
∑
KK′

A
0†
jK′ i(K − K′) 〈χK′ |φm′ 〉 〈φm|χK〉 A0

Ki .

(48)

The projector, which expresses the DMFT Green’s function in
the Kohn-Sham basis, is given by

Umi =
∑

K

〈φm|χK〉 A0
Ki (49)

from which the DMFT local Green’s function is usually
computed

Gloc(iωn) ≡ UG̃(iω)U†. (50)

Note that here Gloc is expressed in the DMFT orbital basis
mm′.

We can compute a vector version of the DMFT projector,
which is given by


Umi =
∑

K

〈φm|χK〉 KA0
Ki (51)

to simplify the dynamic force

Fdynam = − i

β

∑
iωn

∑
ij,m′m

(
�m′m(iωn) − V DC

m′m
)
( 
UmiG̃ij (iωn)U†

jm′

−UmiG̃ij (iωn) 
U†
jm′). (52)

The first term has the form Tr(�(iωn) 
UG̃(iωn)U†) and if
we replace iωn → −iωn, we get Tr(�(iωn)UG̃(iωn) 
U†)∗,
which is complex conjugated second term. The resulting force
Fdynamic is therefore a real number.

We normally compute the local Green’s function by
Eq. (50), but it is convenient to compute also the following
vector version of the local Green’s function


Gloc(iωn) ≡ 
UG̃(iω)U†, (53)

from which the dynamic force can be computed very efficiently

Fdynam = 2ImTr[(�(iωn) − V DC) 
Gloc(iωn)]. (54)

This calculation needs only a summation over Matsubara
frequencies and over correlated orbitals, and hence Fdynamic

can be computed almost as fast as the DMFT density matrix.
Finally we insert the rest of the terms in Eqs. (42) and (39)

into Eq. (34), to obtain the complete expression of the Pulay
forces for the valence states within LAPW basis

FPuly
μ = −

∑
KK′ij

ρ̃ijA
0†
jK′ i(K − K′) 〈χK′ |H 0|χK〉MTμ

A0
Ki

(55)

+
∑

KK′ij

(̃ρε)ijA
0†
jK′ i(K − K′) 〈χK′ |χK〉MTμ

A0
Ki

(56)

+
∑

KK′ij

[ρ̃ij (k + K) · (k + K′) − (̃ρε)ij ]

×A
0†
jK′A

0
Ki

∮
MTμ

dS χ̃∗
K′ χ̃K (57)

+ Tr(VKS∇ρ) + 2ImTr((� − V DC) 
Gloc). (58)

The first two terms contain the MT integrals and their similar
structure but opposite sign shows how they would cancel in the
absence of the i(K − K′) term. The latter arises from the fact
that the basis inside MT sphere is moved with the nucleus.
Equation (57) contains so-called MT-surface terms, which
arise due to discontinuity of the second derivative across MT
sphere [21], and finally the last term is due to the fact that the
DMFT projector moves with the displacement of the nucleus.
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The DMFT density matrices ρ̃ and (̃ρε) are computed by
careful summation over the Matsubara points. Once these
density matrices are computed in the Kohn-Sham basis, we
can diagonalize them

ρ̃ ≡ B w B†, (59)

(̃ρε) ≡ B (wε) B†
(60)

and obtain two sets of eigenvectorsB,B and the corresponding
eigenvalues wi and (wε)i , respectively. Then we can insert the
diagonal form for the density matrices into Eqs. (55)–(57) to
obtain Pulay forces in a compact form

FPuly
μ = −

∑
KK′i

wiA
†
iK′ i(K − K′) 〈χK′ |H 0|χK〉MTμ

AKi

+
∑
KK′i

(wε)iA
†
jK′ i(K − K′) 〈χK′ |χK〉MTμ

AKi

(61)

+
∑
KK′i

[wiA
†
iK′(k+K′) · (k+K)AKi−(wε)iA

†
iK′AKi]

×
∮

MTμ

dS χ̃∗
K′ χ̃K (62)

+Tr(VKS∇ρ) + 2ImTr((� − V DC) 
Gloc). (63)

Here we used the modified eigenvectors

A = A0B, (64)

A = A0B. (65)

The resulting Eqs. (61)–(63) have now very similar form as
the DFT Pulay forces within LAPW method [24], except in
DFT A and A are both equal to the KS eigenvectors, and
wi’s are fermi functions fi and (wε)i are fermi function times
KS eigenvalues (fiεi). The last term in Eq. (63) bares some
resemblance to the LDA+U force [27], but is different due to
dynamic nature of � and Gloc. The algorithm to evaluate these
terms is given in Appendix A.

III. RESULTS

We tested the method on several transition metal oxides,
pnictides and chalchogenides.1 In this section, we show result
for FeSe, one of the most studied member of iron superconduc-
tor family, which has attracted tremendous attention recently.
We use the implementation of DFT+EDMFT of Ref. [28],
which is based on WIEN2K [29]. The value of Coulomb U is
fixed at 5 eV [30], and we use the nominal double-counting
[18].

Bulk FeSe crystalizes in tetragonal P 4/nmm structure (No.
129). It is superconducting below 10 K under ambient pressure
[31], and the superconducting Tc is increases to 37 K under
pressure [32,33]. By substitution of Se by small amounts of Te,
Tc can also be increased to 15 K [34,35], and by intercalation
with spacer layers, Tc can also be boosted to over 40 K [36].

1These results will be published elsewhere.

FIG. 1. Force on Se atom when displaced in z-direction, and
the corresponding change of the free energy. The free energy is
calculated from the functional Eq. (9), and is compared to integrated
force. We show both the free energy and F + T Simp. The latter is
directly computed in our method, while the former requires additional
integration over the temperature. The quantum Monte Carlo noise
is approximately one order of magnitude smaller when computing
energy from the force than computing it directly from the functional.

First we test the implementation of forces within
DFT+EDMFTF by computing force on Se, located at Wickoff
position 2c (1/4,1/4,zSe) versus the Se height zSe. As shown
in Fig. 1, the force is almost linear around the equilibrium
position, and its integral matches quite well (within the
statistical noise) to the free energy of the system. Note that
there is always some systematic error due to frozen radial
augmentation approximation, i.e., in computing the force we
do not differentiate the solutions of the radial Schroedinger
equation ul . In Fig. 1, we show both the free energy, and the
free energy without the impurity entropy. The latter quantity is
computed directly from the Green’s function, while the former
needs additional integration over temperature [11]. Notice that
the error-bars in computing the force are significantly smaller
than the error-bars on the free energy.

To make this point more clear, we show in Fig. 2 the
free energy and the force from our simulation. We count as
a start of the new iteration whenever the DMFT self-energy
is updated, but note that we perform approximately 10 charge
self-consistent steps for each self-energy update, so that the
charge is practically converged at each DMFT iteration. As is
clear from Fig. 2, the Monte Carlo noise in computing the free
energy, of the order of a few meV, is present even when the
free energy is converged, and only better statistics in the QMC
solver can reduce this noise. The calculated force, measured
in meV per atomic unit, has almost factor of five smaller noise
than the free energy. Finally, when we convert the force to units
of meV (by multiplying with the distance from the equilibrium)
this contribution to free energy has almost no visible noise
(approximately two orders of magnitude smaller noise than
the free energy itself). Even when we integrate the force, to
obtain the free energy, the error remains almost one order of
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FIG. 2. The convergence of the free energy F + T Simp and force
with the number of DMFT iterations. The last seven steps are
converged, but display typical Monte Carlo noise, which is more
severe in free energy than in computing force. When the force is
multiplied with the displacement from equilibrium �r, to recover the
units of energy, the noise is more than one order of magnitude smaller
than the corresponding noise of the free energy. The data correspond
to zSe = 0.25. For clarity we subtracted a constant from both the
energy and the force.

magnitude smaller, compared to the error in direct calculation
of the energy. We believe that this is because the � functional
is much more challenging to compute precisely within Monte
Carlo [11], while the derivative of � is the self-energy, which
is very precisely sampled by the Monte Carlo method.

Many authors suggested that Se height plays an important
role in determining superconducting Tc in Fe-superconductors
[37]. Theoretical studies of correlations in iron superconduc-
tors showed, that the level of correlation strength is strongly
coupled to the anion-height [7], as the higher anion position
increases the distance between Fe and the anion, thereby reduc-
ing the Fe-anion hybridization. As a consequence, the strength
of the local magnetic moment is increased and correlations are
increased. This is clear from the substitution of Se by larger
Te, which increases the anion height, and as a consequence,
the correlation strength is increased significantly [7]. Note that
this effect was recently also confirmed experimentally [38].

As discussed above, previous theoretical studies and the
experiments suggest that the increased anion height leads to
larger fluctuating moment, but in the previous theoretical stud-
ies the crystal structures of various Fe superconductors was
taken from experiment, and was not theoretically optimized.
To estimate the electron-phonon coupling in FeSe within
DFT+DMFT, the coupling between the crystal structure
and electronic structure was analyzed in Ref. [39], using
only the total energy of the system, as we did not have
implementation of forces, and structural optimization was very
time consuming.

To establish that the size of the fluctuating moment and
anion height are internally consistently predicted by the theory,
one should see that larger fluctuating moment must lead to
increased anion height, as otherwise cancellation effect would
occur and possibly significantly reduce or even reverse the
effect, previously predicted by theory [7].

Here we calculate the optimized Se height as a function
of Hund’s rule coupling JH , which has a strong effect on
strengthening the fluctuating moment [6]. It is natural to expect
that an increased fluctuating moment will reduce tendency to

FIG. 3. The optimized z position of Se atom for different values
of Hund’s coupling JH . The experimental values exp(a) and exp(b)
correspond to x-ray measurements of Refs. [40] and [41], respectively.

bind, and hence increase anion heigh. It is however interesting
to see in Fig. 3 that this effect is strongest at exactly the
physically most relevant value of JH ≈ 0.8 eV [30]. At larger
JH > 0.9 eV and smaller JH < 0.7 eV, the curve tends to
saturate. We thus see that FeSe is situated at exactly the critical
position, where small change of its correlation strength, or
fluctuating moment, changes its properties dramatically. It
is tempting to correlate this with experimental findings that
pressure and intercalation has a dramatic effect of its Tc.

We notice that both LDA and GGA significantly underes-
timate the anion height. We mark two x-ray measurements on
powder samples in Fig. 3, which lead to somewhat different
value for zSe. This discrepancy will likely be resolved by
measurements on a single crystal of FeSe. DMFT agrees better
with Ref. [40], as JH of 0.75 eV is quite close to best estimates
of its value in iron superconductors [30]. The Se height from
Ref. [41] is somewhat outside the values suggested by the
present theory. We note that Ref. [40] considered wider range
on angles in the fit, hence it likely lead to more precise value
for ZSe than in Ref. [41].

While the change of zSe from 0.265 at JH = 0.7 eV to
zSe = 0.28 at JH = 0.9 eV might seem small, we show below
that it has dramatic consequence for the strength of correlations
on Fe atom. Previous studies of the five-band Hubbard model
[6] have established that for fixed crystal structure, the increase
of the Hund’s rule coupling increases effective mass and the
correlation strength. But here we show that by considering
the feedback effect of the magnetic moment on the crystal
structure, this effect appears to be even stronger. In Fig. 4, we
show the strengthening of the effective mass, as compared to
LDA, for different orbitals versus Hund’s coupling. Note that
for larger JH , we do not give a single number, but rather
a range of values for m∗. This is because our calculation
is performed at fixed temperature T ≈ 50 K, at which the
metallic state becomes increasingly incoherent with increased
JH . In such incoherent metal, different extrapolations of the
numerical data can lead to different estimates of the mass,
hence we mark a range. The size of the spread can also be
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FIG. 4. Mass enhancement of different orbitals vs Hund’s cou-
pling JH , when zSe is optimized theoretically. Note logarithmic scale
for mass.

used as a measure of incoherency, namely, as the orbital is
more incoherent, its precision for mass estimation decreases.
Experimentally, at 50 K the measured band dispersion should
be more consistent with the lowest estimation of the mass,
while at even lower temperature in the Fermi liquid regime,
the mass should increase and should be more consistent with
the highest estimates.

Notice that the plot is logarithmic, hence Hund’s coupling
increases mass exponentially for all orbitals. Notice also that
the mass differentiation is also increased exponentially, for
example at JH = 0.9 the xy orbital has over 50% larger mass
than xz/yz orbital, while at JH = 0.7, the xy orbital is only
20% more massive than xz/yz. Hence, Hund’s coupling not
just increases correlations, but rather makes differentiation
between orbitals larger.

This is one of the central elements of the physics of
Hund’s metals [6,42], in which spin-spin Kondo coupling turns
ferromagnetic and therefore slows down spin fluctuations,
thereby increasing the effective mass of quasiparticles, while
the charge fluctuations remain very fast, and hence charge
is not blocked, unlike in the Hubbard or t-J model. Due to
coupling of the spin and orbital through Kondo physics, the
system becomes Fermi liquid at zero temperature [42]. This
physics is thus very different from the Hubbard physics.

Here we used rotationally invariant Slater form of the
Coulomb interaction, where Slater integrals are related to JH

by F 2 = 8.6154JH and F 4 = 5.3846JH . Note that the same
value of JH , using simpler Kanamori parametrization of the
Coulomb repulsion, leads to even larger mass enhancements.
For clarity, let us note that the Coulomb iteraction JH and
U enter the DFT+DMFT functional Eq. (2) only through the
Baym-Kadanoff functional �[G]. The latter is the sum of all
local Feynman diagrams, and is thus a functional of G and the
local Coulomb interaction matrix Uα,β,γ,δ .

Note also that we do not see spin-frozen ground state, or
proximity to a quantum critical points, as found in some model
studies [43], whenever we use rotationally invariant form of the
Hund’s coupling. When we use the density-density interaction

only, which is not rotationally invariant, we do however find
spin-freezing and incoherent metal, in which coherence is not
restored with decreasing temperature. The latter seems to be a
property of certain forms of Coulomb interactions, which do
not explicitly obey rotational invariance, and the reason behind
deserves further study.

IV. CONCLUSIONS AND DISCUSSION

In this manuscript, we derived forces on atoms within ab-
initio approach termed DFT+Embedded DMFT functional.
This method combines the DFT with the DMFT such that it
embeds the DMFT Feynman diagrams directly in real space to
the DFT real space functional. The resulting functional is sta-
tionary, as we ensure that the projector P =∑αβ |φα〉 〈φα| ⊗
|φβ〉 〈φβ | is independent of the electronic charge density, so
that δP/δG = 0. This property of the projector ensures that the
variation of functional δ�[G] vanishes when the usual Dyson
equation (7) is satisfied. Note that when Wannier functions are
used for projector, then δP/δG does not vanish, and hence the
variation of the functional �[G] does not lead to a usual form
of the Dyson equation equation (7). More complicated Dyson
equation would than need to be used.

The derivative of the stationary functional with respect to
atomic displacement was derived analytically, and we showed
that the Pulay force contains only simple terms, which appear
due to our choice of atom centered basis. We show explicitly
that quantities, which are numerically difficult to evaluate,
cancel out. In particular, the two particle vertex function,
which appears due to variation of the self-energy δ�/δG,
cancels out. Moreover, the �[G] functional, which is needed
for free energy evaluation, is not needed for computing forces.
The resulting forces on atoms can thus be very efficiently
computed, and we implemented them in LAPW basis. We
showed that even though quantum Monte Carlo leads to
considerable noise in evaluating the free energy (noise of the
order of a meV) the force contains less noise (of the order of
0.2 meV/a.u.), hence this precision of the force allows one to
efficiently optimize crystal structures.

We optimized the crystal structure of FeSe for different
values of Hund’s coupling, and we showed that stronger
fluctuating moment leads to increase of the Se height. The latter
has dramatic impact on the correlations in this system, as the
mass increases exponentially with the strength of the Hund’s
coupling. At the same time, the orbital differentiation also
increases exponentially with JH . This is the central property
of the Hund’s metals [6].

The new formula for evaluating forces on all atoms in
the unit cell within DFT+DMFT formalism thus has a
great potential for both the structural predictions, as well as
prediction of phase diagrams of correlated materials at finite
temperature, which are known to have very complex phase
diagrams.
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APPENDIX A: DETAILS OF THE FORCE EVALUATION IN THE LAPW BASIS SET

First we set up the notation for the LAPW basis set. The basis functions in the interstitials are

χk+K(r) = 1√
V

ei(k+K)r (A1)

and, in the MT spheres, they take the form

χk+K(r) =
∑
lm,μ

(almμKul(|r − rμ|) + blmμKu̇l(|r − rμ|))Ylm(Rμ(r − rμ)), (A2)

χν(r) =
∑
m′μ′

(
alo

ν,m′μ′ul(|r − rμ′ |) + blo
ν,m′μ′ u̇l(|r − rμ′ |) + clo

ν,m′μ′u
LO
l (|r − rμ′ |))Y ∗

lm′(Rμ′r), (A3)

where Eq. (A2) stands for augmented plane wave functions, which are matched with the plane wave Eq. (A1) at the MT-sphere
boundary, and Eq. (A3) are additional local orbitals, which vanish at the MT boundary and hence do not need augmentation in
the interstitial. The index ν of the local orbitals comprises several indices ν = (isort,l,jlo,μ,m), where isort and μ are the type of
atom and the index of atom of a give isort type, respectively. jlo is the successive index of the local orbital (as several local orbitals
per atom are possible), and l,m is the index of the spherical harmonics. Notice that in Eq. (A3), we sum over all equivalent atoms
μ′ in the unit cell, hence a given local orbital has a contribution in each equivalent atom and for each m of a given l. The precise
form of the coefficients appearing in these two equations is

almμK ≡ āk+K
l

4πilS2

√
V

ei(k+K)rμY ∗
lm(Rμ(k + K)),

(A4)

blmμK ≡ b̄k+K
l

4πilS2

√
V

ei(k+K)rμY ∗
lm(Rμ(k + K)),

alo
ν,mμ ≡ alo

ν

4πilS2

√
V

ei(k+Kν )rμY ∗
lm(Rμ(k + Kν)),

blo
ν,mμ ≡ blo

ν

4πilS2

√
V

ei(k+Kν )rμY ∗
lm(Rμ(k + Kν)), (A5)

clo
ν,mμ ≡ clo

ν

4πilS2

√
V

ei(k+Kν )rμY ∗
lm(Rμ(k + Kν)),

where alm and blm are determined such that the wave function χK and its radial derivative are continuous across the MT boundary,
which leads to the following set of equations:

āk+K
l = u̇l(S)

djl(|k + K|S)

dr
− du̇l(S)

dr
jl(|k + K|S),

(A6)

b̄k+K
l = dul(S)

dr
jl(|k + K|S) − ul(S)

djl(|k + K|S)

dr
,

while the local orbital coefficients alo, blo, and clo are determined such that the local orbital uloc(r) = aloul(r) + blou̇l(r) +
clouLO(r) and its radial derivative vanish at the MT sphere boundary, and the orbital is normalized, i.e., uloc(S) = 0, duloc(S)/dr =
0, 〈uloc|uloc〉 = 1. Notice that the local orbitals coefficients (A5) are given a phase factors ei(k+Kν ) in the same form as augmented
waves have [Eq. (A4)], although local orbitals are not continued into interstitials. The choice of momentum Kν is arbitrary here,
but it is usually chosen to be a unique reciprocal vector for each local orbital ν.

1. The muffin-tin term

The potential in the MT spheres can be divided into radial symmetric part Vsym and the rest Vnsym. The symmetric part of the
Hamiltonian H 0

sym = T + Vsym can be compactly expressed by

(
A† 〈χ |H 0

sym|χ〉A
)

MTμ
=
∑
lm

⎛⎜⎜⎝
∑

K′ A
†
iK′a

∗
lmμK′ +∑ν A

†
iνa

lo ∗
ν,mμ∑

K′ A
†
iK′b

∗
lmμK′ +∑ν A

†
iνb

lo ∗
ν,mμ∑

ν A
†
iνc

lo ∗
ν,mμ

⎞⎟⎟⎠H0

⎛⎜⎝
∑

K almμKAKj +∑ν alo
ν,mμAνj∑

K blmμKAKj +∑ν blo
ν,mμAνj∑

ν clo
ν,mμAνj

⎞⎟⎠, (A7)
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where H0 = HH + HS is the sum of the volume and the surface contribution. The volume part comes from the radial integral
〈u|H 0

sym|u〉 and is explicitly given by

HH =

⎛⎜⎜⎝
El

1
2

El+E′
l

2

〈
ul

∣∣uLO
l

〉
1
2 El 〈u̇|u̇〉 El+E′

l

2 〈u̇|uLO〉 + 1
2

〈
ul

∣∣uLO
l

〉
El+E′

l

2

〈
ul

∣∣uLO
l

〉 El+E′
l

2

〈
u̇l

∣∣uLO
l

〉+ 1
2

〈
ul

∣∣uLO
l

〉
E′

l

〈
uLO

l

∣∣uLO
l

〉
⎞⎟⎟⎠. (A8)

Here, El is the linearization energy at which the radial Schroedinger equation is solved for ul(r), namely, H 0
sym |ul〉 = El |ul〉,

and E′
l is the linearization energy of uLO

l , i.e., H 0
sym |ul〉 = E′

l |uLO
l 〉. The energy derivative u̇l is obtained by differentiating the

above Schroedinger equation, and takes the form H 0
sym |u̇l〉 = El |u̇l〉 + |ul〉

The surface contribution comes from the fact that inside MT-sphere we used kinetic energy operator of the form −∇2, and in
the interstitials we used ∇ · ∇, which requires a surface term, as derived in Eq. (43). Explicit calculation gives

HS = S2

⎛⎜⎜⎝
[
ul

dul

dr

]
r=S

1
2

[
ul

du̇l

dr
+ u̇l

dul

dr

]
r=S

1
2

[
ul

duLO
l

dr
+ uLO

l
dul

dr

]
r=S

1
2

[
ul

du̇l

dr
+ u̇l

dul

dr

]
r=S

[
u̇l

du̇l

dr

]
r=S

1
2

[
u̇l

duLO
l

dr
+ uLO

l
du̇l

dr

]
r=S

1
2

[
ul

duLO
l

dr
+ uLO

l
dul

dr

]
r=S

1
2

[
u̇l

duLO
l

dr
+ uLO

l
du̇l

dr

]
r=S

[
uLO

l

duLO
l

dr

]
r=S

⎞⎟⎟⎠. (A9)

The overlap term in the MT sphere is computed by

(A† 〈χ |χ〉 A)MTμ
=
∑
lm

⎛⎜⎜⎝
∑

K′ A
†
iK′a

∗
lmμK′ +∑ν A

†
iνa

lo ∗
ν,mμ∑

K′ A
†
iK′b

∗
lmμK′ +∑ν A

†
iνb

lo ∗
ν,mμ∑

ν A
†
iνc

lo ∗
ν,mμ

⎞⎟⎟⎠O
⎛⎜⎝
∑

K almμKAKj +∑ν alo
ν,mμAKνj∑

K blmμKAKj +∑ν blo
ν,mμAKνj∑

Kν
clo
ν,mμAνj

⎞⎟⎠, (A10)

where the overlap 〈u|u〉 is given by

O =

⎛⎜⎝ 1 0
〈
ul

∣∣uLO
l

〉
0 〈u̇|u̇〉 〈u̇|uLO〉〈

ul

∣∣uLO
l

〉 〈
u̇l

∣∣uLO
l

〉 〈
uLO

l

∣∣uLO
l

〉
⎞⎟⎠. (A11)

We next carry out the expensive summation over all basis set functions (K,ν) to obtain coefficients related to the band index i:⎛⎝ai,lmμ

bi,lmμ

ci,lmμ

⎞⎠ ≡

⎛⎜⎝
∑

K almμKAKj +∑ν alo
ν,mμAνj∑

K blmμKAKj +∑ν blo
ν,mμAνj∑

ν clo
ν,mμAνj

⎞⎟⎠ (A12)

and similarly we also compute a vector version of these coefficients⎛⎝ 
Ai,lmμ


Bi,lmμ


Ci,lmμ

⎞⎠ ≡
⎛⎝∑K almμKKAKj +∑ν alo

ν,mμKνAνj∑
K blmμKKAKj +∑ν blo

ν,mμKνAνj∑
ν clo

ν,mμKνAνj

⎞⎠. (A13)

Finally, we also compute the matrix elements of the nonspherically symmetric part of the potential

Vlm,l′m′ =
∫

d�Y ∗
lm(�)

⎛⎜⎝ 〈ul|Vnsym|ul′ 〉 〈ul|Vnsym|u̇l′ 〉 〈ul|Vnsym

∣∣uLO
l′
〉

〈u̇l|Vnsym|ul′ 〉 〈u̇l|Vnsym|u̇l′ 〉 〈u̇l|Vnsym

∣∣uLO
l′
〉〈

uLO
l

∣∣Vnsym|ul′ 〉
〈
uLO

l

∣∣Vnsym|u̇l′ 〉
〈
uLO

l

∣∣Vnsym

∣∣uLO
l′
〉
⎞⎟⎠Yl′m′ (�). (A14)

With all these coefficients ai,lmν and 
Ai,lmν in place, we can express the MT part of the Pulay force [Eq. (61)] by

FPuly-MT
μ = −

∑
KK′i

wiA
†
iK′ i(K − K′) 〈χK′ |H 0|χK〉MTμ

AKi +
∑
KK′i

(wε)iA
†
iK′ i(K − K′) 〈χK′ |χK〉MTμ

AKi

= 2
∑
ilm

l′m′

wiIm

⎛⎝⎛⎝a∗
i,lmμ

b∗
i,lmμ

c∗
i,lmμ

⎞⎠(H0δll′δmm′ + Vlml′m′ )

⎛⎝ 
Ai,l′m′μ

Bi,l′m′μ

Ci,l′m′μ

⎞⎠⎞⎠− 2
∑
ilm

(wε)iIm

⎛⎜⎝
⎛⎝a∗

i,lmμ

b
∗
i,lmμ

c∗
i,lmμ

⎞⎠O
⎛⎜⎝


Ai,lmμ


Bi,lmμ


Ci,lmμ

⎞⎟⎠
⎞⎟⎠. (A15)
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2. The surface term

The surface part of the Pulay force [Eq. (62)] is

FPulay-SF
μ =

∑
KGi

[wiA
†
iK−G(K − G + k) · (K + k)AKi − (wε)iA

†
iK−GAKi]

∮
MTμ

dS
eiGr

V
. (A16)

The convolution in basis set vectors K needs quadratic amount of time (O(N2)). By using the fast Fourier transform (FFT) and
turning it into product in real space, it takes only N ln(N ) time, hence it is more efficient to use FFT on the following quantities:


Xi(r) =
∑

K

AK,i(K + k)eiKr, (A17)

Yi(r) =
∑

K

AK,ie
iKr. (A18)

The inverse FFT is then used to obtain the surface Pulay force

FPulay-SF
μ =

∫
d3r

V

∑
i

e−iGr[ 
X∗
i (r)wi


Xi(r) − Y ∗
i (r)(wε)iYi(r)]S2

∫
d�

eiGr

V

er, (A19)

where the surface integral over the MT-sphere is given by∫
d�eiGr
er = 4π

G
|G| j1(|G|S)ieiGRμ . (A20)

3. The density gradient term

Finally we give formulas to compute the gradient density term in Eq. (63). The three dimensional integral can be expressed
in terms of spheric harmonics components of density ρlm and Kohn-Sham potential Vlm as

FPulay-∇
μ ≡

∫
d3rVKS(r)∇ρ(r) =

∑
lm

l′m′

∫ ∞

0
drr2Vl′m′ (r)

dρlm(r)

dr
〈Yl′m′ |
er |Ylm〉 +

∑
lm

l′m′

∫ ∞

0
drr2 Vl′m′(r)ρlm(r)

r
〈Yl′m′ |(r∇)|Ylm〉 .

(A21)

The following matrix elements are therefore needed:


I (1)
l′m′lm ≡ 〈Yl′m′ |
er |Ylm〉 , (A22)


I (2)
l′m′lm ≡ 〈Yl′m′ |(r∇)|Ylm〉 , (A23)

and can be computed using Wigner-Eckart theorem and recursion relations for Legendre polynomials. The result is [24]


I (n)
l′m′lm = cn,l

⎡⎣−a(l,m)

⎛⎝ 1
−i

0

⎞⎠δm′=m+1 + a(l, − m)

⎛⎝1
i

0

⎞⎠δm′=m−1 + 2f (l,m)

⎛⎝0
0
1

⎞⎠δm′=m

⎤⎦δl′=l+1 (A24)

+ dn,l

⎡⎣a(l′, − m′)

⎛⎝ 1
−i

0

⎞⎠δm′=m+1 − a(l′,m′)

⎛⎝1
i

0

⎞⎠δm′=m−1 + 2f (l′,m′)

⎛⎝0
0
1

⎞⎠δm′=m

⎤⎦δl′=l−1, (A25)

where

a(l,m) =
√

(l + m + 1)(l + m + 2)

(2l + 1)(2l + 3)
, (A26)

f (l,m) =
√

(l + m + 1)(l − m + 1)

(2l + 1)(2l + 3)
, (A27)
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and

c1,l = 1
2 , d1,l = 1

2 , (A28)

c2,l =− l

2
, d2,l = l + 1

2
. (A29)

Here we use spherical harmonics definition as used is classical mechanics. Note that in quantum mechanics literature, it is
customary to add additional factor (−1)m, in which case the x and the y components of 
I (n)

l′m′lm change sign.

APPENDIX B: ALTERNATIVES TO THE LUTTINGER-WARD APPROACH

This chapter is not needed for understanding the derivation of the force within the Luttinger-Ward approach to DFT+DMFT,
which is the main subject of this paper. This chapter is included only to clarify the important difference between those approaches
that implement the stationary versus nonstationary formulas of DFT+DMFT.

We want to contrast the derivation of force within the Luttinger-Ward approach used here, and the alternative differentiation
of the total energy expression within DFT+DMFT, as for example attempted in Ref. [15]. When nonstationary functional,
namely, the total energy expression of DFT+DMFT is differentiated, the two particle-vertex does not cancel out. It turns out
that, compared to the derivation below, an extra factor of the form 1

2 Tr((G� − �)δG/δR) appears, where � is the two particle
vertex. One is hence forced to evaluate the two particle vertex for all frequencies, which is numerically extremely difficult task.

The underlaying reason for this difference is that within the charge self-consistent DFT+DMFT the total energy expression

ELDA+DMFT = Tr

[
δ(r − r′)

(
− ∇2

2m
+ Vnuc(r)

)
G

]
+ 1

2
Tr(�G) + EH [ρ] + Exc[ρ] − �DC[nloc] + Enuc-nuc, (B1)

and the free energy expression

�[G] = Tr ln G − Tr
((

G−1
0 − G−1

)
G
)+ EH [ρ]

+Exc[ρ] + �DMFT[P̂G] − �DC[P̂ ρ] + Enuc-nuc, (B2)

are not completely equivalent, as proven in Ref. [11]. While the latter is clearly stationary, which is explored in the derivation
above, the former is not stationary, and hence the two particle vertex appears in the expression for the force.

The equivalence of the two formulas Eqs. (B2) and (B1) can be proven when only the LDA terms are present, or, when only
the DMFT term are present, but when both are combined self-consistently, the two expressions differ, and one can not prove
anymore that limT →0 �[G] = ELDA+DMFT.

First, lets follow the Baym-Kadanoff’s proof [44] of equivalence between the total energy expression and the free energy
expression. We will start from the functional expression (B2), which gives the free energy of the system at stationarity, and we
will show that it leads to somewhat different expression for the total energy than Eq. (B1).

First, we invoke the fact that DMFT is conserving approximation and therefore(
δ�[{G}]DMFT

δλ

)
G

= 1

2λ
Tr(�DMFTG). (B3)

Here, λ multiplies the Coulomb interaction. This identity can be proven by looking at each skeleton diagram of �DMFT[G]
and taking the λ derivative, which cancels the symmetry prefactor in the expansion of �. As there are exactly twice as many
propagators G as interaction lines V , we get the preactor to be 1/2 of the one for expansion of �, proving Eq. (B3).

One can show from the definition of the partition function that Ekin = −m−1

β
δ ln Z
δm−1 , N = − 1

β
δ ln Z
δμ

, and Epot = − 1
β

δ ln Z
δλ

. As

� = − ln(Z)/β, we have Ekin = m−1 δ�
δm−1 , N = δ�

δμ
, and Epot = δ�

δλ
. Further, any derivative can be written as

δ�

δx
=
(

δG

δx

)(
δ�

δG

)
+
(

∂�

∂x

)
G

(B4)

and due to stationarity of �[G], the first term vanishes, as (δ�/δG) = 0. Therefore Eq. (B2) gives for kinetic energy Ekin =
−Tr(m−1 ∂G−1

0
∂m−1 G) = Tr(− ∇2

2m
G) and the density N = Tr( ∂G−1

0
∂μ

G) = Tr(G). These are correct expressions for the two quantities,
which can be also derived in alternative ways.

Finally, Epot = δ�
δλ

= ( δ�
δλ

)
G

and hence

Epot = δTr(�DMFT + EH + Exc − �DC)

δλ
(B5)

= 1

2λ
Tr(�DMFTG) + δ(EH + Exc − �DC)

δλ
. (B6)
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Since the Hartree-energy is the first-order term in Coulomb repulsion, EH depends linearly on λ, hence δEH /δλ = EH /λ. We
therefore obtain

Epot = 1

2λ
Tr(�DMFTG) + 1

λ
EH + δ(Exc − �DC)

δλ
. (B7)

The LDA correlation energy and �DC are not linear functions of the Coulomb interaction, and hence we do not get required
expression for the potential energy

Epot = 1

λ

(
1

2
Tr(�DMFTG) + EH + Exc − �DC

)
, (B8)

which appears in Eq. (B1). Note that λ should be set to unity at the end of the calculation. We thus see that Eq. (B1) can not be
derived by Baym’s derivation for conserving approximation. This is not surprising as LDA is not conserving approximation in
Baym’s sense.

On the other hand, the equivalence between Eqs. (B2) and (B1) is easy to prove for any static approximation to self-energy
�. If � is frequency independent, then

lim
T →0

Tr ln(−G) − Tr(�G) + μN (B9)

=
∑

k

fkε
0
k,i = Tr((−∇2 + Vnuc)G), (B10)

where fk is the fermi function. This is because G has a form that corresponds to a noninteracting fermion system, and one can
thus use the standard manipulation to get kinetic energy of a corresponding noninteracting system. We thus have

lim
T →0

�[G] = Tr((−∇2 + Vnuc)G) + EH [ρ] + Exc[ρ] + �DMFT[P̂G] − �DC[P̂ ρ] + Enuc-nuc. (B11)

For static approximations to DMFT (such as the Hartree-Fock approximation, which gives LDA+U ), we have �DMFT[P̂G] =
1
2 Tr(�G). Hence, within LDA+U , the two expressions Eqs. (B2) and E(B1) are equivalent. However, it is important to point
out that this derivation works only for static approximations to DMFT, and it does not work for interacting system, when � is
dynamic.

In summary, we have shown here that the standard Baym derivation for conserving approximations does not prove equivalence
between the total energy and free energy functional for DFT+DMFT. When the charge self-consistency is neglected within
DFT+DMFT, the standard Baym derivation of course works, because one has conserving DMFT approximation on top of
noninteracting tight-binding system.
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