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5Department of Applied Physics, Stanford University, Stanford, California 94305, USA

(Received 5 September 2016; published 23 November 2016)

We present a combined experimental and theoretical study of the evolution of the low-temperature Fermi
surface of lead telluride (PbTe) when holes are introduced through sodium substitution on the lead site. Our
Shubnikov-de Haas measurements for samples with carrier concentrations up to 9.4 × 1019 cm−3 (0.62 Na at. %)
show the qualitative features of the Fermi surface evolution (topology and effective mass) predicted by our
density functional (DFT) calculations within the generalized gradient approximation (GGA): we obtain perfect
ellipsoidal L pockets at low and intermediate carrier concentrations, evolution away from ideal ellipsoidicity for
the highest doping studied, and cyclotron effective masses increasing monotonically with doping level, implying
deviations from perfect parabolicity throughout the whole band. Our measurements show, however, that standard
DFT calculations underestimate the energy difference between the L point and �-line valence band maxima,
since our data are consistent with a single-band Fermi surface over the entire doping range studied, whereas
the calculations predict an occupation of the � pockets at higher doping. Our results for low and intermediate
compositions are consistent with a nonparabolic Kane-model dispersion, in which the L pockets are ellipsoids
of fixed anisotropy throughout the band, but the effective masses depend strongly on Fermi energy.
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I. INTRODUCTION

Lead telluride (PbTe) is a widely known thermoelectric
material and a narrow-gap semiconductor, which can be
degenerately doped by either Pb (hole-doping) or Te (electron-
doping) vacancies, or by introduction of acceptor or donor
impurities [1–3]. Such impurity dopants have been shown
to enhance the thermoelectric figure of merit zT from 0.8
to 1.4 for the case of sodium doping [4–6], and to 1.5
for doping with thallium [4,7]. Tl is also the only dopant
known to date that leads to a superconducting ground state
in PbTe; remarkably its maximum critical temperature of
Tc = 1.5 K is almost an order of magnitude higher than
other superconducting semiconductors with similar carrier
density [8–12]. Understanding the physical origin of these
enhanced properties and their dependence on the choice
of dopant chemistry requires a detailed knowledge of the
electronic structure, in particular its evolution with changes
in dopant and carrier concentrations.

The valence band of PbTe has two maxima, located at the
L point and close to the midpoint of the � high-symmetry
line (we call this the �m point) of the Brillouin zone (see
Fig. 1). The enhancement of zT with doping has been recently
suggested to be at least in part associated with a decrease
in the effective dimensionality of parts of the Fermi surface
as the �m pockets connect (Fig. 2) [13]. For the case of
superconductivity, an increase of the density of states at the
Tl concentration for which superconductivity emerges, as a
consequence of the appearance of an additional band, has
been invoked as a possible explanation for the enhanced
Tc [9]. Such hypotheses can be tested by a direct experimental
determination of the Fermi surface topology and its evolution

with carrier concentration. To date, such studies have been
limited to quantum oscillation measurements performed in the
low carrier concentration regime (p � 1.1 × 1019 cm−3 for
full topology) [14,15], although the enhanced thermoelectric
and superconducting properties occur at considerably higher
carrier concentrations. A direct measurement of the Fermi
surface characteristics for these higher carrier densities is
clearly needed.

In this paper we present the results of a detailed computa-
tional and experimental study of the fermiology of p-type Na-
doped PbTe (Pb1−xNaxTe), with carrier concentrations up to
9.4 × 1019 cm−3, obtained via density functional theory (DFT)
calculations of the electronic structure, and measurements of
quantum oscillations in magnetoresistance for fields up to
35 T. These measurements enable a direct characterization
of the Fermi surface morphology and quasiparticle effective
mass for values of the Fermi energy that far exceed those
available by self-doping from Pb vacancies. Our main findings
are:

(i) At low temperatures, the Fermi surface is formed from
eight half-ellipsoids at the L points (the L pockets) with their
primary axes elongated along the [111] directions. The Fermi
surface is derived from a single band up to the highest carrier
concentration measured, 9.4 × 1019 cm−3.

(ii) The L pockets are well described by a perfect ellip-
soidal model up to a carrier concentration of 6.3 × 1019 cm−3.
For a carrier concentration of 9.4 × 1019 cm−3, subtle de-
viations from perfect ellipsoidicity can be resolved. These
deviations are qualitatively consistent with those predicted by
the band structure calculations.

(iii) The effective cyclotron masses increase monoton-
ically with carrier concentration for all high-symmetry
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FIG. 1. Energy dispersion for stoichiometric PbTe along the high
symmetry directions of the fcc Brillouin zone, calculated in this work
using density functional theory (DFT) (for details see text). A direct
gap, underestimated compared with experiment as is usual in DFT
calculations, is observed at the L point, and a second valence band
maximum occurs along the � high-symmetry line. A representative
Fermi surface, which emerges as the Fermi energy is shifted into the
valence band by Pb vacancies or hole-dopant impurities, is shown in
the inset. For the choice of Fermi level shown (green-dashed line), the
Fermi surface contains eight half-ellipsoids (shaded in red) centered
at the L point and oriented along the [111] directions (L pockets),
and 12 � pockets (shaded in blue) centered close to the midpoint of
the [110] � line and oriented along the [100] directions.

directions, implying that the L band is not well described by a
perfect parabolic model for any carrier density. This evolution
is also consistent with the predictions from our band structure
calculations.

(iv) Although the qualitative evolution of the Fermi surface
topology with carrier concentration is correctly predicted by
band structure calculations, these calculations underestimate
the band offset (between the top of the L band and the top of
the �m band).

Before detailing our experiments, we emphasize that our
measurements are made in the low-temperature regime and
caution should be exercised before extrapolating the results to
different temperature regimes. Quantum oscillations charac-
terize the low-temperature properties of a material, and due
to the exponential damping factor, they cannot be observed
above approximately 60 K in Na-doped PbTe. Hence, we do
not claim that our first three findings outlined above necessarily
remain valid at higher temperatures. In particular, earlier
experimental studies, based on magnetoresistance and Hall
coefficient measurements [16], have indicated an appreciable
temperature dependence of both the band gap and the band
offset (between L and � band maxima) in PbTe. Additionally,
recent angle-resolved photoemission spectroscopy (ARPES)
experiments have provided evidence for the convergence of
the top of these two bands at high temperatures, becoming
degenerate at ∼ 800 K [17–19]. The current measurements

provide a definitive determination of the morphology of the
bulk Fermi surface at low temperatures, and hence provide an
important point of comparison for band structure calculations,
but additional measurements based on a technique that is less
sensitive to the quasiparticle relaxation rate, such as ARPES,
are required in order to determine whether the � pocket
remains unoccupied at higher temperatures for the carrier
concentrations studied here.

II. FIRST-PRINCIPLES CALCULATIONS

To provide a baseline with which to compare our exper-
imental data, we first show density functional theory (DFT)
calculations of the electronic structure of PbTe with and
without doping. An accurate description of this compound
within DFT is very challenging; in particular, the computed
band structure is highly sensitive to the choice of volume, the
exchange-correlation functional, and whether or not spin-orbit
coupling is included. A change in lattice constant of 1%,
for example, can both change the band offset by 60% and
generate a ferroelectric instability. Moreover, when spin-orbit
coupling is included, an unusually fine k-point mesh is needed
to converge the phonon frequencies, forces, and Fermi energy.
This unusual sensitivity to the input parameters in the calcula-
tion is of course related to the many interesting properties of
PbTe, which is on the boundary between various competing
structural (incipient ferroelectricity [20,21]) and electronic
(superconductivity [10–12] and topological insulator [22,23])
instabilities. Interestingly, we show in Appendix C that the
volume does not significantly affect the computed evolution
with doping of the cyclotron masses and the frequencies of
quantum oscillations. Therefore, experimental variations in
volume, as occur for example with temperature, do not affect
our conclusions.

A. Computational details

Our calculations were performed using the PAW imple-
mentation [24,25] of density functional theory within the
VASP package [26]. After carefully comparing structural
and electronic properties calculated using the local density
approximation (LDA) [27], PBE [28], and PBEsol [29] with
available experimental data, we chose the PBEsol exchange-
correlation functional as providing the best overall agreement.
We used a 20 × 20 × 20 �-centered k-point mesh and to
ensure a convergence below 0.1 μeV for the total energy
used a plane-wave energy cutoff of 600 eV and an energy
threshold for the self-consistent calculations of 0.1 μeV. We
used valence electron configurations 5d106s26p2 for lead,
5s25p4 for tellurium, and 2p63s1 for sodium. Spin-orbit
coupling was included. The unit cell volume was obtained
using a full structural relaxation giving a lattice constant of
6.44 Å (to be compared with the experimental 6.43 Å [20]
at 15 K). Kohn-Sham band energies were computed on a fine
(140 × 140 × 140) three-dimensional grid covering the entire
Brillouin zone and used as an input for the SKEAF code [30]
which allows for extraction of extremal cross-sectional areas
of the Fermi surface in different spatial orientations.
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FIG. 2. Upper panel: Fermi surface of hole-doped PbTe calculated in this work using the rigid band approximation. Lower panel plots:
The corresponding (110)-plane angle evolution of the cross-sectional areas (in frequency units) of the calculated Fermi surface pockets. The
four columns correspond to monovalent impurity concentrations of (a) x = 0.02% (pL = 0.27 × 1019 cm−3 and p� = 0); (b) x = 0.81%
(pL = 3.5 × 1019 cm−3 and p� = 8.6 × 1019 cm−3); (c) x = 1.56% (pL = 6.1 × 1019 cm−3 and p� = 17.4 × 1019 cm−3); and (d) x = 2.61%
(ptotal = 36.2 × 1019 cm−3). The frequencies of the L pockets are shown in red, and compared with those expected in a perfect ellipsoidal
model shown as black lines. The evolution of the � pockets is shown in blue. These pockets appear at a dopant concentration of x = 0.11%
(pL ≈ 1019 cm−3). In column (d), the � and L pockets have merged, forming a cube-shape Fermi surface; cross sections that cannot be
identified separately with � or L are shown in purple. We plot frequencies up to 600 T, noting, however, that frequencies up to 8 kT occur,
corresponding to the large-square Fermi surface orbits. As described in the main text, our quantum oscillation studies reveal that for carrier
densities up to at least 9.4 × 10−19 cm−3 value, the maximum studied in this report, the Fermi surface is found to only comprise L pockets
(shown in red), implying a larger band offset between the L and � pockets than predicted by these and other DFT calculations.

B. Rigid-band approximation

First, we computed the Fermi-surface evolution as a
function of doping (shown in Fig. 2) by rigidly shifting the
Fermi energy in the pure PbTe structure and assuming one
hole per dopant. This rigid-band approximation allows very
fine samplings of the Brillouin zone, which are necessary
to characterize the tiny Fermi surface of hole-doped PbTe
at low doping. We discuss its validity here, by comparing
with calculations in which a Pb ion is substituted explicitly
with a Na ion. Many first-principles studies [31–36] have
already been carried out to determine the effect of different
dopant atoms on the electronic properties of PbTe, with
some of them explicitly assessing the validity of the rigid
band approximation in Na-doped PbTe: Takagiwa et al. [35]
confirmed from KKR-CPA calculations that the density of
states (DOS) behaves as in a rigid band model, whereas Hoang
et al. [37] and Lee and Mahanti [36] showed that a lifting
of degeneracy occurs at the top of the valence band with
explicit Na doping (at a concentration of 3.125%), with the
consequence that the rigid band approximation overestimates
the thermopower [36]. Here we study how sodium impurities
affect the band structure of PbTe close to the Fermi energy
for the lower concentrations that we use in our experiments
(x � 1%).

We show here results for a 4 × 4 × 4 supercell of the
primitive cell containing 128 atoms (x ≈ 1.6%), with one
lead ion substituted by sodium. The unit cell volume was
kept the same as in pristine PbTe (it would be changed by
less than 0.1% by a full structural relaxation). We checked
also that our conclusions are qualitatively unchanged for a
larger 216 atom supercell (3 × 3 × 3 of the conventional cubic
cell) in which one or two lead ions are substituted by sodium
(x ≈ 0.9% or x ≈ 1.6%). The k-point mesh was accordingly

scaled down and spin-orbit coupling was not included because
of computational cost; the other computational settings were
left unchanged.

Figure 3(a) shows the partial density of states in the
region of the Fermi level from the sodium impurity for
x ≈ 1.6%. Note the small value on the y axis indicating that the
contribution from the Na atom is very small. It does, however,
have an influence on the electronic band structure which can
be seen in Fig. 3(b), where we plot the difference in density
of states with and without the impurity. Here we see a distinct
drop in the DOS (note the higher values on the y axis) just
below the top of the valence band (set to 0 eV) due to band
shifts caused by the presence of the Na atom; we analyze these
next.

In Fig. 4 we compare the calculated electronic band
structure with and without the sodium impurity. In Fig. 4(a) we
show both band structures on the same y axis with the zero of
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FIG. 3. Sodium contribution to the calculated band structure
around the Fermi energy for the 128-atom supercell. (a) Sodium
projected density of states (pDOS). (b) Difference in the total DOS
with and without the impurity �DOS = DOSwith Na − DOSundoped.
Note the drop in DOS just below the top of the valence band (set to
0 eV), consistent with a lifting in degeneracy of the highest valence
bands (see also Fig. 4).
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FIG. 4. Calculated band structure with and without sodium
impurity for the 128-atom supercell (x ≈ 1.6%). (a) The zero of
energy was set at the top of the valence band for both cases. Note the
lifting of the degeneracy of the top valence bands (marked by arrows);
apart from this, the bands coincide almost perfectly. (b) The carrier
density for both cases was fixed to a concentration corresponding to
x = 1.6%. The Fermi energy is moved more into the valence band
than expected from the rigid band approximation because of the lifting
of degeneracy.

energy set to the top of the valence band. We see that the two
band structures are close to identical, except for a lifting of the
eightfold degeneracy at the top of the valence band, indicated
by black arrows, in the case of the explicit Na doping. A
consequence of this shift in one of the valence bands is a shift
of the Fermi energy to lower energy relative to its position in the
rigid band approximation. We illustrate this in Fig. 4(b) where
we set the zero of energy to be the Fermi energy for each case.
In contrast with earlier calculations at a larger doping [36,37],
the lifted band does contribute to the Fermi surface and affects
the quantitative evolution of Shubnikov-de Haas frequencies
with hole density, giving rise to a more complex Fermi surface
having L pockets with different sizes. The folding of wave
vectors and states in the supercell makes an estimation of the
different ellipsoidal axes difficult. In any case, the amplitude
of the quantum oscillations for the “lifted-degenerate” pockets
would be weaker. From these considerations we are confident
that our rigid-band calculations can be used to make qualitative
predictions about the evolution of the Fermi surface with Na

doping. Quantitative predictions are anyway difficult because
of the previously discussed sensitivity on the parameters used
for the calculations.

C. Calculated Fermi surface evolution and angle evolution
of Shubnikov-de Haas frequencies

Our calculated energy dispersion for PbTe, along the high
symmetry directions of the fcc Brillouin zone, is plotted in
Fig. 1. As discussed above, we obtain a direct gap at the L

point, followed by a second valence band maximum at the
�m point, 70 meV below the top of the valence band. Figure 2
shows our calculated Fermi surfaces, as well as the (110)-plane
angle dependence of the Fermi surface pocket cross-sectional
areas, or equivalently, Shubnikov-de Haas (SdH) frequencies
(see Appendix A), for four impurity concentrations. The (110)
plane is a natural plane to study the angle evolution of the
SdH frequencies for this material, given that, in a perfect
ellipsoidal scenario, it allows the determination of all the
extremal cross-sectional areas of both L and � pockets. For
low impurity concentrations, the Fermi surface is formed only
by L pockets, which follow the angle dependence expected for
a perfect ellipsoidal model. At intermediate concentrations,
the � pockets appear, and clear deviations from the perfect
ellipsoidal model for L pockets (and � pockets) are observed.
For impurity concentrations above x = 1.8%, � and L pockets
merge together to form the Fermi surface shown in Fig. 2(d).
At this point, very high frequency (≈8 kT, corresponding to
the large-square Fermi surface pieces) and very low frequency
features are expected, and a whole new variety of cross-
sectional areas coming from different sections of the Fermi
surface make the tracking of continuous angle dependence
curves more challenging.

For the L pockets, we observe a progressive evolution to
nonellipsoidicity, characterized by three main features in the
angle dependence plots: (i) an increasing splitting in the low
frequency branch, indicative of deformations of the L pockets
around the semiminor axis region; (ii) a shifting to lower
values of the angle at which the maximum cross-sectional
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FIG. 5. Evolution of three calculated cross-sectional areas (in frequency units) with density of holes in the L pockets (pL). The dashed
curve in all the plots shows the functional dependence of p

2/3
L expected for a perfect ellipsoidal model. The dotted vertical line indicates the

L-pocket hole density above which the � pockets start to be populated. (a) Frequency associated with the L-pockets minimum cross-sectional
area fmin. (b) Frequency associated with the L-pockets’ cross-sectional area in the [100] direction f[100]. (c) Frequencies associated with the
L-pockets’ maximum cross-sectional area. The green circles correspond to the orbits in the longitudinal direction of the L pocket (f‖)—for
perfect ellipsoidal L pockets they would correspond to the largest possible frequencies; the blue triangles correspond to the orbits associated
with the largest cross-sectional area fmax, which for large concentrations do not correspond anymore to longitudinal orbits on the L pockets.
The inset shows two representative orbits (f‖ in green and fmax in blue) on the distorted L pocket (shown in red) for a concentration x = 1.56%
(pL = 6 × 1019 cm−3).
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area (maximum frequency) is found, indicative of L-pocket
deformations around the semimajor axis region, and due to
the formation of the tips that will eventually join with the
� pockets at high enough dopant concentration; and (iii)
some distortions of the dispersion branch that goes from the
[100] frequency value to the maximum frequency value at 90◦,
generating a cusp at 90◦.

Figure 5 shows our calculation of three extremal cross-
sectional areas with density of holes in the L pockets (pL) com-
puted from the Kohn-Sham band energies. The dashed curves
indicate the expected p

2/3
L behavior for perfect ellipsoidal

pockets. Deviations of the computed cross-sectional areas from
the perfect ellipsoidal dependence become noticeable close to
hole densities in the L pockets above which the � pockets start
to be populated, which is indicated by the vertical dotted lines
in Fig. 5. These deviations are characterized by a shift toward
lower frequencies from that expected in the perfect ellipsoidal
model. Additionally, Fig. 5(c) highlights the distortions in the
L pockets, which cause the shift in the maximum frequency
from 35◦ (f‖) towards smaller angles in the angle-evolution
curves shown in Figs. 2(b) and 2(c).

Figure 6 shows our calculated evolution of cyclotron effec-
tive masses [Eq. (A5)] at three high symmetry directions as a
function of the carrier content of the L pockets. A monotonic
increase of cyclotron masses with carrier concentration is
observed, implying a nonparabolicity of the L band even at
the top of the band. It is interesting to note that although
deviations from perfect ellipsoidicity as seen in the calculated
angle evolution [Fig. 2(a)] and the calculated SdH frequencies
(Fig. 5) are close to zero for the low carrier concentration
regime, the variation of the effective masses at the lowest
doping levels already points to the nonparabolicity of the
highest valence band. Note that this was already taken into
account in some transport studies of PbTe to compute its
thermoelectric properties [38,39].

In summary, our density functional calculations of the
evolution of the Fermi surface of PbTe with doping provide
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FIG. 6. Evolution of calculated cyclotron effective masses
[Eq. (A5)] as a function of density of holes in the L pocket (pL)
at three high symmetry directions: ‖ or in the longitudinal direction
of the L pocket, in the [100] direction, and ⊥ or in the transverse
direction of the L pocket (corresponding to a magnetic field oriented
along the [111] direction). The variation with pL provides striking
evidence for the nonparabolicity of the bands.

some guidelines for identifying signatures of deviations from
perfect ellipsoidicity and perfect parabolicity in our quantum
oscillation experiments, to be presented in the coming sections.
As we mentioned previously, the main signatures in the angular
dependence of cross-sectional areas of L pockets are:

(i) An increasing splitting in the low frequency branch,
indicative of deformations of the L pockets around the
semiminor axis region.

(ii) A shifting to lower values of the angle at which the
maximum cross-sectional area (maximum frequency) is found,
indicative of L-pocket deformations around the semimajor axis
region, and due to the formation of the tips that will eventually
join with the � pockets at high enough dopant concentration.

(iii) Some distortions of the dispersion branch that goes
from the [100] frequency value to the maximum frequency
value at 90◦, generating a cusp at 90◦.

(iv) A monotonic increase of the cyclotron effective mass
of holes as a function of carrier concentration.

Our computational findings (i)–(iii) will be used in the next
section in interpreting deviations from perfect ellipsoidicity in
our experimental data.

Finally, we note that, although we find that doping slightly
increases the unit cell volume (see Appendix B, Table III)
our calculations show that our conclusions above are largely
unaffected: as shown in Appendix C, even if the band-structure
parameters are influenced by volume, the evolution of SdH
frequencies and cyclotron masses with doping are almost
unaffected.

III. EXPERIMENTAL TECHNIQUES

A. Sample preparation

Pb1−xNaxTe single crystals were grown by an unseeded
physical vapor transport (VT) method, similar to that described
in Ref. [11], by sealing in vacuum polycrystalline pieces of
the already doped compound, with (or close to) the desired
final stoichiometry. The polycrystalline material was obtained
by mixing high purity metallic lead (99.999%, Alfa Aesar),
tellurium (99.999+%, Alfa Aesar), and sodium (99.9%, Sigma
Aldrich) in the appropriate ratios. The source materials were
placed in alumina crucibles, sealed in evacuated quartz tubes,
and heated up to 1000 ◦C, holding this temperature for 7 h,
followed by a rapid quench in water. A subsequent sinter at
700 ◦C for 48 h was performed with the material contained in
the same evacuated tube [40]. After this process, the material
was removed from the crucible, ground into fine powders, and
then cold-pressed into a pellet. The pellet was sealed in a quartz
tube, with a small argon pressure to prevent mass transport. The
pellet was then sintered again at 500 ◦C for 24 h, and finally
it was broken into small pieces to be used in the VT stage.
After the VT, millimeter-size single crystals, with clear cubic
facets, were obtained. The final sodium content was estimated
through the determination of the carrier concentration via
Hall coefficient (pH ) measurements (at T = 1.5 K), assuming
one hole per Na dopant. Direct determination of the dopant
concentration is challenging for the low Na concentrations
studied in this work (<0.62%) which are below the weight %
resolution of the available electron microprobe analysis tools.
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B. Magnetoresistance measurements

High-field magnetoresistance measurements of
Pb1−xNaxTe single crystal samples with different x

values between 0 and 0.62% (carrier concentrations up to
pH = 9.4 × 1019 cm−3) were taken at the DC facility of
the National High Magnetic Field Laboratory (NHMFL),
in Tallahassee, FL, USA, for magnetic fields up to 35 T.
Pb1−xNaxTe single crystals were cleaved in rectangular
shapes with faces along the [100] directions. Typical sizes of
the resulting crystals were 1 mm on the longest side. Four gold
pads were evaporated on one of the faces in order to improve
electrical contact with the crystal. Gold wires were attached
to each of the pads using silver epoxy, and the other end of
each wire was pasted to a glass slide. Twisted pairs coming
from the rotator 8-pin dip socket were connected to the glass
slide, with special care taken to minimize the loop areas of
the wires. Four-point resistance curves for different field
orientations and temperatures were taken for plus and minus
field sweeps (in order to extract the symmetric component of
the magnetoresistance) with temperature and field orientation
held constant. In order to vary the sample orientation with
respect to the magnetic field, samples were mounted on a
stepping-motor driven single-axis rotator, which allows in
situ rotations with resolution of 0.1◦. Samples were mounted
in the rotator with their (100) faces along different directions
with respect to the rotator axis, depending on the desired
plane of rotation. Field-sweep data was taken each 5◦ or 7.5◦,
going in one direction to prevent rotator backlash problems.

IV. EXPERIMENTAL RESULTS

We divide the results section into two parts: In Sec. IV A
we show the angle dependence of the magnetoresistance
as the magnetic field is rotated within a high symmetry
crystallographic plane, and temperature is held fixed at
(1.5 ± 0.2) K. This allows us to obtain information about the
topology of the Fermi surface and its evolution with carrier
concentration. In Sec. IV B we present measurements of the
temperature dependence of the amplitude of oscillations in
magnetoresistance along different high symmetry directions,
in order to extract information about the effective cyclotron
masses, and their evolution with carrier concentration.

A. High-field magnetoresistance measurements

All data presented in this section were taken at a temper-
ature of (1.5 ± 0.2) K. For all the samples measured, large
Shubnikov-de Haas (SdH) oscillations in magnetoresistance
were observed starting at a field of approximately 4 T for
most samples. The first column of Fig. 7 shows symmetrized
measurements of resistivity ρ as a function of magnetic field
for Pb1−xNaxTe with (a) x = 0 (pH = 1.9 × 1018 cm−3), (b)
x = 0.13% (pH = 2.1 × 1019 cm−3), (c) x = 0.26% (pH =
4.1 × 1019 cm−3), (d) x = 0.4% (pH = 6.3 × 1019 cm−3), and
(e) x = 0.62% (pH = 9.4 × 1019 cm−3), for different field
orientations in the (110) plane. As mentioned in Sec. II C, the
(110) plane is a natural plane to study the angle evolution of
the SdH frequencies for this material, given that, in a perfect
ellipsoidal scenario, it allows the determination of all the
extremal cross-sectional areas of both L and � pockets. The

second column of Fig. 7 shows the oscillating component of the
respective magnetoresistance curves, as a function of inverse
field, extracted after the following background elimination
procedure: for such low carrier densities, which imply low
frequencies of oscillation, the determination of the frequencies
and the tracking of their evolution with angle is challenging,
given that only a few periods of oscillations are observed for
the field range used, and additionally, several artifacts coming
from background subtractions have characteristic frequencies
that are comparable to the frequencies of interest. In our data
analysis, several methods for background subtraction were
tested. The method that generated the best resolution in the fast
Fourier transform (FFT) for all the Na-doped samples, and that
we use here, was a cubic-spline fitting of the nonoscillating
component. For the self-doped x = 0 sample, which is the
sample with the lowest characteristic frequencies (as low as 8
T), the method that allowed the best resolution of the evolution
of fundamental frequency branches was the computation of the
first derivative.

The evolution with angle of the frequencies of oscillation is
shown in the contour plots of the third and fourth columns of
Fig. 7. The color scale for these plots represents the amplitude
of the FFT of the corresponding curves in the second column,
normalized by the maximum value of the FFT at each angle, as
a function of the angle from the [100] direction, and frequency.
For all samples, the fundamental frequency of the three
expected branches of frequency evolution is clearly observed,
and for some of the branches, the second and third harmonic
can be identified. For the x = 0 sample, the second harmonic
seems to be stronger in amplitude than the fundamental, for
all three branches. This effect is likely associated with the
difficulty of resolving low frequency signals. For all samples,
the branch that lies in the low frequency region for all angles
contributes the dominant frequency in the magnetoresistance,
which is associated with its higher mobility with respect to
the other two branches. For the higher concentration samples,
the high frequency contributions are weaker, and a logarithmic
scale in the contour plots is used in order to highlight their angle
evolution. In order to determine the characteristic frequencies
of oscillation, and the possible deviations of the Fermi surface
from a perfect ellipsoidal model, a comparison of these plots
with the frequency evolution for a Fermi surface containing
eight half-ellipsoids at the L points (perfect ellipsoidal model)
is shown in the fourth column plots of Fig. 7. The fundamental
frequencies, as well as the second and third harmonics are
shown for each sample. The splitting seen in the intermediate
frequency branch for most of the samples can be successfully
accounted for by a small offset in the plane of rotation. For
the x = 0 sample, an offset of 12◦ about the [001] axis was
considered in the perfect ellipsoidal model. For samples with
x = 0.13%, the offset is 3◦ about the [110] axis; and for
x = 0.4% and 0.62%, the offset is 4◦ about the [110] axis.

The parameters of minimum and maximum cross-sectional
areas (fmin and fmax) used in the perfect ellipsoidal model
comparison for each sample are summarized in Table I. The
minimum cross-sectional area of the L pockets, associated
with fmin, can be determined very accurately from the value
of the fundamental frequency of oscillation at 55◦ from the
[100] direction in the (110) plane, which is clearly observed
for all the samples measured. Additionally, the maximum
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FIG. 7. Magnetoresistance measurements for Pb1−xNaxTe samples of different Na concentrations [row (a) x = 0, row (b) x = 0.13%, row
(c) x = 0.26%, row (d) x = 0.4%, and row (e) x = 0.62%] as a function of magnetic field rotated along the (110) plane. The first column
shows the measured resistivity as a function of applied magnetic field. The second column shows the background-free resistivity, obtained
as explained in the main text, as a function of inverse field. The third column shows the amplitude of the normalized FFT, represented by
the color scale, as a function of the angle of the magnetic field from the [100] direction (horizontal axis), and the frequency (vertical axis).
The last column replots column three, with a comparison to a perfect ellipsoidal model calculation superimposed (solid lines for fundamental
frequencies, and dashed lines for higher harmonics). The parameters used for the perfect ellipsoidal model calculation for each set of data are
summarized in Table I. For samples with x = 0.13%, 0.4%, and 0.62%, small deviations from the (110) plane of rotation are evidenced in
the splitting of the angle evolution of the intermediate branch, and they were considered in the perfect ellipsoidal model comparison. For the
two highest concentrations, combination frequency terms due to magnetic interaction effects are observed. These are identified in the fourth
column plots by the light-blue-dotted lines (sum of fundamental branches) and gray-dotted lines (difference of fundamental branches).

cross-sectional area of the L pockets, associated with fmax,
can be directly observed in the FFT plots of samples with Na
concentration up to 0.4%. Also, up to this concentration, the
matching between the angle evolution of the frequencies of

oscillation with that expected for a perfect ellipsoidal model is
satisfactory. Nevertheless, for this last concentration, the maxi-
mum frequency of the ellipsoids is resolvable close to 90◦ from
[100], but becomes blurred close to 35◦. Therefore, although
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TABLE I. Fermi surface parameters for Na-doped PbTe, obtained from comparison between our measured data and a perfect ellipsoidal
model. pH is the Hall coefficient obtained though Hall measurements (at T = 1.5 K); fmin and fmax are the transverse and longitudinal
cross-sectional areas of the L pockets, respectively; K = (fmax/fmin)2 is the anisotropy of L pockets (see Appendix D); pFS-Vol is the carrier
concentration computed using Luttinger’s theorem (see Sec. V A).

x (at. %) pH (×1019 cm−3) fmin (T) f[100] (T) fmax (T) K pFS-Vol (×1019 cm−3)

0 0.19 ± 0.001 8 ± 1 12.5 ± 2 25 ± 2 10 ± 4 0.16 ± 0.02
0.04 0.75 ± 0.01 17 ± 5 34 ± 7 – – –
0.13 2.09 ± 0.01 39 ± 4 63 ± 5 145 ± 7 14 ± 3 2.1 ± 0.2
0.26 4.1 ± 0.06 60 ± 8 97 ± 10 230 ± 7 15 ± 4 4.0 ± 0.3
0.4 6.3 ± 0.6 81 ± 4 132 ± 13 307 ± 6 14 ± 2 6.3 ± 0.2
0.62 9.4 ± 0.6 97 ± 12 157.5 ± 16 370 ± 90 15 ± 8 8.3 ± 2.1

the value of the maximum frequency can be determined from
the 90◦ area, possible deviations from ellipsoidal model that
could be identified around 35◦ cannot be resolved. However,
given the round shape of the upper branch around 90◦, we can
say that features associated with possible departures from the
ellipsoidal model are not observed [see Fig. 2(c)]. This last
statement is confirmed by magnetoresistance measurements
in an additional sample of the same batch as the field is rotated
along the (100) plane, as shown in Fig. 8. The comparison
of the FFT angle evolution and the perfect ellipsoidal model,
using the same extremal cross-sectional area parameters as for
the measurements with field along the (110) plane, confirms
the matching of the data with the perfect ellipsoidal model for
samples of this Na composition (x = 0.4%). For the highest
Na concentration sample measured, x = 0.62%, possible
deviations from perfect ellipsoidicity are observed, and will
be discussed later in this section.

As can be seen in the third and fourth columns of Figs. 7(d)
and 7(e), additional features in the angle dependence plots
occur for the two highest Na-doped samples. Nevertheless, all
of these features can be identified as the sum and difference
of the fundamental frequencies of the L pockets, as can be
observed in the light-blue and gray curves in the fourth column
plots of Figs. 7(d) and 7(e). The presence of such combination
frequencies can be attributed to magnetic interaction effects,

expected when the amplitude of the oscillating component of
the magnetization M̃ is comparable to H 2/f , in such a way that
the total magnetic field �B = �H + 4π �M , and not just �H , needs
to be considered in the Lifshitz-Kosevich (LK) formalism of
quantum oscillations [41] (see Appendix A).

As was suggested above, the sample with the highest Na
concentration studied in this work, x = 0.62%, shows possible
indications of deviations from perfect ellipsoidicity. For this
sample the high frequency components of the oscillations are
blurred, and the evolution of the different branches can be
observed only up to 400 T. As we mentioned previously,
the determination of fmin for all samples has a very low
uncertainty, particularly for this sample, given that we can
clearly observe up to the third harmonic of the lower branch
[see Fig. 7(e)]. Fixing this value to fmin = 97 T, Fig. 9 shows
a comparison between the angle evolution of the frequencies
of oscillation for this sample, and a perfect ellipsoidal model
using two different values of fmax. In order to better guide the
comparison, both plots in this figure show the exact frequency
positions of the maxima of the FFT peaks for all angles (in
black-filled circles). Around the angle of 90◦ we observe
some weight in the FFT (yellow color) around 350–370 T,
which we could interpret as an indication of the value of
fmax. This value is the one used in the perfect ellipsoidal
model in Fig. 9(a) [as well as Fig. 7(e)]. In this figure we

FIG. 8. (a) Longitudinal magnetoresistance for a Na-doped PbTe sample with x = 0.4% and Hall number pH = 6.3 × 1019 cm−3, for
different directions of the applied magnetic field, with respect to the [100] crystalline axis, as the field is rotated in the (100) plane. (b) As in
(a), as a function of inverse magnetic field, after eliminating the background, therefore only preserving the oscillatory part. (c) The color scale
in both plots represents the amplitude of the Fourier transform of the data shown in (b), as a function of the angle from the [100] direction
(horizontal axis), and the frequency (vertical axis). For these plots, the field is rotated in the (100) plane. The right-hand side figure replots
the figure in the left, but with a perfect ellipsoidal model calculation superimposed on the data, up to the third harmonic (black lines). For the
model, the plane of rotation is offset by 5.5◦ (about the [100] axis). The parameters used for the calculations are the same as those used for the
(110) plane of rotation data in Fig. 7(d): fmin = 81.4 T and fmax = 307 T.
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FIG. 9. FFT of the background-free resistivity data of Fig. 7(e),
as a function of the angle from the [100] direction and the frequency.
A perfect ellipsoidal model calculation has been superimposed on
the data, up to the third harmonic (black lines). In order to better
guide the comparison with the perfect ellipsoidal model, the exact
frequencies of the local maxima of the FFT for each angle (labeling
only FFT peaks with amplitude 1% or more of the largest peak for each
angle) are indicated by black dots. The parameters used in the perfect
ellipsoidal model for each plot are: (a) fmin = 97 T, fmax = 370 T; and
(b) fmin = 97 T, fmax = 460 T. For both plots, an offset of 4◦ from
the (110) plane of rotation (about the [110] axis) is considered, to
account for the splitting seen in the middle branch. Additionally, the
combination frequency terms are shown in light-blue-dotted lines
(sum of fundamental branches) and gray-dotted lines (difference
of fundamental branches). None of the fits presented here give a
satisfactory description of the data, suggesting deviations from perfect
ellipsoidicity.

can see that the matching between the data and the perfect
ellipsoidal model is not satisfactory, especially close to the 0◦
area of the plot. Interestingly, the 90◦–370 T area overlaps
with the region at which the third harmonic of the lower
branch passes. This could indicate that the weight observed
at this region belongs to this third harmonic, and not to fmax.
Figure 9(b) shows a comparison between the data and a perfect
ellipsoidal model using the same fmin = 97 T, but now using
a larger value of fmax = 460 T. These values provide a better
matching between the data and a perfect ellipsoidal model
for the region of 0◦. However, the combination frequency
terms, due to magnetic-interaction effects, suggest that this
fit is not satisfactory, as the evolution of the combination
frequency data points around 60◦–350 T seems to be less
steep, being better matched by the fit using fmax = 370 T,
as shown in Fig. 9(a). The lack of a satisfactory perfect
ellipsoidal model to describe the data can be interpreted as
deviations from perfect ellipsoidicity of the L pockets for
this Na concentration. The mismatch of the data and the
ellipsoidal model is observed in the intermediate branch,
which is consistent with the guidelines given by the DFT
calculations.

For all the measured samples, all features observed in
the angle evolution of the frequencies of oscillations come
from the L pockets. Furthermore, the carrier concentration
calculated from Luttinger’s theorem and the volume in k space
of the L pockets (obtained through the comparison of the FFT
evolution and the perfect ellipsoidal model) pFS-Vol, matches
perfectly (within the error bars) the Hall number (equivalent
to the carrier concentration for a single band compound) for
all Na-doped samples up to x = 0.4%, as shown in Table I:
the L band contributes solely to conduction up to this Na
concentration. Moreover, the small mismatch between the
L-pocket Luttinger volume and the Hall number for the highest

Na concentration sample x = 0.62% presumably comes from
deviations from perfect ellipsoidicity, as previously discussed.

B. Temperature dependence of quantum oscillations

In order to determine the evolution of effective cyclotron
masses of holes in Na-doped PbTe with carrier concentration,
we measured the temperature dependence of the oscillation
amplitude for samples of different Na concentrations, with
the field oriented along or close to high symmetry crystal-
lographic directions. To accurately determine the cyclotron
effective masses for such a low carrier-density material,
we simultaneously fitted all magnetoresistance curves to the

FIG. 10. Temperature dependence of the amplitude of the oscil-
lating component of magnetoresistance for Pb1−xNaxTe samples, with
magnetic field along the [111] direction (55◦ from the [100] direction,
in the (110) plane). The left-column plots show the background-free
data at different temperatures. The right-column plots show the fits of
the data to the LK formula in Eq. (1), using the four most dominant
frequencies observed in the FFT of the lowest temperature curve.
From this fit, the values of cyclotron effective mass and Dingle
temperature, for each frequency term, are obtained. The values
obtained for the transverse cyclotron mass and Dingle temperature
are summarized in Table II.
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TABLE II. Cyclotron effective masses for Pb1−xNaxTe samples along different high symmetry directions. These parameters were obtained
through fitting of the curves in Figs. 10, 11, and 20 to the LK formula in Eq. (1).

x (at. %) pH (×1019 cm−3) �D,⊥ (K) m
cyc
⊥ /me m

cyc
[100]/me m

cyc
‖ /me

0.04 0.75 ± 0.007 – – 0.098 ± 0.001 –
0.13 2.09 ± 0.006 9 ± 4 0.068 ± 0.007 0.085 ± 0.001 –
0.26 4.1 ± 0.06 10 ± 3 0.089 ± 0.002 0.15 ± 0.01 0.29 ± 0.04
0.4 6.3 ± 0.6 9.9 ± 0.2 0.14 ± 0.03 0.172 ± 0.004 –
0.62 9.4 ± 0.6 9.5 ± 0.8 0.13 ± 0.02 0.225 ± 0.006 –

Lifshitz-Kosevich (LK) formula (in SI units) [41]:

ρ(H ) − ρ0

ρ0
=

∑
i

Ci

{
exp

(
−14.7

(
m

cyc
i /me

)
�D,i

H

)}

×
{

T/H

sinh
[
14.7

(
m

cyc
i /me

)
T/H

]
}

× cos

[
2π

fi

H
+ φi

]
, (1)

where the sum is over each frequency observed in the data,
and for which a separate cyclotron effective mass m

cyc
i /me and

Dingle temperature �D,i can be obtained. For low frequency
oscillations, the number of periods observed in the given field
range is limited, resulting in FFTs with amplitudes highly
dependent on windowing effects, variations in field range, or
variations in signal sampling. In contrast to the fitting of the
FFT amplitudes to the LK formula—the method widely used
for the determination of effective masses of higher carrier
concentration metals—the values of effective masses obtained
through a direct fitting of the data to the LK formula are robust
to such variations.

Figure 10 shows the temperature dependence of the
oscillating component of magnetoresistance for Pb1−xNaxTe
samples of different Na concentrations, for field oriented along
the [111] direction, providing direct access to the transverse

FIG. 11. Temperature dependence of the amplitude of the oscil-
lating component of magnetoresistance for a Pb1−xNaxTe sample
with x = 0.24%, and magnetic field oriented close to 35◦ from
the [100] direction, along the (110) plane. For this orientation, the
cross-sectional area of two of eight L pockets corresponds to the
maximum cross-sectional area of the ellipsoids. The left-column
plot shows the background-free data at different temperatures. The
right-column plot shows the fit of the data to the LK formula in
Eq. (1), using the five most dominant frequencies observed in the
FFT of the lowest temperature curve. From this fit, the values of
cyclotron effective mass and Dingle temperature, for each frequency
term, are obtained.

cyclotron effective mass m
cyc
⊥ , which is associated with the

minimum cross-sectional area of the L pockets. Least-squares
fits to Eq. (1), including up to the fourth strongest frequency
component, for each Na doping, and for a field range of 5 to
34 T, are shown in the right-column plots of this figure. The
cyclotron masses and Dingle temperatures obtained for the
fundamental frequency, i.e., m

cyc
⊥ and �D,⊥, as a function of

carrier concentration, are summarized in Table II, and plotted
in Figs. 16 and 17, in Sec. V.

Additionally, Fig. 11 shows magnetoresistance curves at
different temperatures for a sample with Na concentration of
0.26%, with the magnetic field oriented close to 35◦ from the
[100] direction in the (110) plane. For such field orientation,
one of the Fermi surface cross-sectional areas corresponds to
the maximum cross-sectional area of the ellipsoids (in a perfect
ellipsoidal model), which is associated with the longitudinal
cyclotron mass m

cyc
|| . The value obtained for this mass is

presented in Table II.
From our measurements, we can also obtain cyclotron

masses along intermediate directions; these are presented in
Fig. 15 of Sec. V.

V. DISCUSSION

A. Fermi surface topology

Having presented the data and the analysis performed
to obtain the various Fermi surface parameters for different
Na-doping levels, we now summarize them and present their
evolution as a function of depth in the valence band. The
parameters obtained in the previous section are summarized
in Table I, where we also include data from an additional Na
composition (x = 0.04%) for which measurements in a more
limited field range (up to 14 T) were taken.

Figure 12 shows the L-pockets’ Luttinger volume as a
function of Hall number for the Na-doped PbTe samples
studied, plus self-doped (by Pb vacancies) samples measured
in previous SdH studies by other groups [14,15]. For a
single-parabolic-band model, these two quantities are expected
to exactly match with each other, and to lie on the dashed
line shown in the figure. This is indeed the case for all the
samples studied, including the self-doped ones. The deviations
seen for the largest Na doping can be attributed to deviations
from perfect ellipsoidicity of the pockets, as discussed in
previous sections. The matching between the L-pockets’
Luttinger volumes and Hall numbers implies that PbTe, up to
a carrier concentration of pH = (9.4 ± 0.6) × 1019 cm−3, is
single band, that is, all the carriers contributing to conduction
belong to the L band. This result implies that the band offset
between the L and � valence band maxima is underestimated
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FIG. 12. Carrier concentration calculated from Luttinger’s theo-
rem and the volume of the L pockets extracted from the comparison
between the data and a perfect ellipsoidal model, as a function of
the Hall number, for Na-doped PbTe (black squares), and obtained
using the ellipsoid parameters from previous studies in Refs. [14,15]
(blue stars). The dashed line shows the expected behavior for a
single-parabolic band, for which the carrier density enclosed by the
Fermi surface, as determined through Luttinger’s theorem, matches
the carrier density measured using the Hall effect. All the measured
samples lie on this line, and the deviations seen for the highest
Na doping (gray square) are attributed to deviations from perfect
ellipsoidicity.

in our DFT calculations, as well as all previously published
band-structure calculations [8,13,33,34,42–46], which predict
the appearance of the � band at a hole concentration of the
order of p ≈ 1 × 1019 cm−3.

The evolution of the three high symmetry L-pocket
cross-sectional areas, in frequency units (fmin, fmax, and f[100]),
with Hall number is plotted in Fig. 13. For a perfect ellipsoidal

model, all the cross-sectional areas are expected to scale with
carrier concentration as p

2/3
H . This is in fact the functional form

followed by most cross-sectional areas in Fig. 13, as shown
by the dashed line. The last Na-doped sample deviates from
this line, confirming the departure from perfect ellipsoidicity
of the pockets for this high carrier concentration. However,
for carrier concentrations below pH = 6.3 × 1019 cm−3, we
can conclude that the L pockets are well described by a
perfect ellipsoidal model, within the experimental resolution.
For the highest Na concentration studied, the deviation from
the perfect ellipsoidal behavior follows the expected trend
predicted by our DFT calculations, as presented in Fig. 5.

Additionally, the anisotropy of the L pockets, K =
(fmax/fmin)2, is approximately constant with carrier concentra-
tion (K = 14.3 ± 0.4), for the range of carrier concentrations
of interest, as shown in Fig. 14. The observation of a constant
anisotropy of the L pockets with carrier concentration confirms
previous results by Burke et al. [15] for p-type self-doped
PbTe with carrier concentrations below 1 × 1019 cm−3 (shown
as blue stars in Fig. 14), and contrasts the results by Cuff
et al. [47] in self-doped samples with carrier concentrations
up to 3 × 1018 cm−3, in which a decrease in K with increasing
carrier concentration is observed. The K values reported by
Burke et al. are slightly less than the average value of 14.3 ±
0.4 found in this work. However, as discussed previously, an
accurate estimation of the Fermi surface parameters for the
low carrier concentration regime is challenging given the few
periods of oscillation observed in a limited field range. This
could be the reason for the lower K value obtained for the
x = 0 sample measured in this work. A constant value of K

with carrier concentration is expected in a perfect parabolic
band model, in which the L-pocket anisotropy is equivalent
to the band mass anisotropy K = m‖/m⊥, where m‖ is the
effective band mass along the ellipsoidal L-pocket semimajor
axis (longitudinal band mass), and m⊥ is the effective band
mass along the ellipsoidal L-pocket semiminor axis (trans-
verse band mass) [in terms of the cyclotron effective masses
K = (mcyc

‖ /m
cyc
⊥ )2, as shown in Appendix D]. However, a

constant K value can also be obtained for specific models with
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FIG. 13. Evolution of the characteristic frequencies of the L pockets with Hall number, for Na doping, as determined from this study,
and for self-doped samples from the works in Refs. [14,15]: (a) Frequency associated with the L pockets’ minimum cross-sectional area
fmin. (b) Frequency associated with the L pockets’ cross-sectional area in the [100] direction f[100]. (c) Frequency associated with the L

pockets’ maximum cross-sectional area fmax. The blue-star symbols are data points obtained by previous quantum oscillation studies from other
authors [14,15], in self-doped PbTe with different levels of Pb vacancies (the last star in fmin, in green, was obtained by Na doping). The fmax

data point for the highest Na concentration is represented by a gray square, in order to emphasize that deviations from perfect ellipsoidicity
seen in this sample result in a less accurate determination of fmax. The dashed line in all the plots is the functional dependence of p

2/3
H expected

for a perfect ellipsoidal model with fixed anisotropy.
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FIG. 14. Anisotropy parameter of the L pockets, K =
(fmax/fmin)2, extracted from the data, as a function of the Hall number
for Na-doped samples, as determined from this study (black squares
and gray square for the highest Na composition), and for self-doped
samples from the works in Refs. [14,15] (blue stars). The horizontal
gray line shows the average value of K = 14.3 ± 0.4 for this range
of concentrations.

dispersion relations in which corrections for nonparabolicity of
the band are considered, as we will present in the next section.

B. Effective cyclotron masses and relaxation time

As we presented in Sec. IV B, effective cyclotron masses
along different high symmetry directions were obtained
through direct fitting of the curves shown in Figs. 10, 11, and 20
to the LK formula in Eq. (1). For all the Na compositions
studied, the cyclotron masses along the transverse direction
m

cyc
⊥ and [100] direction m

cyc
[100] were determined through this

method. Additionally, for samples with a Na concentration of
x = 0.26%, the longitudinal cyclotron mass m

cyc
|| was also

found. Supplementary to these highly symmetric masses,
others along less symmetric directions of the ellipsoid can be
found from the different frequency terms in the measurements.
Figure 15 shows the cyclotron effective masses found for
all frequency terms taken into account in the LK fits of the
x = 0.26% sample [Figs. 10(b), 11, and 20(c)], as a function
of the angle from the L-pocket longitudinal direction. The
corresponding angle for the mass of each frequency term,
with respect to the longitudinal direction of the ellipsoids, was
found by identifying each frequency in the angle dependence
curves, such as that presented in Fig. 7(c). Figure 15 also
shows the expected angular dependence of the cyclotron
effective mass (fundamental and higher harmonics) in a perfect
ellipsoidal model (for more details, see Appendix D), using the
average K value from Fig. 14 (K = 14.3 ± 0.4, which gives
m

cyc
‖ /m

cyc
⊥ = √

K = 3.78 ± 0.05). Most data points lie on this
curve, confirming the good agreement of the topology of the
Fermi surface with the perfect ellipsoidal model for this Na
concentration.

In spite of the good agreement of the anisotropy of the
cyclotron effective mass with the perfect ellipsoidal model,
intriguingly, the masses are not constant throughout the band:
Fig. 16 shows the evolution of the longitudinal, transverse,
and [100] direction cyclotron effective masses with carrier
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FIG. 15. Cyclotron effective mass mcyc along different directions
with respect to the (L-pocket) ellipsoid semimajor axis, for a
Pb1−xNaxTe sample with x = 0.24%. The data points were obtained
through fits to the LK formula of the oscillating components of
magnetoresistance along three different crystallographic directions:
[111] [square symbols, Fig. 10(b)], [100] [filled circles, Fig. 20(d)],
and 35◦ from [100] in the (110) plane (diamonds, Fig. 11). The
dashed lines represent the angle dependence of the cyclotron
mass (fundamental and higher harmonics) for a perfect parabolic
dispersion and perfect ellipsoidal model, as presented in Eq. (D7),
and using an anisotropy parameter K = 14.3 ± 0.4 (which implies
m

cyc
‖ /m

cyc
⊥ = 3.78 ± 0.05). The shadowed region around the dashed

lines represents the error bar in mcyc(θ ) estimated from propagation
of errors in K , θ , and m

cyc
⊥ .

concentration. All of them show a monotonic increase with in-
creasing carrier concentration, consistent with the predictions
of the DFT band-structure calculations presented in Sec. II C.
Previous SdH measurements in p-type self-doped PbTe by
Burke et al. [14,15] (pH < 1 × 1019 cm−3), and by Cuff
et al. [47] (pH < 6 × 1018 cm−3), found a similar tendency for
the transverse cyclotron mass. The observation of a varying
effective mass with carrier concentration implies deviations
from perfect parabolicity, starting from the top of the band.

A Kane model dispersion relation has been proposed
before to describe the valence band of PbTe [33,39,48–50].
In this model the nonparabolicity of the band is introduced as
E → γ (E) = E(1 + E/Eg) in the dispersion relation, where
Eg is the band gap. For such a model, the longitudinal and
transverse effective masses depend on energy in the same
way [49], implying that, although the effective masses evolve
as the Fermi energy is changed, the band anisotropy parameter
K = (A‖/A⊥)2 = (mcyc

‖ /m
cyc
⊥ )2 is constant. Additionally, in

this model, the constant energy surfaces for any Fermi
energy are ellipsoids of revolution [49], which is consistent
with our observations for carrier concentrations up to p =
6.3 × 1019 cm−3. The Kane model has been successful at
describing the band structure near the gap of small band-gap
semiconductors, for which the relevant Fermi energies are
smaller than or of the same order as the band gap [51]. Our
experimental results are in line with the predictions of the Kane
model, ruling out other proposed models such as the Cohen
model [49,52,53], at least for the low-temperature regime.
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FIG. 16. Effective cyclotron mass mcyc along three high sym-
metry directions for Pb1−xNaxTe samples, as a function of the
Hall number. Cyclotron effective masses were determined through
fitting the curves in Figs. 10, 11, and 20 to the LK formula in
Eq. (1). m

cyc
⊥ is the cyclotron mass in the transverse direction

of the L-pocket ellipsoid, or [111] direction (red-solid squares);
m

cyc
[100] is the cyclotron mass in the [100] direction of the crystal

lattice (gray-solid circles); and m
cyc
‖ is the cyclotron mass in the

longitudinal direction of the L-pocket ellipsoid (blue-solid diamond).
The red-dashed line represents a guide to the eye for the trend
observed in the longitudinal cyclotron mass. The blue-dashed line
is the trend expected for the longitudinal cyclotron mass given the
anisotropy parameter of m

cyc
‖ /m

cyc
⊥ = √

K = 3.78. The small open
triangles show the L-pocket effective cyclotron masses determined
through our DFT calculations, as shown in Fig. 6. The agreement
between the calculated masses and the experimental values for the
transverse and [111] direction is outstanding.

Additional to the cyclotron effective masses, we have
found the Dingle temperature in the transverse direction
�D,⊥, through a fitting of the data to the LK formula, as
presented in Sec. IV B. In contrast to the cyclotron mass,
finding this quantity along directions other than the trans-
verse direction of the L-pocket ellipses is challenging, given
that the oscillatory part of magnetoresistance is dominated
by the lowest frequency component. For this dominating part
of the signal, the exponential damping in 1/H is the only one
strong enough to result in a Dingle temperature as a strong
fitting parameter. Figure 17 shows the Dingle temperature
associated with the transverse direction �D,⊥ as a function
of carrier concentration. This quantity is constant for the
range of concentrations studied, with an average value of
�D,⊥ = (9.7 ± 0.4) K. This average value of �D,⊥ results
in a value of the carrier relaxation time along the transverse
direction of τ⊥ = �/2πkB�D,⊥ = (0.125 ± 0.005) ps. It is
interesting to note that although the RRR value for Pb1−xNaxTe
decreases by approximately 20 times from undoped PbTe to the
highest Na-doping studied, suggesting a considerable increase
of scattering effects, the transverse relaxation time found in
this work is constant with carrier concentration. However, as
suggested by the progressive decrease of the Fourier intensity
of the higher frequency components as doping is increased,

0 2 4 6 8 10 12
0

5

10

15

20

 Θ
D

,⊥
 (K

)

pH (x1019cm-3)

FIG. 17. Dingle temperature in the transverse direction �D,⊥
obtained through fitting of the curves in Fig. 10 to the LK formula
in Eq. (1), as a function of carrier concentration pH . We find that
the Dingle temperature is independent of carrier concentration, with
a value of �D,⊥ = (9.7 ± 0.4) K, indicated by the dashed-gray line.
This value of �D,⊥ results in a value of τ = (0.125 ± 0.005) ps for
the carrier relaxation time along the transverse direction.

as can be observed in Fig. 7, the enhanced scattering could
be reflected in a significant decrease of the longitudinal
relaxation time. Unfortunately, a reliable determination of the
longitudinal Dingle temperature, resulting in a longitudinal
relaxation time, was not possible.

VI. SUMMARY AND CONCLUSIONS

In summary, we have presented a computational and
experimental study of the low-temperature (1.5 to 60 K)
topology and properties of the Fermi surface of Pb1−xNaxTe,
and its evolution with carrier concentration, for Na dopings up
to x = 0.62%. We have found that:

(i) Although the band offset is underestimated by the DFT
calculations, all the qualitative features of the evolution of
the Fermi surface topology and effective mass are correctly
predicted by our calculations. The underestimation of the band
offset is related to the high sensitivity of the resulting band
structure to variations of parameters in the calculation, such as
lattice spacing or spin-orbit coupling. This fact is presumably
related to the fact that PbTe is on the boundary between various
competing structural (incipient ferroelectricity [20,21]) and
electronic (superconductivity [10–12] and topological insula-
tor [22,23]) instabilities.

(ii) Up to a carrier concentration of p = 9.4 × 1019 cm−3

(x = 0.62% maximum studied) the Fermi surface of
Pb1−xNaxTe is formed solely by eight half-ellipsoids at the
L points. The � pockets predicted to contribute at such
high carrier concentrations in our calculation and those of
other groups [13,42,54–56] are not observed. Additionally,
the measured Hall number and the Luttinger volume of the
L pockets calculated from our quantum oscillation measure-
ments match exactly, indicating that this is the only set of
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pockets that contribute to conduction in this compound at low
temperatures.

(iii) The topology of the Fermi surface, formed by eight
half-pockets at the L points, is well described by a perfect
ellipsoidal model for carrier concentrations up to p = 6.3 ×
1019 cm−3 (x = 0.4%). Deviations from perfect ellipsoidicity
were resolved for the highest carrier concentration studied,
p = 9.4 × 1019 cm−3 (x = 0.62%).

(iv) The anisotropy of the L pockets is constant for the
range of concentrations studied, and has an average value of
K = 14.3 ± 0.4.

(v) The anisotropy of the cyclotron effective mass of the L

pockets follows the angular dependence expected in a perfect
ellipsoidal model.

(vi) The effective cyclotron masses along all high symmetry
directions increase monotonically with increasing carrier
concentration, implying deviations from perfect parabolicity
of the band. The observation of constant geometric and
mass anisotropy with carrier concentration, but an increasing
effective mass, is consistent with a Kane model of nonparabolic
dispersion relation for the valence band of PbTe.

Our experimental determination of the low-temperature
Fermi surface and band structure parameters of PbTe is an
important piece of information which needs to be considered
in models that aim at explaining the evolution of a variety of
electronic properties at high doping levels in PbTe, including
superconductivity and thermoelectric properties.

ACKNOWLEDGMENTS

The high-field magnetoresistance measurements were per-
formed at the National High Magnetic Field Laboratory
(NHMFL), which is supported by NSF DMR-1157490 and
the State of Florida. P.G.G., P.W., H.J.S., and I.R.F. were
supported by AFOSR Grant No. FA9550-09-1-0583. B.S.,
M.F., and N.A.S. acknowledge support from ETH Zürich,
ERC Advanced Grant program (No. 291151), and the Swiss
National Supercomputing Centre (CSCS) under project ID
s307.

APPENDIX A: QUANTUM OSCILLATIONS FORMALISM

In this Appendix we briefly outline the concepts needed to
understand quantum oscillation experiments in metals. For a
detailed treatment see the excellent book by Shoenberg [41].
It is well known that in a magnetic field H the allowed
electronic states lie on quantized tubes in k space (Landau
tubes). The tube quantization is described by the Onsager
equation

a(En,kH
,kH ) =

(
n + 1

2

)
2πeH/�c, (A1)

where a is the cross-sectional area of the Landau tube in a plane
perpendicular to H , and n is an integer. As a consequence,
an oscillatory behavior with the inverse magnetic field 1/H

can be observed in, for example, the magnetization—the de
Haas-van Alphen effect—or the resistance—the Shubnikov-de
Haas effect. The period of such oscillations �1/H is given by

�1/H = 2πe/(�cA), (A2)

A being an extremal cross-sectional area of the Fermi surface
in a plane perpendicular to H . One can also define a frequency
for these oscillations as

f = 1/�1/H = (c�/2πe)A. (A3)

By determining the oscillations in, e.g., the resistivity for
varying orientations of the magnetic field, one can eventually
reconstruct the Fermi surface.

In the semiclassical picture the electrons move along (open
and closed) orbits on the Fermi surface in a plane perpendicular
to H . The time taken to traverse a closed (cyclotron) orbit is
given by

tc = 2π

ωc

= �
2c

eH

∂a

∂E
, (A4)

where one can rewrite the cyclotron frequency ωc in terms of
a cyclotron mass

mcyc = �
2

2π

∂a

∂E
. (A5)

For a free-electron gas the cyclotron mass is equal to
the electron mass. Experimentally the cyclotron masses are
extracted using the Lifshitz-Kosevich (LK) formula (in SI
units)

ρ(H ) − ρ0

ρ0
=

∑
i

Ci

{
exp

(
−14.7

(
m

cyc
i /m0

)
�D,i

H

)}

×
{

T/H

sinh
[
14.7

(
m

cyc
i /m0

)
T/H

]
}

× cos

[
2π

fi

H
+ φi

]
, (A6)

as presented in Eq. (1).
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FIG. 18. Lattice parameter of the cubic unit cell of Pb1−xNaxTe
samples with different Na content, as a function of temperature. Filled
symbols represent the experimentally determined values, and the
solid lines represent a fit to a low order polynomial, as explained
in the text, from which the zero-temperature lattice parameter can be
extrapolated.
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TABLE III. Zero-temperature extrapolated lattice parameter
(aT =0 K) of Pb1−xNaxTe samples with different Na content. This
extrapolation was done through a low-order polynomial fit of the
temperature dependence of the lattice parameters, as explained in the
text.

x (Na at. %) pH (×1019 cm−3) aT =0 K (Å)

0 – 6.4311(1)
0.26 4.1 ± 0.06 6.436(3)
0.62 9.4 ± 0.6 6.4429(7)

APPENDIX B: TEMPERATURE AND NA-COMPOSITION
DEPENDENCE OF THE LATTICE CONSTANT

In this Appendix we present an experimental determination
of the cubic lattice parameter of Pb1−xNaxTe samples with
different Na content, and its temperature dependence. This
determination will be necessary to study the sensitivity of the
DFT band-structure calculations to realistic variations in lattice
constant, which we present in the next section.

The peak positions of several diffraction peaks with high 2θ

values were determined for different temperatures (from 300
down to 80 K), using the 2D detector of a commercial Bruker-
D8-Venture single crystal x-ray diffractometer. In order to
minimize systematic errors, the lattice parameters at each
temperature were determined through a linear fit of the cal-
culated lattice spacing for each peak (a = dhkl

√
h2 + k2 + l2)

vs 2θ , and the extrapolation of this fit to 2θ = 180◦. These
measurements were done for two Na-doped PbTe samples with
Na concentrations of x = 0.26% and 0.62%. The temperature
dependence of the lattice parameter of the measured samples,
as well as data by Bozin et al. [20] for undoped PbTe, are
shown in Fig. 18. Below 150 K, the data for x = 0.26% exhibit
a greater scatter than those for x = 0.62%, reflecting poorer
experimental conditions for that measurement. However, the
overall trend of the temperature dependence for both composi-
tions is similar. In order to obtain a sensible extrapolation of our
data down to zero temperature, Bozin’s data for undoped PbTe

TABLE IV. Volume dependence of band-structure parameters in
DFT. The volume range is chosen to cover the experimental range of
(un)doped samples at T = 0 K. a is the lattice constant and m∗ are
the effective masses (curvature) at the top of the valence band.

a (Å) Band offset (meV) |m∗
⊥| (me) |m∗

‖| (me)

6.43 71 0.016 0.368
6.44 74 0.014 0.305
6.45 84 0.011 0.224

samples, which goes down to much lower temperatures than
ours, was fitted with a low order polynomial (solid-black line
in Fig. 18). For the Na-doped samples, the data was fitted by
keeping all the polynomial coefficient found for the undoped
sample, except the zero-power term (vertical offset), which
represents the zero-temperature lattice parameter for these Na-
doped samples. The values obtained for the zero-temperature
lattice parameter of these three compositions are summarized
in Table III. The temperature variation of the lattice parameter,
from zero temperature to room temperature, of the samples
studied here, is of the order of 0.5%, whereas the compositional
variation, from undoped PbTe to 0.62% Na-doped PbTe, is of
the order of 0.2%.

APPENDIX C: VOLUME DEPENDENCE OF DFT RESULTS

In this Appendix we comment on the volume dependence
of the band structure and quantum-oscillation parameters in
our DFT calculations. Table IV shows the volume dependence
of the band offset and effective masses for the range of
experimental volumes of (un)doped samples at T = 0 K (see
Fig. 18 and Table III).

An increase in volume is accompanied by an increase
in band offset (in contrast to the behavior expected from
experiments, where thermal expansion leads to a decrease of
the band offset [17–19]), and a decrease in effective masses.
The latter indicates that the L pocket becomes narrower, but
is not able alone to predict an appreciable change in the
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FIG. 19. Evolution of SdH frequencies (a) and cyclotron masses (b) as a function of density of holes in the L-pocket pL for two different
volumes: 6.50 Å (open symbols and superscript l) and 6.44 Å (filled symbols and no superscript). The larger volume corresponds also to a
larger band offset 120 vs 74 meV. The dashed vertical lines indicate the L-pocket hole density above which the � pockets start to be populated.
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evolution of SdH frequencies and cyclotron masses, because,
as mentioned in the main text, the band is nonparabolic.
To check the influence of volume on SdH frequencies and
cyclotron masses, we computed their evolution with doping
for two different volumes (Fig. 19), the DFT-lattice constant
6.44 Å—with a band offset of 74 meV—and a representative
larger one 6.50 Å (noted with an l superscript in the figure)—
with a band offset of 120 meV.

No appreciable differences in the doping dependence
for the two different volumes can be observed: in fact,
if the L pocket is narrower it becomes filled faster, or,
the shift in Fermi energy to obtain a given density of
holes is larger. The concentration at which the � pockets
start contributing is also not much different for the same
reason.

We conclude that unit-cell volume changes of the order
of those found experimentally (due to temperature and
compositional variation) do not affect significantly our DFT
results.

APPENDIX D: CYCLOTRON EFFECTIVE
MASS ANISOTROPY

For a given dispersion relation one can, in principle, find
the relation between the geometric anisotropy of the Fermi
surface and the anisotropy of the cyclotron effective mass. For
a perfect parabolic band, the general anisotropic dispersion
relation is given by

�
2k2

x

2mx

+ �
2k2

y

2my

+ �
2k2

z

2mz

= E, (D1)

where mx , my , and mz are the band masses. For an ellipsoidal
Fermi surface with the semimajor axis of the ellipse oriented
along the z axis, the band masses are mx = my = m⊥ (prolate
ellipsoid) and mz = m‖. For such systems, the minimum and
maximum cross-sectional areas are

A⊥ = πk2
x,y

∣∣∣∣
kz=0

= 2πm⊥
�2

E, (D2a)

A‖ = πkx,y

∣∣∣∣
kz=0

kz

∣∣∣∣
kx,y=0

= 2π

�2

√
m⊥m‖E, (D2b)

and the ratio of maximum-to-minimum cross-sectional areas
is

A‖
A⊥

= fmax

fmin
=

√
m‖
m⊥

=
√

K, (D3)

where K = m‖/m⊥ is defined as the ratio of band masses, and
it directly represents the anisotropy of the ellipsoidal pocket.
As our experiment is a direct probe of cyclotron masses, we can
find a relation between K and the extremal cyclotron masses.
For a perfect parabolic band, with dispersion of the form given
in Eq. (D1), the cyclotron effective mass mcyc = e| �B|/�ωc for
a magnetic field of the general form �B = Bxx̂ + Byŷ + Bzẑ

can be found from the dynamic equations and the dispersion

relation, resulting in the expression

mcyc =
√√√√ mxmymz

mx

(
Bx

|B|
)2

+ my

(
By

|B|
)2

+ mz

(
Bz

|B|
)2 . (D4)

FIG. 20. Temperature dependence of the amplitude of the os-
cillating component of magnetoresistance for Pb1−xNaxTe samples,
with magnetic field oriented in or close to the [100] direction. The
left-column plots of each composition show the background-free data
at different temperatures. The right-column plots show the fits of the
data to the LK formula in Eq. (1), using the two most dominant
frequencies observed in the FFT of the lowest temperature curve
(three most dominant for the x = 0.62% sample). From these fits, the
values of cyclotron effective mass and Dingle temperature, for each
frequency term, are obtained.
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For an ellipsoid of revolution, therefore, the transverse and
longitudinal cyclotron effective masses, in terms of the band
masses, are

m
cyc
⊥ = m⊥, (D5a)

m
cyc
‖ = √

m⊥m‖. (D5b)

And with this,

m
cyc
‖

m
cyc
⊥

=
√

m‖
m⊥

=
√

K. (D6)

For the case of Pb1−xNaxTe, in which K = 14.3 ± 0.4
for a wide range of dopings, m

cyc
‖ /m

cyc
⊥ = 3.78 ± 0.05. Ad-

ditionally, from Eq. (D4), we can find a general expression
for the angle dependence of cyclotron mass of an ellipsoid
of revolution, with respect to the main axis of the ellipsoid,
and as a function of the transverse cyclotron mass, by
writing the components of the magnetic field in spherical

coordinates as Bx = | �B| sin θ cos ϕ, By = | �B| sin θ sin ϕ, and
Bz = | �B| cos θ :

mcyc(θ )

m
cyc
⊥

=
√

K

(K − 1) cos2 θ + 1
. (D7)

APPENDIX E: EFFECTIVE CYCLOTRON MASS ALONG
THE [100] ORIENTATION

Figure 20 shows the temperature dependence of the
oscillating component of magnetoresistance for Pb1−xNaxTe
samples of different Na concentrations, for field oriented
along the [100] direction, which provides direct access to the
m

cyc
[100] cyclotron effective mass. Least-squares fits to Eq. (1),

including up to the second strongest frequency component,
for each Na doping, and for a field range of 3–5 to 14 T, are
shown in the right-column plots of this figure. The obtained
[100] cyclotron masses are summarized in Table II, and
plotted as a function of carrier concentration in Fig. 16, in
Sec. V.
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