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We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density
wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the
dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 − ε)-dimensional
momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW
critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized
to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points
exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state
is realized for small ε, where not only time but also different spatial coordinates develop distinct anomalous
dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are
deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of
incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW
critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions
as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group
scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the
coupling at the SDW critical point whereas it screens at the CDW critical point.
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I. INTRODUCTION

Quantum phase transitions commonly arise in a wide range
of strongly correlated metals such as high-Tc cuprates, iron
pnictides, and heavy-fermion compounds [1–7]. Proximity of
metals to symmetry-broken phases creates non-Fermi-liquid
states near quantum critical points through the coupling
between soft particle-hole excitations and the order parameter
fluctuations. At the critical point, the low-energy excitations
near the Fermi surface strongly damp the order parameter
fluctuations which, in turn, feed back to the dynamics of
low-energy fermions [8–22]. The theoretical challenge is
to understand the intricate interplay between the electronic
degrees of freedom and the critical fluctuations of the order
parameter. In two space dimensions, the metallic quantum
critical points remain largely ill understood due to strong
coupling between itinerant electrons and the collective modes.

In chiral non-Fermi liquids, strong kinematic constraints
protect critical exponents from quantum corrections beyond
one loop, even though it is a strongly coupled theory in
two space dimensions [23]. However, such nonperturbative
constraints are unavailable for nonchiral systems in general.
Therefore, it is of interest to find perturbatively accessible
non-Fermi liquids which can be understood in a controlled
way. Various deformations of theoretical models have been
considered to obtain perturbative control over quantum fluctua-
tions. An introduction of a large number of species of fermions
fails to weaken the strong quantum fluctuations in the presence
of a Fermi surface [24–27]. To tame quantum fluctuations,
one can use a dimensional regularization scheme where the
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dimension of space is increased with the codimension of
the Fermi surface fixed to be 1 [28–30]. This scheme has
the merit of preserving a nonvanishing density of states at
the Fermi surface. However, the increase in the dimension
of Fermi surface beyond 1 results in a loss of emergent
locality in the momentum space [31], which is an example of
ultraviolet/infrared (UV/IR) mixing [32]. Consequently, the
size of the Fermi surface enters in the low-energy scaling
of physical quantities which are insensitive to the size of
the Fermi surface in the original two-dimensional theory.
An alternative strategy is to reduce the density of states of
the collective mode [33,34] or the fermions [35–37]. This is
achieved either by modifying the dispersion or embedding
the one-dimensional Fermi surface in a higher-dimensional
space. In the latter “codimensional” regularization scheme, one
can preserve locality and avoid UV/IR mixing by introducing
a nodal gap, which leaves behind a one-dimensional Fermi
surface embedded in general d dimensions [36,37]. Weakly
interacting non-Fermi liquids become accessible near the
upper critical dimension, where the deviation from the upper
critical dimension, ε, becomes a small parameter.

In a recent work [37], the spin density wave critical point
was studied in metals with fourfold rotational (C4) symmetry
based on the codimensional regularization scheme. From one-
loop renormalization group (RG) analysis, a non-Fermi-liquid
state was found at the infrared (IR) fixed point below three
dimensions. Although interactions are renormalized to zero at
low energies, an emergent nesting of Fermi surface and the
boson velocity that flows to zero in the low-energy limit en-
hance quantum fluctuations. A balance between the vanishing
coupling and the IR singularity caused by the dynamically
generated quasilocality results in a stable non-Fermi liquid
for small ε. Here quasilocality is different from a completely
dispersionless spectrum of the collective mode [38,39]. Instead
it refers to the fact that the velocity of the collective mode
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FIG. 1. A schematic phase diagram for a density wave transition
in metals with the C2 symmetry. Here DW = density wave and
FL = Fermi liquid. T∗ (dashed line) is a temperature scale which
separates the C2-symmetric phase at low temperatures from the C4-
symmetric phase at high temperatures. T∗ is a crossover when C4 is
explicitly broken, whereas it becomes a phase transition line when
C4 is spontaneously broken. Either way, the quantum critical point
for the density wave transition is described by the same theory that
respects only C2 symmetry. TDW (solid line) is the temperature scale
below which the system develops a long-range density wave order.
ξ−1 (dotted line) is the inverse correlation length of the density wave
fluctuations in the paramagnetic Fermi liquid. The dome around the
critical point represents a potential secondary ordered phase that can
appear if the critical point is unstable.

measured in the unit of the Fermi velocity flows to zero in the
low-energy limit.

The emergent nesting is a consequence of interaction
which tends to localize particles in certain directions in
real space. However, the effect of the interactions is rather
limited in the presence of the C4 symmetry, which constrains
the x and y components of momentum to scale identically.
Because the deviation from perfect nesting flows to zero only
logarithmically in length scale [20,21,26,37,39], the Fermi
surface nesting becomes noticeable only when the momentum
is exponentially close to the hot spots. The situation is different
when the C4 symmetry is explicitly or spontaneously broken
to twofold rotational (C2) symmetry [40–48]. If the system
undergoes a continuous density wave transition in metals with
the C2 symmetry [49–53], a new type of non-Fermi can emerge
at the quantum critical point. Because different components
of momentum receive different quantum corrections, the
system can exhibit a stronger dynamical nesting. In this
paper, we study the scaling properties of the quantum critical
points associated with the spin density wave (SDW) and
charge density wave (CDW) transitions in metals with the
C2 symmetry (see Fig. 1).

The paper is organized as follows. In Sec. II, we introduce
the low-energy effective theory that describes the density wave
critical points in metals with the C2 symmetry. We take advan-
tage of the formal similarities between the SDW and CDW crit-
ical points to formulate a unified approach to both cases. Here
we employ the co-dimensional regularization scheme, where
the one-dimensional Fermi surface is embedded in 3 − ε space
dimensions. In Appendix A, we outline the RG procedure,

and derive the general expressions for the critical exponents
and the beta functions. In Sec. III, we show that a stable
non-Fermi-liquid fixed point is realized at the SDW critical
point slightly below three dimensions. In the low-energy limit,
not only frequency but also different momentum components
acquire anomalous dimensions, resulting in an anisotropic
non-Fermi liquid. We compute the critical exponents that
govern the anisotropy, and other critical exponents to the
leading order in ε. In the low-energy limit, the energy of the
collective mode disperses with different powers in different
momentum directions. Furthermore, the Fermi surface near
the hot spots connected by the SDW vector is deformed to a
universal power-law shape. The algebraic nesting is stronger
compared to the C4 symmetric case where the Fermi surface
is deformed only logarithmically. It is also shown that a
component of the boson velocity, which flows to zero at the
one-loop order, flows to a nonzero value which is order of ε1/3

due to a two-loop correction. The nonzero but small velocity
enhances higher-loop diagrams. Despite the enhancement,
higher-loop corrections are systematically suppressed in the
small-ε limit, and the ε expansion is controlled. Section IV
is devoted to the CDW critical point. Although the system
flows to a stable marginal Fermi liquid in three dimensions,
it flows out of the perturbative window in the low-energy
limit for any nonzero ε. In Sec. V, we conclude with a
summary.

II. THE MODEL

In this section we introduce the minimal model for the
quantum critical point associated with the spin and charge
density wave transitions in metals with the C2 symmetry. A
rectangular lattice with anisotropic hoppings in the x̂ and ŷ

directions gives an anisotropic Fermi surface as is shown
in Fig. 2(a). At a generic filling, the Fermi surface is not
nested, and weak interactions do not produce density wave
instabilities. Here we assume that there exists a microscopic
Hamiltonian with a finite strength of interaction that drives a
spin or charge density wave transition in the C2-symmetric
metal. We consider a commensurate density wave with wave
vector �Qord which satisfies 2 �Qord = 0 modulo the reciprocal
vectors. The specific choice of �Qord and the shape of the Fermi
surface is unimportant for the low-energy description of the
quantum critical point. The order parameter fluctuations are
strongly coupled with electrons near a finite number of hot
spots which are connected to each other through the primary
wave vector �Qord. The hot spots are represented as (red)
dots in Fig. 2(b). In the ordered state, the Fermi surface is
reconstructed [see Fig. 2(c)] due to a gap that opens up in the
single-particle excitation spectrum near the hot spots.

We study the universal properties of the critical points
within the framework of low-energy effective field theory that
is independent of the microscopic details. A spin-fermion
model is the minimal theory that describes the interaction
between the collective mode and the itinerant electrons [20,21].
In the minimal model, we focus on the vicinity of the hot spots
and consider interactions of the electrons near the hot spots
with long-wavelength fluctuations of the order parameter. At
low energies, we can ignore the Fermi surface curvature and
use linearized electronic dispersions around the hot spots. We
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FIG. 2. (a) Anisotropic Fermi surface in two space dimensions. (b) At the critical point, density wave fluctuations induce strong scatterings
between electrons near the hot spots denoted by the (red) dots. (c) Reconstructed Fermi surface in the ordered phase.

emphasize that linearizing the dispersion is not equivalent to
taking the one-dimensional limit because the collective modes
scatter electrons across the hot spots whose Fermi velocities

are not parallel to each other. Due to the similarities between
the SDW and CDW critical points, we introduce a general
action which is applicable to both cases,

S =
Nf∑
j=1

Nc∑
s=1

2∑
l=1

∑
m=±

∫
d3k

(2π )3
ψ∗

l,m,j,s(k)(ik0 + �vl,m · �k)ψl,m,j,s(k) + 1

4

∫
d3q

(2π )3

(
q2

0 + c2
xq

2
x + c2

yq
2
y

)
Tr[�(−q)�(q)]

+ g̃√
Nf

Nf∑
j=1

2∑
l=1

Nc∑
s,s ′=1

∫
d3k

(2π )3

d3q

(2π )3
[ψ∗

l,+,j,s(k + q)�s,s ′ (q)ψl,−,j,s ′ (k) + H.c.]

+ 1

4

∫
d3q1

(2π )3

d3q3

(2π )3

d3q3

(2π )3
{̃u1Tr[�(−q1 + q2)�(q1)]Tr[�(−q3 − q2)�(q3)]

+ ũ2Tr[�(−q1 + q2)�(q1)�(−q3 − q2)�(q3)]}. (1)

Here ψl,m,j,s(k) describe electrons with momenta near the hot spots, where (l,m) with l = 1,2 and m = ± labels the four hot
spots as shown in Fig. 2(b). j = 1,2, . . . ,Nf and s = 1,2, . . . ,Nc represent a flavor index and the spin, respectively. The SU(2)
spin is generalized to SU(Nc). The parameter Nf is an extra flavor which can arise from degenerate bands with the SU(Nf )
symmetry. �k is the two-dimensional momentum that measures a deviation from the hot spots. �vl,m is the Fermi velocity at each
hot spot: �v1,+ ≡ (vx,vy) = −�v2,+, �v1,− ≡ (vx,−vy) = −�v2,−. If the ordering wave vector happens to coincide with 2 �KF ( �KF

being a Fermi vector), vx vanishes and one needs to include the local curvature of the Fermi surface [54,55]. In this paper, we
consider the generic case with vx,vy > 0, where the hot spots connected by the ordering wave vector are not pre-nested. The
Nc × Nc matrix field �(q) represents the density wave mode of frequency q0 and momentum �Qord + �q. The boson field satisfies
�†(q) = �(−q) because 2 �Qord = 0 [56]. The matrix field can be written as

�(q) =
⎧⎨⎩

�φ(q) · �τ , for SDW,√
2
Nc

φ(q)INc
, for CDW,

(2)

where τ (α) is the αth generator of SU(Nc) in the fundamental representation, and INc
is the Nc × Nc identity matrix. τ (α) and

INc
represent the spin and charge vertices, respectively. We choose the normalization Tr(τ (α)τ (β)) = 2δαβ for the τ matrices. For

Nc = 2 and 3 in the SDW case and for any Nc in the CDW case, ũ1 and ũ2 are equivalent, and we can set ũ2 = 0 without loss of
generality. For the CDW critical point, both Nf and Nc play the same role, and the physics depends only on the total number of
electron species, Ñf = NcNf .
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Some parameters in Eq. (1) can be absorbed into scales of momentum and fields. We scale (kx,ky) �→ ( kx

cx
,
ky

vy
) and (�,ψ) �→√

cxvy(�,ψ) to rewrite the action as

S =
Nf∑
j=1

Nc∑
s=1

2∑
l=1

∑
m=±

∫
d3k

(2π )3
ψ∗

l,m,j,s(k)[ik0 + El,m(�k)]ψl,m,j,s(k) + 1

4

∫
d3q

(2π )3

(
q2

0 + q2
x + c2q2

y

)
Tr[�(−q)�(q)]

+ g0√
Nf

Nf∑
j=1

2∑
l=1

Nc∑
s,s ′=1

∫
d3k

(2π )3

d3q

(2π )3
[ψ∗

l,+,j,s(k + q)�s,s ′ (q)ψl,−,j,s ′ (k) + H.c.]

+ 1

4

∫
d3q1

(2π )3

d3q2

(2π )3

d3q3

(2π )3
{u1;0Tr[�(−q1 + q2)�(q1)]Tr[�(−q3 − q2)�(q3)]

+ u2;0Tr[�(−q1 + q2)�(q1)�(−q3 − q2)�(q3)]}. (3)

The rescaled dispersions are E1,+(�k) = −E2,+(�k) = vkx + ky and E1,−(�k) = −E2,−(�k) = vkx − ky , where v ≡ vx

cx
and c ≡ cy

vy

represent the relative velocities between electron and boson in the two directions. The couplings are also rescaled to g0 ≡ g̃√
cxvy

and ui;0 ≡ ũi

cxvy
.

The (2 + 1)-dimensional theory is now generalized to a (d + 1)-dimensional theory which describes the one-dimensional
Fermi surface embedded in d-dimensional momentum space. Following the formalism in Ref. [37], we express Eq. (3) in
the basis of spinors �+,j,s(k) = (ψ1,+,j,s(k),ψ2,+,j,s(k))T and �−;j ;s(k) = (ψ1,−;j ;s(k), − ψ2,−;j ;s(k))T , and add (d − 2) extra
codimensions to the Fermi surface,

S =
Nf∑
j=1

Nc∑
s=1

∑
n=±

∫
dk�̄n,j,s(k)(iK ·  + iεn(�k)γd−1)�n,j,s(k) + 1

4

∫
dq

(|Q|2 + q2
x + c2q2

y

)
Tr[�(−q)�(q)]

+ i
g0√
Nf

Nf∑
j=1

Nc∑
s,s ′=1

∫
dkdq[�̄+,j,s(k + q)γd−1�s,s ′ (q)�−,j,s ′ (k) − H.c.]

+ 1

4

∫
dq1dq2dq3{u1;0Tr[�(−q1 + q2)�(q1)]Tr[�(−q3 − q2)�(q3)] + u2;0Tr[�(−q1 + q2)�(q1)�(−q3 − q2)�(q3)]},

(4)

where k ≡ (K,�k) and dk ≡ dd+1k
(2π)d+1 . The two-dimensional vectors on the plane of the Fermi surface are denoted as �k = (kx,ky),

while K = (k0,k1, . . . ,kd−2) denotes (d − 1)-dimensional vectors with k1, . . . ,kd−2 being the newly added codimensions. We
collect the first (d − 1) γ matrices in  = (γ0,γ1, . . . ,γd−2). The conjugate spinor is defined by �̄n,j,s = �

†
n,j,sγ0. The dispersions

of the spinors along the �k direction are inherited from the two-dimensional dispersion, ε±(�k) = vkx ± ky . It is easy to check that
we recover Eq. (3) in d = 2 with γ0 = σy and γ1 = σx , where σi are Pauli matrices. The theory in general dimensions interpolates
between the two-dimensional metal and a semimetal with a line node in three dimensions [57,58]. The action is invariant under
U (1) × SU(Nc) × SU(Nf ), which are associated with the particle number, spin, and flavor conservations, respectively. The
theory is also invariant under time reversal, inversion, and SO(d − 1) rotations in K.

The engineering scaling dimensions of the (d + 1) momentum, the fields, and the couplings are

[K] = 1, [kx] = 1, [ky] = 1,

[�n,j,s] = − 1
2 (d + 2), [�] = − 1

2 (d + 3), [v] = 0, (5)

[c] = 0, [g0] = 1
2 (3 − d), [u0] = 3 − d.

Classically, frequency and all momentum components have the same scaling dimension. The upper critical dimension is d = 3
at which all the couplings in the theory are dimensionless at the Gaussian fixed point. For the RG analyses it is convenient to
work with the dimensionless couplings

g = μ−(3−d)/2g0, ui = μ−(3−d)ui;0, (6)

and the ratios χi = ui/c. Here μ is a scale at which the renormalized couplings are to be defined. We apply the field theoretic
RG based on a perturbative expansion in ε ≡ 3 − d.

From the action in Eq. (4), the quantum effective action is computed perturbatively in the couplings. The logarithmic
divergences that arise at the upper critical dimension manifest themselves as poles in ε. Requiring the renormalized quantum

195135-4



ANISOTROPIC NON-FERMI LIQUIDS PHYSICAL REVIEW B 94, 195135 (2016)

effective action to be analytic in ε, we add counterterms of the form

SCT =
Nf∑
j=1

Nc∑
s=1

∑
n=±

∫
dk�̄n,j,s(k)[iA1K ·  + i(A2vkx + nA3ky)γd−1]�n,j,s(k)

+ 1

4

∫
dq

(
A4|Q|2 + A5q

2
x + A6c

2q2
y

)
Tr[�(−q)�(q)]

+ A7μ
(3−d)/2 ig√

Nf

Nf∑
j=1

Nc∑
s,s ′=1

∫
dkdq[�̄+,j,s(k + q)γd−1�s,s ′ (q)�−,j,s ′ (k) − H.c.]

+ μ(3−d)

4

∫
dq1dq2dq3{A8u1Tr[�(−q1 + q2)�(q1)]Tr[�(−q3 − q2)�(q3)].

+ A9u2Tr[�(−q1 + q2)�(q1)�(−q3 − q2)�(q3)]}, (7)

with Ai ≡ Ai(v,c,g,u,ε) = ∑∞
m=1 Zi,m(v,c,g,u)ε−m. The counterterms are chosen to cancel the poles in ε based on the minimal

subtraction scheme. Due to the lack of full rotational symmetry in the (K,�k) space and the C4 symmetry in the (kx,ky) plane, the
kinetic terms are renormalized differently in the K, kx , and ky directions, respectively. Therefore, K, kx , and ky can have different
quantum scaling dimensions. The general expressions for the beta functions and critical exponents are derived in Appendix A.
The results are summarized in Eqs. (A10)–(A20).

III. SPIN DENSITY WAVE CRITICALITY

We have introduced the minimal theories for the SDW and CDW critical points. Despite the similarities between the two
theories, the behaviors of the two are quite different. The difference originates from the non-Abelian and Abelian nature of the
Yukawa vertex in Eq. (2) for the SDW and CDW theories, respectively. In this section, we will focus on the SDW case, and return
to the CDW case in Sec. IV.

A. One loop

In this subsection we present the one-loop analysis for the SDW critical point. From the one-loop diagrams shown in Fig. 3,
we obtain the following counterterms (see Appendix B for details of the calculation),

Z1,1 = −
(
N2

c − 1
)

4π2NcNf

g2h1(v,c), Z2,1 =
(
N2

c − 1
)

4π2NcNf

g2h2(v,c), Z3,1 = −
(
N2

c − 1
)

4π2NcNf

g2h2(v,c),

Z4,1 = − 1

8π

g2

v
, Z5,1, Z6,1 = 0, Z7,1 = − 1

8π3NcNf

g2vh3(v,c), (8)

Z8,1 = N2
c + 7

2π2
χ1 + 2N2

c − 3

π2Nc

χ2 + 3
(
N2

c + 3
)

2π2N2
c

χ2
2

χ1

, Z9,1 = 6

π2
χ1 + 2

(
N2

c − 9
)

2π2Nc

χ2 ,

where

h1(v,c) =
∫ 1

0
dx

√
1 − x

c2 + x[1 − (1 − v2)c2]
, h2(v,c) = c2

∫ 1

0
dx

√
1 − x

{c2 + x[1 − (1 − v2)c2]}3
,

h3(v,c) =
∫ 2π

0
dθ

∫ 1

0
dx1

∫ 1−x1

0
dx2

[
1

ζ (θ,x1,x2,v,c)
− v2 sin(2θ )

ζ 2(θ,x1,x2,v,c)

]
(9)

with

ζ (θ,x1,x2,v,c) = 2v2[x1 sin2(θ ) + x2 cos2(θ )] + (1 − x1 − x2)

[
sin2

(
θ + π

4

)
+ c2v2 cos2

(
θ + π

4

)]
. (10)
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From Eqs. (A10)–(A20) and (8), we obtain the one-loop beta functions for the SDW critical point,

∂�v = zτg
2

16π

[
1 − 4

(
N2

c − 1
)

πNcNf

v[h1(v,c) + h2(v,c)]

]
, (11)

∂�c = −zτg
2c

16πv

[
1 − 4

(
N2

c − 1
)

πNcNf

v[h1(v,c) − h2(v,c)]

]
, (12)

∂�g = zτg

[
ε

2
− g2

32πv

(
1 + 4

(
N2

c − 1
)

πNcNf

v[h1(v,c) + h2(v,c)]

)
+ g2vh3(v,c)

8π3NcNf

]
, (13)

∂�χ1 = zτχ1

[(
ε − g2

8πv

)
−

(
N2

c + 7

2π2
χ1 + 2N2

c − 3

π2Nc

χ2 + 3
(
N2

c + 3
)

2π2N2
c

χ2
2

χ1

)]
, (14)

∂�χ2 = zτχ2

[(
ε − g2

8πv

)
−

(
6

π2
χ1 + N2

c − 9

π2Nc

χ2

)]
. (15)

Now we explain the physical origin of each term in the
beta functions based on the results obtained in Appendix B.
The boson self-energy in Fig. 3(b) is proportional to |Q|2
and independent of �q = (qx,qy). This is because a boson with
any �q can be absorbed by a particle-hole pair on the Fermi
surface (see Fig. 4), and the energy spectrum of particle-hole
excitations is independent of �q. Vanishing Z5,1 and Z6,1 at
the one-loop order, along with the negative sign of Z4,1

(the counterterm and the quantum correction generated by
integrating out high-energy modes in the Wilsonian RG have
opposite signs), leads to a weakened dependence of the dressed
boson propagator on qx,qy relative to that of Q. As a result, cx

and cy are renormalized to smaller values. Because v = vx/cx

and c = cy/vy , as defined in Eqs. (1) and (3), the suppression
of cx and cy enhances v and suppresses c. This is shown in the
first terms on the right-hand side of Eqs. (11) and (12). The
K-dependent term (Z1,1) in the fermion self-energy in Fig. 3(a)
similarly reduces vx and vy . This reduces v and enhances c as
is shown in the second terms (∝h1) on the right-hand side
of Eqs. (11) and (12). Figure 3(a) also directly renormalizes
the Fermi velocity through Z2,1, Z3,1. The spin fluctuations
mix electrons from different hot spots. This reduces the angle
between the Fermi velocities at the hot spots connected by
�Qord, thereby improving the nesting between the hot spots.

As vx and vy are renormalized to smaller and larger values,
respectively, v and c are suppressed. This is embodied in the
third terms (∝h2) in the expressions for ∂�v and ∂�c.

FIG. 3. The one-loop Feynman diagrams. The solid (wiggly) line
represents the electron (boson) propagator.

The beta function for the Yukawa vertex includes two
different contributions. The second (∝1), third (∝h1), and
fourth (∝h2) terms on the right-hand side of Eq. (13) are the
contributions from the boson and fermion self-energies which
alter the scaling dimensions of spacetime and the fields. The
contributions from the self-energies weaken the interaction
at low energies because the virtual excitations in Figs. 3(a)
and 3(b) screen the interaction. This is reflected in the negative
contributions to the beta function. The last term (∝h3) in
Eq. (13) is the vertex correction (Z7,1) shown in Fig. 3(c).
Unlike the contributions from the self-energies, the vertex
correction antiscreens the interaction, which tends to make
the interaction stronger. The antiscreening is attributed to the
fact that the SDW vertices anticommute on average in the sense

N2
c −1∑

a=1

τ aτ bτ a = − 2

Nc

τb. (16)

This is analogous to the antiscreening effect which results in
the asymptotic freedom in non-Abelian gauge theories. The
antiscreening effect also has a significant impact at the two-
loop order as will be discussed in Sec. III B.

The beta functions for χi can be understood similarly. The
second terms in Eqs. (14) and (15) are the contributions from

FIG. 4. For any momentum �q = (qx,qy) on the xy plane, one can
always find particle-hole pairs with zero energy across two patches of
Fermi surface near hot spots. Since the fermionic dispersion is linear,
the spectrum of particle-hole pairs is independent of �q.
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FIG. 5. Projection of the RG flow in the space of (g,v,c) for
Nc = 2, Nf = 1, and ε = 0.01. The arrows point towards decreasing
energy. An IR fixed point given by Eq. (23) exists on the (g,v) plane
with c = 0. Inset: Projection of the RG flow in the (χ1 ,c) plane. c

(χ1 ) flows to zero logarithmically (algebraically).

the boson self-energy. The rest of the terms in these equations
are the standard vertex corrections (Z8,1, Z9,1) from Fig. 3(d).
We note that Fig. 3(e) does not contribute to the beta functions,
because it is UV finite at d = 3 [37].

In Fig. 5 we plot the one-loop RG flow of the four
parameters, (g,v,c,χ1 = u1/c) for Nc = 2 and Nf = 1. Here
we set u2 = 0. The RG flow shows the presence of a stable IR
fixed point with vanishing c and χ1 . In order to find the analytic
expression of the couplings at the fixed point for general Nc

and Nf , we expand hi(v,c) to the linear order in c with v ∼ 1,

h1(v,c) = π

2
− 2c + O(c2), h2(v,c) = 2c + O(c2),

h3(v,c) = 2π2

v(1 + v)
− 4π

v
c + O(c2). (17)

In the small-c limit, the beta functions become

∂�v = zτ

16π
g2

[
1 − 2

(
N2

c − 1
)

NcNf

v

]
, (18)

∂�c = − zτ

16π

g2c

v

[(
1 − 2

(
N2

c − 1
)

NcNf

v

)
+ 16

(
N2

c − 1
)

πNcNf

vc

]
,

(19)

∂�g = 1

2
zτg

[
ε− g2

16πv

{
1+2

(
N2

c − 1
)

NcNf

v− 8v

NcNf (1 + v)

}]
,

(20)

∂�χ1 = zτχ1

[(
ε − g2

8πv

)
−

(
N2

c + 7

2π2
χ1 + 2N2

c − 3

π2Nc

χ2

+ 3
(
N2

c + 3
)

2π2N2
c

χ2
2

χ1

)]
, (21)

∂�χ2 = zτχ2

[(
ε − g2

8πv

)
−

(
6

π2
χ1 + N2

c − 9

π2Nc

χ2

)]
. (22)

Although the antiscreening vertex correction [the last term in
Eq. (20)] tends to enhance the coupling, the screening from
the self-energies is dominant for any Nc � 2. As a result, g is
stabilized at a finite value below three dimensions. The stable
one-loop fixed point is given by

v∗ = NcNf

2
(
N2

c − 1
) ,

g2
∗ = 4πNcNf(

N2
c − 1

)ℵ(Nc,Nf )ε,

c∗ = 0,

χ1∗ = χ2∗ = 0, (23)

where

ℵ(Nc,Nf ) = 2
(
N2

c − 1
) + NcNf

2
(
N2

c − 3
) + NcNf

. (24)

At the one-loop order, the dynamical critical exponent zτ =
1 + ℵ(Nc,Nf )

2 ε becomes greater than 1, while zx retains its
classical value. However, zx deviates from 1 at the two-loop
order as will be shown later. It is remarkable that the quantum
scaling dimensions of the quartic vertices (ε − g2/8πv)
become negative at the fixed point, resulting in their irrelevance
even below three dimensions. This is due to the fact that the
effective spacetime dimension, deff = (2 − ε)zτ + zx + 1, at
the one-loop fixed point is greater than d = 4 − ε of the
classical theory. In this sense the upper critical dimension
for the quartic vertices is pushed down below 3 − ε at the
interacting fixed point [10,11].

We note that Eq. (23) is the fixed point of the full
beta functions in Eqs. (11)–(15), because the truncation of
higher-order terms in Eq. (17) becomes exact in the small-c
limit. Besides the Gaussian and stable non-Fermi-liquid fixed
points, there exist two unstable interacting fixed points as
listed in Table I. At the fixed point II, the fermions are

TABLE I. The four fixed points in the three-dimensional space of couplings. g∗ is defined in Eq. (23). The penultimate column lists the
couplings that need to be tuned to reach the fixed point (besides the mass that has been tuned to reach the critical point).

χ1 χ2 g Relevant deformation State

I 0 0 0 g, χ1 , χ2 Free fermion and boson
II 2π2ε

N2
c +7

0 0 g, χ2 Free fermion + Wilson-Fisher

III − 2π2[ℵ(Nc,Nf )−1]ε

N2
c +7

0 g∗ χ1 Unstable non-Fermi liquid

IV 0 0 g∗ None Stable non-Fermi liquid
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FIG. 6. RG flow in the χ1 -χ2 plane with Nc = 4,Nf = 1, and
ε = 0.2. (a) In the subspace of g = 0, there are two unstable fixed
points at χ1 = 0 and χ1 ∼ ε with χ2 = 0. The former is the Gaussian
fixed point, while the latter is the Wilson-Fisher fixed point. (b) In
the subspace of g = g∗ and v = v∗, there exist an unstable non-Fermi
liquid at χ1 ∼ −ε, and a stable non-Fermi liquid at χ1 = 0 with
χ2 = 0. The arrows in both plots point towards increasing length
scale, and the (red) dots indicate the fixed points.

decoupled from the bosons, and the dynamics of the boson is
controlled by the Wilson-Fisher fixed point. Here g and χ2 are
relevant perturbations. The other fixed point (III) is realized at

(χ1 ,χ2) = (− 2π2[ℵ(Nc,Nf )−1]
N2

c +7 ε,0) with the same values of g,c,v

as in Eq. (23). A deviation of χ1 from III is the relevant
perturbation, which takes the flow either towards the stable
fixed point (IV) at the origin of (χ1,χ2) plane, or towards
strong coupling where χ1 becomes large and negative. The
full RG flow in the (χ1,χ2) plane at fixed g and v is shown in
Fig. 6.

We now focus on the stable fixed point (IV), which is
realized at the critical point without further fine tuning. At
the fixed point the electron and boson propagators satisfy the
scaling forms,

Gl,m(k) = 1

|ky |1−2η̃ψ
Gl,m

(
kx

|ky |zx
,

K
|ky |zτ

)
, (25)

D(q) = 1

|qy |2−2η̃φ
D

(
qx

|qy |zx
,

Q
|qy |zτ

)
. (26)

The anomalous dimensions that dictate the scaling of the two-
point functions are deduced from Eq. (A5), and they are given
by combinations of ηψ , ηφ , zτ , and zx :

η̃ψ = 2zτ + zx − 3

2
+ ηψ,

η̃φ = 2zτ + zx − 3

2
+ ηφ. (27)

At the one-loop order, η̃ψ = 0 and η̃φ = 0. Gl,m(x,y) and
D(x,y) are universal functions of the dimensionless ratios
of momentum and frequency. Due to the nontrivial dynam-
ical critical exponent, the single-particle excitations are not
well defined, and the electrons near the hot spots become
non-Fermi liquid below three dimensions. Since at one-loop
order the critical exponents are solely determined by the
Yukawa coupling and the velocities, the unstable fixed point
III is also a non-Fermi liquid.

The velocity c which measures the boson velocity along
the direction of the ordering vector with respect to the Fermi
velocity flows to zero logarithmically. The vanishing velocity
leads to enhanced fluctuations of the collective mode at low
energies, which can make higher-loop corrections bigger than
naively expected. This can, in principle, pose a serious threat to
a controlled expansion. In order to see whether the perturbative
expansion is controlled beyond one loop, one first needs to
understand how higher-loop corrections change the flow of
c. In the following two subsections, we show that c flows
to a nonzero value which is order of ε1/3 due to a two-loop
correction, and the perturbative expansion is controlled.

B. Beyond one loop

1. Estimation of general diagrams

The vanishing boson velocity at the one-loop fixed point
can enhance higher-order diagrams which are nominally
suppressed by the small coupling g2 ∼ ε. An L-loop diagram
with Vg Yukawa vertices and Vu quartic vertices takes the form
of

F (pi ; v,c,g,χ ; ε,Vg,Vu,L)

∝ gVgχVucVu

∫ [
L∏

i=1

dp′
i

]
If∏
l=1

×
(

1

 · Kl + γd−1[vkl,x + nlkl,y]

)

×
Ib∏

m=1

(
1

|Qm|2 + q2
m,x + c2q2

m,y

)
. (28)
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FIG. 7. A three-loop diagram which can be enhanced by up to
1/c2. This diagram does not include any loop that is solely made
of boson propagators. Nonetheless, this can exhibit an enhancement
in powers of 1/c as the fermionic loop plays the role of a bosonic
quartic vertex (represented by shaded circles), which is not suppressed
at large momentum.

Here pi (p′
i) are external (internal) momenta, and ki and qi

are linear combinations of pi and p′
i . χ represents either χ1 or

χ2 , whose difference is not important for the current purpose.
If and Ib are the numbers of the internal electron and boson
propagators, respectively. nl is either + or − depending on the
hot spot index carried by the lth electron propagator.

When c is zero, some loop integrations can diverge as the
dependence on qy drops out in the boson propagator. This
happens in the bosonic loops, which are solely made of boson
propagators. For example, the y component of the internal
momentum in Fig. 3(d) is unbounded at c = 0. For a small but
nonzero c, the UV divergence is cut off at a scale proportional
to 1/c. As a result, the diagram is enhanced by 1/c. This is
why Z8,1 and Z9,1 in Eq. (8) are order of χ not χc.

Such enhancement can also arise if bosonic loops are
formed out of dressed vertices and dressed propagators. Let
us first consider the case with dressed vertices. Superficially,
the diagram in Fig. 7 does not have any boson loop. However,
the fermion loop can be regarded as a quartic boson vertex
which is a part of a bosonic loop. Since the quartic vertex
is dimensionless at the tree level in 3 dimensions, it is not
suppressed at large momentum. Therefore, the diagram can
exhibit an enhancement of 1/c2 as the boson propagators lose
dispersion in the small-c limit.

Similarly, boson loops made of dressed boson propagators
can exhibit enhancements. However, the situation is a bit more
complicated in this case. Since boson self-energy has scaling
dimension 2, it can diverge quadratically in the momentum
that flows through the self-energy. Therefore, there can be an
additional enhancement of 1/c2 in the small-c limit because
the typical y component of internal momentum is order of
1/c in the boson loops. In order to account for the additional
enhancements from the boson self-energy more precisely, it is
convenient to divide diagrams for boson self-energy into two
groups. The first group includes those diagrams which diverge
in the large-qy limit with order of 1 coefficient as c goes to
zero. Potentially, the diagrams in Fig. 8 have unsuppressed
dependence on qy because the external momentum must go
through at least one fermion propagator whose dispersion is
not suppressed in the small-c limit. Each boson self-energy of
the first kind in bosonic loops contributes a factor of at most
1/c2. The second group includes those diagrams that are either
independent of qy for any c, or become independent of qy as c

goes to zero. For example, the one-loop self-energy in Fig. 3(b)
is independent of qy . The diagrams in Fig. 9 depend on qy

through the combination cqy because the external momentum
can be directed to go through only boson propagators which are
independent of y momentum in the small-c limit. Therefore,

FIG. 8. Examples of (amputated) boson self-energy which can
potentially diverge with an order of 1 coefficient in the large-qy limit.

the self-energies in the second group do not contribute an
additional enhancement of 1/c.

Owing to the aforementioned reasons a general diagram
can be enhanced at most by a factor of c−Lb−2N� , where Lb is
the number of loops solely made of bosonic propagators once
fermion loops are replaced by the corresponding effective φ2n

vertices, and N� is the total number of boson self-energy of the
first kind in bosonic loops. Therefore, we estimate the upper
bound for the magnitude of general higher-loop diagrams to
be

F (pi ; v,c,g,χ ; ε,Vg,Vu,L,Lb,N�)

=
(

g2

c

)Vg/2

χVuc(E−2)/2+(L−Lb−2N�)f (pi ; v,c; ε,L),

(29)

where we have used the relation L = (Vg + 2Vu + 2 − E)/2
with E being the number of external legs. The function
f (pi ; v,c; ε,L) is regular in the small-c limit. We emphasize
that Eq. (29) is an upper bound in the small-c limit. The actual
magnitudes may well be smaller by positive powers of c. For
example, Fig. 10(a) is nominally order of g4/c in the small-c
limit according to Eq. (29). However, an explicit computation
shows that it is order of g4. Currently, we do not have a full
expression for the actual magnitudes of general diagrams in
the small-c limit. Our strategy here is to use the upper bound,
which is sufficient to show that the perturbative expansion is
controlled.

2. Two-loop correction

The ratio g2/c which diverges at the one-loop fixed point
may spoil the control of the perturbative expansion. However,
such a conclusion is premature because higher-loop diagrams

FIG. 9. Examples of (amputated) boson self-energy diagrams
whose dependencies on qy are suppressed by c. This can be seen from
that fact that the external momentum can be directed to go through
only boson propagators which are independent of y momentum in
the small-c limit. Consequently, the self-energy depends on qy only
through cqy .
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FIG. 10. The diagrams for the two-loop boson self-energy. The
small circles in (c) and (d) denote the one-loop counterterms.

that are divergent at the one-loop fixed point can feed back to
the flow of c and stabilize it at a nonzero value. As long as c

is not too small, higher-loop diagrams can be still suppressed.
In order to include the leading quantum correction to c, we
first focus on the two-loop diagrams for the boson self-energy
shown in Fig. 10.

An explicit calculation in Appendix B 2 shows that only
Fig. 10(a) renormalizes c in the limit c → 0. Other two-loop
diagrams are suppressed by additional factors of c, g, or χi

compared to Fig. 10(a). Because stabilization of c at a nonzero
value can occur only through two or higher loop effect, the
nonzero value of c must be order of εb with b > 0. The two-
loop diagram in Fig. 10(a) is proportional to g4q2

y , which is
strictly smaller than the upper bound in Eq. (29) by a factor of
c. Its contribution to Z6,1 is given by

Z6,1 = − 8

NcNf

g4

v2c2
[h6(v) + O(c)], (30)

where h6(v) is defined in Eq. (B35), and a numerical plot
is presented in Fig. 11. The extra factor of 1/c2 in Eq. (30)

FIG. 11. Plot of h6(v) as a function of v. The filled circles are
values of h6(v) that are obtained by numerical integration.

FIG. 12. Projection of the RG flow in the (g,v,c) space for Nc =
2, Nf = 1, and ε = 0.01. The fixed point in Fig. 5 is modified by the
two-loop correction [Fig. 10(a)] such that c flows to a nonzero value
as shown in Eq. (37). Inset: Projection of the RG flow in the (χ1 ,c)
plane. Although χ1 still flows to zero, c does not.

originates from the fact that Z6,1 is the multiplicative renor-
malization to the boson kinetic term, c2q2

y . Since the quantum
correction from the two-loop diagram does not vanish in the
small-c limit, it is relatively large compared to the vanishingly
small classical action c2q2

y . Because Fig. 10(a) generates a
positive kinetic term at low energy, it stabilizes c at a nonzero
value. The noncommuting nature of the SDW vertex in Eq. (16)
is crucial for the stabilization of c. Without the antiscreening
effect, Eq. (30) would come with the opposite sign, and c

would flow to zero even faster by the two-loop effect. As we
will see, the two-loop diagram indeed suppresses c in the CDW
case, where there is no antiscreening effect.

The RG flow which includes the two-loop effect is shown
in Fig. 12 for Nc = 2 and Nf = 1. c flows to a small but
nonzero value in the low-energy limit, while the other three
parameters flow to values that are similar to those obtained
at the one-loop order. g/c becomes order of ε1/6 at the fixed
point as is shown in Fig. 13. To find the fixed point for general
Nc and Nf analytically, we analyze the beta functions in the
region where v ∼ 1 and 0 < c  1. The beta functions can be
written as an expansion in g/c, χi , and c,

∂�λ = λ

∞∑
l,m,n=0

J
(λ)
l,m,n(v,ε)

(
g

c

)2l

χm−1
i

cn−1, (31)

where λ represents a velocity or a coupling, and J
(λ)
l,m,n(v,ε)

are functions of v and ε. From general considerations some
J

(λ)
l,m,n(v,ε) can be shown to be zero [59]. To O((g/c)4c2,χ ) in

the small g/c,χ,c limit, the beta functions are given by

∂�v = zτ

16π
v

[
g2

v
− 2

(
N2

c − 1
)

NcNf

g2

]
, (32)

∂�c = − zτ

16π

g2c

v

[(
1 − 2

(
N2

c − 1
)

NcNf

v

)

+ 16
(
N2

c − 1
)
v

πNcNf

(
c − 8π2(

N2
c − 1

) g2h6(v)

v2c2

)]
, (33)
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FIG. 13. The ratio g/c as a function of ε obtained from the
numerical solution of the full beta functions in the low-energy limit for
Nf = 1 and Nc = 2. The filled circles are from the numerical solution
of the beta functions, and the straight line is a fit, g/c = 6.7ε1/6.

∂�g = 1

2
zτg

[
ε − g2

16πv

{
1 + 2

(
N2

c − 1
)

NcNf

v

− 8v

NcNf (1 + v)

(
1 − 2

π
(1 + v)c

)}]
, (34)

∂�χ1 = zτχ1

[(
ε − g2

8πv
− 8

NcNf

g4h6(v)

v2c2

)

−
(

N2
c + 7

2π2
χ1 + 2N2

c − 3

π2Nc

χ2 + 3
(
N2

c + 3
)

2π2N2
c

χ2
2

χ1

)]
,

(35)

∂�χ2 = zτχ2

[(
ε − g2

8πv
− 8

NcNf

g4h6(v)

v2c2

)
−

(
6

π2
χ1 + N2

c − 9

π2Nc

χ2

)]
. (36)

FIG. 14. The leading two-loop diagrams that generate bosonic
quartic interaction.

We note that J
(c)
1,1,1(v,ε), J

(c)
1,1,2(v,ε), J

(c)
2,1,0(v,ε), J

(c)
2,1,1(v,ε),

J
(c)
2,1,2(v,ε) = 0 in Eq. (33). This underscores the fact that the

actual magnitudes of the diagrams can be smaller than Eq. (29)
which is only the upper bound.

In the small-c limit, only the flows of c and χi are affected
by the two-loop diagram through the fourth term in Eq. (33)
and the third terms in Eqs. (35) and (36), respectively. While
c tends to decrease under the one-loop effect, the two-loop
correction enhances c due to the antiscreening produced by
the vertex correction. These opposite tendencies eventually
balance each other to yield a stable fixed point for c. At the
fixed point of v∗ ∼ O(1) and g2

∗ ∼ O(ε), the beta function for
c is proportional to −c + rε/c2 with a constant r > 0, such
that c flows to O(ε1/3) in the low-energy limit. This confirms
that g/c is O(ε1/6) at the fixed point.

The RG flow in the χ1-χ2 plane resembles Fig. 6 for small ε,
and the χi ’s remain irrelevant at the fixed point. The two-loop
diagrams in Fig. 14 will generate nonzero quartic couplings
which are at most order of O(g6/c2) in the beta function for χi .
This is no longer singular because g2 ∼ ε and c ∼ ε1/3 at the
fixed point. If the leading order term of O(g6/c2) survives, the
beta functions for χi have the form of −εχi + r ′g6/c2 with a
constant r ′. This suggests that χi is at most O(ε4/3) at the fixed
point. Other two-loop diagrams and higher-loop diagrams are
suppressed by additional powers of ε1/3 compared to the one-
loop diagrams and the two-loop diagram in Fig. 10(a), which
are already included. Therefore, the two-loop effect modifies
the fixed point as

v∗ = NcNf

2
(
N2

c − 1
) + O(ε1/3),

g2
∗ = 4πNcNf(

N2
c − 1

)ℵ(Nc,Nf )

[
ε − 16

N2
c − 1

(
2ℵ4(Nc,Nf )h6(v∗)

NcNf

)1/3

ε4/3

]
+ O(ε5/3),

c∗ = 4π

[
2ℵ(Nc,Nf )

NcNf

h6(v∗)

]1/3

ε1/3 + O(ε2/3),

χi;∗ = O(ε4/3). (37)

It is noted that O(εα) in the above equations represent the
upper bounds of the subleading terms. The actual subleading
terms may be smaller than the upper bound. For example, the
actual subleading correction to v∗ is O(ε2/3) because the O(c)
term in h1(v,c) + h2(v,c) is zero [see Eq. (17)].

Equations (A10)–(A13) along with Eq. (29) imply that the
anomalous dimensions at the fixed point can be expressed as

� =
∑

l,m,n=0

Al,m,n

(
g∗
c∗

)2l

χm
∗ cn

∗, (38)
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where � represents either zτ − 1,zx − 1,ηψ , or ηφ , and Al,m,n

are constants with A0,0,n = 0. Using the expressions of the
parameters at the fixed point [Eq. (37)], we compute the critical
exponents up to order ε4/3,

zτ = 1 + ℵ(Nc,Nf )

2
ε

− 8

(
2 + ℵ(Nc,Nf )

N2
c − 1

)(
2ℵ4(Nc,Nf )

NcNf

h6(v∗)

)1/3

ε4/3,

zx = 1 − 16

(
2ℵ4(Nc,Nf )

NcNf

h6(v∗)

)1/3

ε4/3, (39)

η̃ψ = 4

(
2ℵ4(Nc,Nf )

NcNf

h6(v∗)

)1/3

ε4/3,

η̃φ = 16

(
2ℵ4(Nc,Nf )

NcNf

h6(v∗)

)1/3

ε4/3.

The fixed point value of χi ;∗ does not affect the critical
exponents up to O(ε4/3) because a single φ4 vertex does not
contribute to any of the nine counterterms. Because zx differs
from one at the fixed point, the system develops an anisotropy
in the (kx,ky) plane.

C. Control of the perturbative expansion

In the previous subsection, we incorporated one particular
two-loop diagram which stabilizes the boson velocity at a
nonzero value in order to compute the critical exponents to
the order of ε4/3. A natural question is whether it is safe to
ignore other two-loop diagrams, and more generally whether
the perturbative expansion is under control for small ε. From
Eq. (37) we note that g2 ∼ c3 at the fixed point, and Eq. (29)
can be expressed in terms of c and χ ,

F (pi ; v,c,g,χ ; ε,Vg,Vu,L,Lb,N�)

= χVuc(E−2)/2+(L−Lb)+(Vg−2N�)f ′(pi ; v,c; ε,L). (40)

Here f ′(pi ; v,c; ε,L) is finite in the small-c limit. The expo-
nents of χ , c are non-negative because L � Lb and Vg > 2N�.
The latter inequality follows from the fact that any diagram
for boson self-energy of the first kind must contain at least
four Yukawa vertices. For a fixed E, new vertices cannot be
added without increasing either Vu, (L − Lb), or (Vg − 2N�).
Therefore, Eq. (40) implies that quantum corrections are
systematically suppressed by powers of c ∼ ε1/3 and χ � ε4/3

as the number of loops increases, and there exist only a
finite number of diagrams at each order. This shows that
other two-loop diagrams and higher-loop diagrams are indeed
subleading, and they do not modify the critical exponents in
Eq. (39) up to the order of ε4/3.

Subleading terms come in two ways. The first is from
the c expansions of hi(v,c) defined in Eq. (17). The second
is from higher-loop diagrams. For Zn,1 with n = 1,2,3,7,
two-loop diagrams are suppressed at least by ε5/3 according
to Eq. (40) because (L − Lb) � 1 and Vg − 2N� � 4 for
the fermion self-energy and the Yukawa vertex correction.
O(c2) terms in the expansion of hi(v,c) from the one-loop
diagrams are also at most order of ε5/3. For Z4,1, the one-loop
diagram does not contain any subleading term in c. According

FIG. 15. (a) The patches of Fermi surface near the hot spots are
deformed into a universal nonanalytic curve. (b) The hot spots become
algebraically nested near the hot spots.

to Eq. (40), higher-loop contributions to Z4,1 are at most
order of g4/c ∼ ε5/3. As noted earlier, the first nonvanishing
contributions to Z5,1 and Z6,1 arise at the two-loop order. In
Appendix B 2, we show that the leading order term in Z5,1

is at most order of g4c ∼ ε7/3. In contrast, Eq. (30) shows
that the leading order term in Z6,1 is g4/c2 ∼ ε4/3 which is
already included. The subleading terms are suppressed by
c,g2/c2 ∼ ε1/3. As discussed below Eq. (36), χi are at most
O(ε4/3) from two-loop contributions. However, χi ∼ ε4/3

cannot affect the critical exponents up to O(ε4/3) because a
single quartic vertex only renormalizes boson mass. Thus the
critical exponents in Eq. (39) are accurate up to O(ε4/3).

It is interesting to note that the perturbative expansion is
not simply organized by the number of loops. Instead, one
has to perform an expansion in terms of the couplings and the
boson velocity together. There are notable consequence of this
unconventional expansion. First, the perturbative expansion is
in power series of ε1/3. Second, not all diagrams at a given loop
play the same role; only one two-loop diagram [Fig. 10(a)] is
important for the critical exponents to the order of ε4/3.

D. Physical properties

In this section we discuss the physical properties of the non-
Fermi-liquid state that is realized at the SDW critical point. The
anomalous dimension of kx implies that the Fermi surface near
the hot spots are deformed into a universal curve,

ky ∼ sgn(kx)|kx |1/zx , (41)

as is illustrated in Fig. 15. The algebraic nesting of the Fermi
surface near the hot spots is in contrast to the C4-symmetric
case, where the emergent nesting is only logarithmic such that
ky ∼ kx/(ln kx) [21,26,37]. The electronic spectral function at
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TABLE II. Fixed point values of the critical exponents for Nc =
2,3 with Nf = 1.

Nc zτ zx η̃ψ η̃φ

2 1 + ε − 1.9ε4/3 1 − 1.4ε4/3 0.36ε4/3 1.4ε4/3

3 1 + 0.63ε − 0.68ε4/3 1 − 0.63ε4/3 0.16ε4/3 0.63ε4/3

the hot spot scales with frequency as

Al,m(ω) ∼ 1

ω(1−2η̃ψ )/zτ
, (42)

and the dynamical spin structure factor at momentum �Qord,

S(ω) ∼ 1

ω(2−2η̃φ )/zτ
. (43)

As one moves away from the hot spots or the ordering vector
in the x (y) directions, the electron spectral function and the
spin structure factor will exhibit incoherent peaks at frequency
ω ∼ |kx |zτ /zx and ω ∼ |ky |zτ depending on the direction of
momentum. In principle, all exponents zτ ,zx ,̃ηψ ,̃ηφ can
be determined from the angle resolved photoemission and
inelastic neutron scattering experiments. In Table II, we list the
exponents at the fixed point for (Nc,Nf ) = (2,1) and (3,1). It is
noted that zx becomes smaller than 1 below three dimensions,
which is consistent with the intuition that the interaction
enhances nesting. However, the fact that zx becomes negative
for ε = 1 and Nc = 2 should not be taken seriously, since
higher-order contributions need to be taken into account in
two dimensions.

We also estimate the contribution of electrons near the hot
spots to the specific heat and the optical conductivity following
the work by Patel et al. for the C4-symmetric model [38]. The
scaling dimension of the free energy density F is

[F] = zτ (d − 1) + 1 + zx. (44)

The current density Jμ has the dimension of [Jμ] = [F] −
[kμ]. Because kx and ky have different scaling dimensions,
the two diagonal elements of the optical conductivity have
different scaling dimensions,

[σxx] = zτ (1 − ε) + 1 − zx,

[σyy] = zτ (1 − ε) + zx − 1, (45)

at d = 3 − ε. The contribution of the hot spot electrons obeys
the hyperscaling because temperature or frequency provides a
cutoff for the momentum along the Fermi surface. As a result,
the size of the Fermi surface does not enter in the scaling
of the contributions from the hot spots. This is analogous to
the phenomenon where the thermodynamic responses from
inflection points obey the hyperscaling relation in non-Fermi
liquids where the Fermi surface is coupled with a �Qord = 0
critical boson [23]. As a result, the hot spot contribution to the
specific heat scales with temperature as

chot ∼ T 1−ε+ 1+zx
zτ , (46)

and the hot spot contributions to the optical conductivity scales
with frequency as

σ hot
xx (ω) ∼ ω1−ε+ 1−zx

zτ ,

σ hot
yy (ω) ∼ ω1−ε− 1−zx

zτ . (47)

Because zx < 1, the optical conductivity is greater along
the ordering vector than the perpendicular direction at low
frequency [60,61]. We emphasize that the anisotropy in
Eq. (47) arises from anisotropic spatial scaling, rather than
anisotropic carrier velocity [62,63]. Electrons away from
the hot spots are expected to violate the hyperscaling, and
contribute to the specific heat and the optical conductivity as
ccold ∼ kF T 2−ε and σ cold ∼ kF ω−ε , where kF is the size of
the Fermi surface. For small ε, the contributions from cold
electrons dominate the hot spot contributions.

Near three dimensions, there is no perturbative instability,
and the anisotropic non-Fermi is stable. However, near two
dimensions the non-Fermi-liquid state can become unstable
against other ordered phases. As far as the hot spot electrons
are concerned the anomalous dimensions of various suscep-
tibilities follow from those obtained in the C4 case. This is
because in the C4 theory the spin fluctuations do not mix the
hot spots related by the 90◦ rotation at the one-loop order.
As a result, the pairing and CDW vertices in the C4 theory are
enhanced in the same manner as in the C2 theory to the leading
order. The vertex correction is largest for a SU(2) pseudospin
singlet charge density wave, followed by the d-wave pairing
and pair density wave [37]. However, the actual instability
may be dominated by the d-wave pairing near two dimensions
because a lack of perfect nesting away from hot spots tends to
suppress CDW instability.

Here we have considered the case where the Fermi surface
with the C2 symmetry supports only four hot spots. If the C4

symmetry is broken weakly, one may have a Fermi surface
which has eight hot spots. Such systems are more closely
related to the case with the C4 symmetry [37]. However, the
Fermi velocity near four of the hot spots will be different from
the Fermi velocity near the remaining four hot spots due to
a lack of the C4 symmetry. It belongs to a universality class
which is distinct from both the C4-symmetric system and the
C2-symmetric system that is considered in the present paper.
It will be of interest to study this case in the future.

IV. CHARGE DENSITY WAVE CRITICALITY

In this section, we discuss the low-energy properties of the
CDW critical point. Since many aspects are similar to the SDW
case, we will highlight the differences between the two critical
points. The main differences arise from the commuting versus
noncommuting nature of the respective interaction vertices as
is shown in Eqs. (1) and (2). It is analogous to the difference
between the nematic and ferromagnetic critical points [64].

Since the CDW order parameter couples to the global U (1)
charge, the interaction vertex is diagonal in both the spin and
flavor space. As a result, all the counterterms and the critical
exponents for the CDW criticality depend on Nc and Nf only
through Ñf = NcNf . One can also set χ2 = 0 for any Nf and
Nc since the two quartic vertices are equivalent. As derived
in Appendix B, the counterterms resulting from the one-loop
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diagrams in Fig. 3 are

Z1,1 = − 1

4π2Ñf

g2h1(v,c), Z2,1 = 1

4π2Ñf

g2h2(v,c),

Z3,1 = − 1

4π2Ñf

g2h2(v,c), Z4,1 = − 1

8π

g2

v
,

Z5,1 = 0, Z6,1 = 0,

Z7,1 = 1

8π3Ñf

g2vh3(v,c), Z8,1 = 9

2π2
χ1 . (48)

Using the general expressions of the beta functions in
Appendix A, we obtain the one-loop beta functions for the
CDW critical point. As in the SDW case, the boson velocity
flows to zero in the low-energy limit at the one-loop order.
Therefore, we focus on the regime with small c where the
one-loop beta functions take the form

∂�v = zτ

16π
g2

[
1 − 2v

Ñf

]
, (49)

∂�c = − zτ

16π

c

v
g2

[(
1 − 2v

Ñf

)
+ 16vc

πÑf

]
, (50)

∂�g = zτ

2
g

[
ε − g2

16πv

{(
1 + 2v

Ñf

)
+ 8v

Ñf (1 + v)

(
1 − 2

π
(1 + v)c

)}]
, (51)

∂�χ1 = zτχ1

[(
ε − g2

8πv

)
− 9

2π2
χ1

]
. (52)

We note that the sign of Z7,1 for the CDW critical point is
opposite to that of the SDW critical point. This is due to the
fact that the three CDW vertices (identity matrix) that appear
in Fig. 3(c) are mutually commuting, while the SDW vertices
[SU(Nc) generators] are mutually anticommuting as shown
in Eq. (16). Consequently, the vertex correction screens the
interaction at the CDW critical point in contrast to the SDW
case. A stable one-loop fixed point arises at

v∗ = Ñf

2
,

g2
∗ = 4πÑf

Ñf + 2

Ñf + 6
ε,

c∗ = 0,

χ1;∗ = 8π2ε

9(Ñf + 6)
. (53)

To the leading order in ε, the critical exponents become

zτ = 1 + Ñf + 2

2(Ñf + 6)
ε, zx = 1, η̃ψ = 0, η̃φ = 0. (54)

Since the one-loop vertex correction screens the Yukawa
interaction in Eq. (51), the Yukawa coupling is not strong
enough to push the upper critical dimension for χ1 below
3 − ε, in contrast to the SDW case. As a result, χ1 remains
nonzero at the one-loop fixed point below three dimensions. It
is interesting to note that the weaker (better screened) Yukawa
coupling makes it possible for the quartic coupling to be

stronger at the CDW critical point as compared to the SDW
case.

We now investigate how the two-loop correction modifies
the flow of c. The two-loop diagram in Fig. 10 leads to

Z5,1 = 0, Z6,1 = 8

Ñf

g4

v2c2
h6(v) (55)

to the leading order in c. The modified beta functions for c and
χ1 are given by

∂�c = − zτ

16π

c

v
g2

[(
1 − 2v

Ñf

)
+ 16v

πÑf

(
c + 8π2g2h6(v)

v2c2

)]
,

(56)

∂�χ1 = zτχ1

[(
ε − g2

8πv
+ 8

Ñf

g4

v2c2
h6(v)

)
− 9

2π2
χ1

]
.

(57)

We note that the sign of Z6,1 in Eq. (55), which contributes
the fourth term in Eq. (56) and the third term in Eq. (57), is
opposite to that of Z6,1 for the SDW case in Eq. (30). This
is again due to the commuting CDW vertices in contrast to
the anticommuting SDW vertices in Eq. (16). Therefore the
two-loop diagram further reduces c for the CDW case, while it
stops c from flowing to zero for the SDW case. Since Eq. (49) is
not modified by the two-loop diagram, v flows to v∗ = Ñf /2,
irrespective of how the other parameters flow, as long as c

remains small. To understand the fate of the system in the
low-energy limit, it is useful to examine the flow of g,c,χ1
with fixed v = v∗,

∂�g = zτ

2
g

[
ε − g2

4πÑf

{
1 + 4

Ñf + 2

(
1 − Ñf + 2

π
c

)}]
,

(58)

∂�c = −32zτ

Ñ3
f

h6(Ñf /2)g2c2

(
Ñ2

f

32π2h6(Ñf /2)
+ g2

c3

)
, (59)

∂�χ1 = zτχ1

[(
ε − g2

4πÑf

+ 32

Ñ3
f

g4

c2
h6(Ñf /2)

)
− 9

2π2
χ1

]
.

(60)

The analysis of the beta functions is rather involved, and
the details are in Appendix C. Key elements of the final result
are summarized in Fig. 16. In three dimensions, the system
flows to a weakly coupled quasilocal marginal Fermi liquid if
the initial Yukawa coupling is smaller than the boson velocity
[below the dashed separatrix in Fig. 16(a)]. On the other hand,
the system flows to a strong-coupling regime as the boson
velocity is renormalized to zero when initial Yukawa coupling
is large [above the dashed separatrix in Fig. 16(a)]. Below
three dimensions, the boson velocity always flows to zero
within a finite RG time [Fig. 16(b)], and the theory becomes
nonperturbative. When the system flows to the strong-coupling
regime, there are several possibilities. First, the system may
still flow to a strongly interacting non-Fermi-liquid fixed point.
Second, c2 may become negative at low energies, which
results in a shift of the ordering vector, possibly towards
an incommensurate CDW ordering [66]. In this case, the
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FIG. 16. RG flow of g and c at the CDW critical point with
Ñ = 2 and v = v∗ = 1. (a) In d = 3 there is a fixed point at the
origin with a finite basin of attraction; for flows originating outside
the basin, c flows to zero after a finite RG time. The dashed line in (a)
denotes the separatrix which divides the flows to the stable quasilocal
marginal Fermi liquid (below the separatrix) from the flow toward
the nonperturbative regime (above the separatrix). (b) In d = 3 − ε,
c flows to zero after a finite RG time with a finite g. For the plot we
have chosen ε = 0.01.

commensurate CDW cannot occur without further fine tuning.
Third, the system may develop an instability toward other
competing order, such as superconductivity [67]. Finally, a
first-order transition is a possibility.

The difference between the SDW and CDW critical points
is summarized in Table III. The differences arise from
the fact that the vertex correction screens (antiscreens) the
interaction for the CDW (SDW) critical point. Within the
present framework, it is also possible to consider a SDW
critical point where the SU(Nc) spin rotational symmetry
is explicitly broken down to a subgroup. In the Ising case
where only one mode becomes critical at the critical point, the
Yukawa vertex is commuting as in the CDW case. Therefore,

TABLE III. Fate of the SDW and CDW critical points in metals
with C2 symmetry. Here NFL and MFL represent non-Fermi liquid
and marginal Fermi liquid, respectively.

SDW CDW

d = 3 Quasilocal MFL Nonperturbative (g2
0 > c2

0)
Quasilocal MFL (g2

0 < c2
0)

d = 3 − ε Anisotropic NFL Nonperturbative

we expect that the Ising SDW critical point will be similar
to the CDW critical point. The easy-plane SDW criticality
with Nc = 2 [68] is special in that the one-loop Yukawa
vertex correction vanishes due to

∑2
a=1 τ aτ bτ a = 0. In this

case, the two-loop diagram fails to prevent c from flowing
to zero. Thus, one has to consider higher-order self-energy
and vertex corrections to determine the fate of the critical
point.

V. SUMMARY AND DISCUSSION

In this work, we studied the spin and charge density wave
critical point in metals with the C2 symmetry, where a one-
dimensional Fermi surface is embedded in space dimensions
3 and below. Within one-loop RG analysis augmented by
a two-loop diagram, we obtained an anisotropic non-Fermi
liquid below three dimensions at the SDW critical point.
The Green’s function near the hot spots and the spin-spin
correlation function obey the anisotropic scaling, where not
only frequency but also different components of momentum
acquire nontrivial anomalous dimensions. Consequently, the
Fermi surface develops an algebraic nesting near the hot spots
with a universal shape. The stable non-Fermi-liquid fixed
point turns into a quasilocal marginal Fermi liquid in three
dimensions, where the boson velocity along the ordering vector
flows to zero compared to the Fermi velocity. In contrast
to the SDW criticality, the CDW critical point flows to a
nonperturbative regime below three dimensions, while there is
a finite parameter regime where the marginal Fermi liquid is
still stable in three dimensions.

At the SDW critical point, it is expected that superconduct-
ing, pair density wave, and charge density wave fluctuations
are enhanced [26,37,69,70]. At the one-loop order, the pattern
of enhancement is expected to be similar to the case with the
C4 symmetry. However, it will be of interest to examine the
effects of anisotropic scaling through a comparative study. In
particular, the stronger nesting in the C2 case will increase the
phase space for the zero-energy particle-particle excitations
with momentum 2kF . This will help enhance the pair density
wave fluctuations, which were found to be as strong as the
d-wave superconducting fluctuations at the one-loop order in
the C4 case [37].
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APPENDIX A: RENORMALIZATION GROUP

In this section we outline our RG scheme, and derive the general expressions for the beta functions and the critical exponents.
The sum of the original action and the counterterms gives the bare action,

SB =
Nf∑
j=1

Nc∑
s=1

∑
n=±

∫
dkB�̄B;n,j,s(kB)[iKB ·  + i(vBkB;x + nkB;y)γd−1]�B;n,j,s(kB)

+1

4

∫
dqB

(|QB |2 + q2
B;x + c2

Bq2
B;y

)
Tr[�B(−qB)�B(qB)]

+ i
gB√
Nf

Nf∑
j=1

Nc∑
s,s ′=1

∫
dkBdqB [�̄B;+,j,s(kB + qB)γd−1�B;s,s ′ (qB)�B;−,j,s ′ (kB) − H.c.]

+ 1

4

∫
dq1;Bdq2;Bdq3;B{u1;BTr[�B(−q1;B + q2;B )�B(q1;B )]Tr[�B(−q3;B − q2;B )�B(q3;B )]

+u2;BTr[�B(−q1;B + q2;B )�B(q1;B)�B(−q3;B − q2;B )�B(q3;B)]}. (A1)

Here the bare quantities are related to their renormalized counterparts through the multiplicative factors,

K = Z−1
τ KB, kx = Z−1

x kB;x, ky = kB;y, �n,j,s = Z− 1
2

ψ �B;n,j,s , � = Z− 1
2

φ �B, v = Z2
xZd−1

τ Zψ

Z2
vB,

c =
[ZxZφZd−1

τ

Z6

] 1
2

cB, g = μ−(3−d)/2
Z2

xZ2(d−1)
τ ZψZ

1
2
φ

Z7
gB, (A2)

u1 = μ−(3−d)
Z3

xZ3(d−1)
τ Z2

φ

Z8
u1;B, u2 = μ−(3−d)

Z3
xZ3(d−1)

τ Z2
φ

Z9
u2;B,

where

Zτ = Z1

Z3
, Zx = Zτ

[Z5

Z4

]1/2

, Zψ = Z3

ZxZ (d−1)
τ

, Zφ = Z4

ZxZ (d+1)
τ

, (A3)

with Zi ≡ 1 + Ai(v,c,g,u,ε). Here we made the choice ky = kB;y , which fixes the scaling dimension of ky to be 1. This choice
can be always made, even at the quantum level, because one can measure scaling dimensions of other quantities with respect to
that of ky . Zτ and Zx encode the anisotropic quantum corrections, which lead to anomalous dimensions for K and kx .

The renormalization group equation is obtained by requiring that the bare Green’s function is invariant under the change of
the scale μ at which the renormalized vertex functions are defined. The renormalized Green’s function,

〈�(q1) . . . �(qb)�(k1) . . . �(kf )�̄(kf +1) . . . �̄(k2f )〉 ≡ G(2f,b)(qi,kj ; v,c,g,u; μ)δ(d+1)

⎛⎝ b∑
i=1

qi +
f∑

j=1

(kj − kf +j )

⎞⎠, (A4)

obeys the renormalization group equation,[
zτ

(
Kj · ∇Kj

+ Qi · ∇Qi

) + zx

(
kj ;x∂kj ;x + qi;x∂qi;x

) + (
kj ;y∂kj ;y + qi;y∂qi;y

) − βv

∂

∂v
− βc

∂

∂c
− βg

∂

∂g
− βu1

∂

∂u1
− βu2

∂

∂u2

+ 2f

(
d + 2

2
− ηψ

)
+ b

(
d + 3

2
− ηφ

)
− [zτ (d − 1) + zx + 1]

]
G(2f,b)(qi,kj ; v,c,g,u; μ) = 0. (A5)

Here zτ and zx are the quantum scaling dimensions for K and kx given by

zτ = 1 + ∂ lnZτ

∂ ln μ
, zx = 1 + ∂ lnZx

∂ ln μ
, (A6)

and ηψ and ηφ are the anomalous dimensions of the fields,

ηψ = 1

2

∂ lnZψ

∂ ln μ
, ηφ = 1

2

∂ lnZφ

∂ ln μ
. (A7)
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The beta functions, which describe the change of couplings with an increasing energy scale, are defined as

βv = ∂v

∂ ln μ
, βc = ∂c

∂ ln μ
,

βg = ∂g

∂ ln μ
, βui

= ∂ui

∂ ln μ
. (A8)

We use the relationship between the bare and renormalized quantities defined in Eq. (A2) to obtain a set of coupled differential
equations,

Z1[d(zτ − 1) + (zx − 1) + 2ηψ ] − ∂Z1

∂ ln μ
= 0,

Z2[βv − v{(d − 1)(zτ − 1) + 2(zx − 1) + 2ηψ }] + v
∂Z2

∂ ln μ
= 0,

Z3[(d − 1)(zτ − 1) + (zx − 1) + 2ηψ ] − ∂Z3

∂ ln μ
= 0,

Z4[(d + 1)(zτ − 1) + (zx − 1) + 2ηφ] − ∂Z4

∂ ln μ
= 0,

Z5[(d − 1)(zτ − 1) + 3(zx − 1) + 2ηφ] − ∂Z5

∂ ln μ
= 0, (A9)

Z6[2βc − c{(d − 1)(zτ − 1) + (zx − 1) + 2ηφ}] + c
∂Z6

∂ ln μ
= 0,

Z7

[
βg − g

{
− 3 − d

2
+ 2(d − 1)(zτ − 1) + 2(zx − 1) + 2ηψ + ηφ

}]
+ g

∂Z7

∂ ln μ
= 0,

Z8
[
βu1 − u1{−(3 − d) + 3(d − 1)(zτ − 1) + 3(zx − 1) + 4ηφ}] + u1

∂Z8

∂ ln μ
= 0,

Z9
[
βu2 − u2{−(3 − d) + 3(d − 1)(zτ − 1) + 3(zx − 1) + 4ηφ}] + u2

∂Z9

∂ ln μ
= 0,

which are solved to obtain the expressions for the critical exponents and the beta functions,

zτ =
[

1 +
(

1

2
g∂g +

∑
i

ui∂ui

)
(Z1,1 − Z3,1)

]−1

, (A10)

zx = 1 − 1

2
zτ

(
1

2
g∂g +

∑
i

ui∂ui

)
(2Z1,1 − 2Z3,1 − Z4,1 + Z5,1), (A11)

ηψ = ε

2
(zτ − 1) − 1

2

[
2(zτ − 1) + (zx − 1) + zτ

(
1

2
g∂g +

∑
i

ui∂ui

)
Z3,1

]
, (A12)

ηφ = ε

2
(zτ − 1) − 1

2

[
4(zτ − 1) + (zx − 1) + zτ

(
1

2
g∂g +

∑
i

ui∂ui

)
Z4,1

]
, (A13)

∂�v = 1

2
zτ v

(
1

2
g∂g +

∑
i

ui∂ui

)
(2Z1,1 − 2Z2,1 − Z4,1 + Z5,1), (A14)

∂�c = −1

2
zτ c

(
1

2
g∂g +

∑
i

ui∂ui

)
(2Z1,1 − 2Z3,1 − Z4,1 + Z6,1), (A15)

∂�g = 1

4
zτg

[
2ε +

(
1

2
g∂g +

∑
i

ui∂ui

)
(2Z1,1 + 2Z3,1 + Z4,1 + Z5,1 − 4Z7,1)

]
, (A16)

∂�u1 = 1

2
zτu1

[
2ε −

(
1

2
g∂g +

∑
i

ui∂ui

)
(2Z1,1 − 2Z3,1 − 3Z4,1 − Z5,1 + 2Z8,1)

]
, (A17)

∂�u2 = 1

2
zτu2

[
2ε −

(
1

2
g∂g +

∑
i

ui∂ui

)
(2Z1,1 − 2Z3,1 − 3Z4,1 − Z5,1 + 2Z9,1)

]
, (A18)
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where we introduced the IR beta function, ∂�λ = −βλ, which describes the RG flow with an increase of the logarithmic length
scale �.

In the absence of the Yukawa coupling, every quartic coupling ui is accompanied by 1/c in the perturbative series. This
reflects the IR singularity for the flat bosonic band in the c → 0 limit. Since the actual perturbative expansion is organized in
terms of ui/c, it is convenient to introduce χi = ui/c. The beta functions for χi can be readily obtained from those of ui and c,

∂�χ1 = 1

2
zτχ1

[
2ε +

(
1

2
g∂g +

∑
i

ui∂ui

)
(2Z4,1 + Z5,1 + Z6,1 − 2Z8,1)

]
, (A19)

∂�χ2 = 1

2
zτχ2

[
2ε +

(
1

2
g∂g +

∑
i

ui∂ui

)
(2Z4,1 + Z5,1 + Z6,1 − 2Z9,1)

]
. (A20)

APPENDIX B: COMPUTATION OF FEYNMAN DIAGRAMS

In this Appendix we show the key steps for computing the Feynman diagrams.

1. One-loop diagrams

a. Electron self-energy

The quantum correction to the electron self-energy from the diagram in Fig. 3(a) is

δS(2,0) = μ3−d2B(1L)
(2,0)g

2
∑
n=±

Nc∑
s=1

Nf∑
j=1

∫
dk�̄n,s,j (k)ϒ (n)

(2,0)(k)�n,s,j (k), (B1)

where

B(1L)
(2,0) =

{
N2

c −1
Nf Nc

, for SDW,
1

Nf Nc
, for CDW,

(B2)

and

ϒ
(n)
(2,0)(k) =

∫
dd−1Q

(2π )d−1

d2 �q
(2π )2

γd−1Gn̄(k + q)γd−1D(q). (B3)

The bare Green’s functions are given by

Gn(k) = −i
 · K + γd−1εn(�k)

|K|2 + ε2
n(�k)

, (B4)

D(q) = 1

|Q|2 + q2
x + c2q2

y

. (B5)

After the integrations over �q and Q, Eq. (B3) can be expressed in terms of a Feynman parameter,

ϒ
(n)
(2,0)(k) = i

(4π )(d+1)/2


(
3 − d

2

)∫ 1

0
dx

√
1 − x

c2 + x[1 − (1 − v2)c2]

×
[
x(1 − x)

{
|K|2 + c2ε2

n̄(�k)

c2 + x[1 − (1 − v2)c2]

}]− 3−d
2
[

K ·  − c2εn̄(�k)γd−1

c2 + x[1 − (1 − v2)c2]

]
. (B6)

The UV divergent part in the d → 3 limit is given by

ϒ
(n)
(2,0)(k) = i

8π2ε
[h1(v,c)K ·  − h2(v,c)εn̄(�k)γd−1], (B7)

where

h1(v,c) =
∫ 1

0
dx

√
1 − x

c2 + x[1 − (1 − v2)c2]
, h2(v,c) = c2

∫ 1

0
dx

√
1 − x

{c2 + x[1 − (1 − v2)c2]}3
. (B8)

This leads to the one-loop counterterm for the electron self-energy,

S
(2,0)
CT = −B(1L)

(2,0)

4π2ε
g2

∑
n=±

Nc∑
s=1

Nf∑
j=1

∫
dk�̄n,s,j (k)[ih1(v,c)K ·  − ih2(v,c)εn̄(�k)γd−1]�n,s,j (k). (B9)
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b. Boson self-energy

The boson self-energy in Fig. 3(b) is given by

δS(0,2) = −μ3−d g2

2

∫
dqϒ(0,2)(q)Tr[�(−q)�(q)], (B10)

where

ϒ(0,2)(q) =
∑
n=±

∫
dkTr[γd−1Gn(k + q)γd−1Gn̄(k)]. (B11)

We first integrate over �k. Because �q can be absorbed into the internal momentum �k, ϒ(0,2)(q) is independent of �q. Using the
Feynman parametrization, we write the resulting expression as

ϒ(0,2)(q) = 1

2πv

∫ 1

0
dx

∫
dd−1K

(2π )d−1

[x(1 − x)]−
1
2 K · (K + Q)

x|K + Q|2 + (1 − x)|K|2 . (B12)

The quadratically divergent term is the mass renormalization, which is automatically tuned away at the critical point in the present
scheme. The remaining correction to the kinetic energy of the boson becomes

ϒ(0,2)(q) = − |Q|2
16πvε

(B13)

up to finite terms. Accordingly we add the following counterterm,

S
(0,2)
CT = −1

4

1

8πε

g2

v

∫
dq|Q|2Tr[�(−q)�(q)]. (B14)

c. Yukawa vertex correction

The diagram in Fig. 3(c) gives rise to the vertex correction in the quantum effective action,

δS(2,1) = i
g√
Nf

μ
3(3−d)

2 2B(1L)
(2,1)g

2
Nf∑
j=1

Nc∑
s,s ′=1

∫
dkdq[�̄+,j,s(k + q)ϒ (+,−)

(2,1) (k,q)�s,s ′ (q)�−,j,s ′ (k) − H.c.], (B15)

where

ϒ
(n,n̄)
(2,1) (k,q) =

∫
dpγd−1Gn̄(p + q + k)γd−1Gn(p + k)γd−1D(p) (B16)

and

B(1L)
(2,1) =

{
1

NcNf
, for SDW,

− 1
NcNf

, for CDW.
(B17)

The minus sign in B(1L)
(2,1) for the SDW case is due to the anticommuting nature of the SU(Nc) generators,

∑N2
c −1

a=1 τ aτ bτ a = − 2
Nc

τ b.
The UV divergent part in the ε → 0 limit can be extracted by setting all external frequency and momenta to zero except Q,

ϒ
(n,n̄)
(2,1) (Q) = γd−1

∫
dp

|P|2 − εn̄( �p)εn( �p)[|P|2 + p2
x + c2p2

y

][|Q + P|2 + ε2
n̄( �p)

][|P|2 + ε2
n( �p)

] . (B18)

Equation (B18) is evaluated following the computation in Ref. [37] to obtain

ϒ
(n,n̄)
(2,1) (K) = γd−1v

16π3ε
h3(v,c) + O(ε0), (B19)

where

h3(v,c) =
∫ 2π

0
dθ

∫ 1

0
dx1

∫ 1−x1

0
dx2

[
1

ζ (θ,x1,x2,v,c)
− v2 sin(2θ )

ζ 2(θ,x1,x2,v,c)

]
, (B20)

with

ζ (θ,x1,x2,v,c) = 2v2[x1 sin2(θ ) + x2 cos2(θ )] + (1 − x1 − x2)

[
sin2

(
θ + π

4

)
+ c2v2 cos2

(
θ + π

4

)]
. (B21)
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Note that the UV divergent part of ϒ
(n,n̄)
(2,1) is independent of (n,n̄). From this, we identify the counterterm for the Yukawa vertex,

S
(2,1)
CT = −i

g√
Nf

B(1L)
(2,1)

8π3ε
g2vh3(v,c)

Nf∑
j=1

Nc∑
s,s ′=1

∫
dkdq[�̄+,j,s(k + q)γd−1�s,s ′ (q)�−,j,s ′ (k) − H.c.]. (B22)

d. φ4 vertex corrections

There are two types of one-loop diagrams that can potentially contribute to the renormalization of the quartic vertex as is
shown in Figs. 3(d) and 3(e). The diagram in Fig. 3(e) is UV finite at d = 3 [37], which implies that it does not contain an ε−1

pole in d = 3 − ε. The second type of diagram is produced by the boson vertices only. They lead to nonzero counterterms,

S
(0,4)
CT = 1

8π2cε

∫
dq1dq2dq3

{[
B(1L;1a)

(0,4) u2
1 + B(1L;1b)

(0,4) u1u2 + B(1L;1c)
(0,4) u2

2

]
Tr[�(−q1 + q2)�(q1)]Tr[�(−q3 − q2)�(q3)]

+ [
B(1L;2a)

(0,4) u1u2 + B(1L;2b)
(0,4) u2

2

]
Tr[�(−q1 + q2)�(q1)�(−q3 − q2)�(q3)]

}
. (B23)

Here

B(1L;1a)
(0,4) = N2

c + 7, B(1L;1b)
(0,4) = 2

(
2N2

c − 3
)

Nc

, B(1L;1c)
(0,4) = 3

(
N2

c + 3
)

N2
c

, B(1L;2a)
(0,4) = 12, B(1L;2b)

(0,4) = 2
(
N2

c − 9
)

Nc

(B24)

for the SDW case. For the CDW case, one can set u2 = 0 and B(1L;1a)
(0,4) = 9.

2. Two-loop boson self-energy

There are five diagrams, shown in Fig. 10, that contribute to the boson self-energy at the two-loop order. We will first show
that only Fig. 10(a) contributes to the renormalization of c to the leading order in c. We will also outline the key steps for an
explicit computation of Fig. 10(a).

Let us denote the loop integrations in Figs. 10(b)–10(d) for fixed electron flavor n as ϒ
2L;b
(0,2) (q), ϒ

2L;c
(0,2) (q), and ϒ

2L;d
(0,2) (q),

respectively, with q being the external frequency momentum. At c = 0 the loop integrations in Fig. 10(b) are given by

ϒ
2L;b
(0,2) (q) =

∫
d4p

(2π )4

d4k

(2π )4

Tr[γd−1Gn̄(k)γd−1Gn(k + p)γd−1Gn̄(k)γd−1Gn(k + q)]

|P|2 + p2
x

. (B25)

The integrand depends on py only through

Gn(k + p) = {i(K + P) ·  + [εn(k) + vpx + npy]γd−1}−1. (B26)

Changing coordinates as py �→ py − n[εn(k) + vpx], Gn(k + p) becomes independent of �k. Since εn(�k) and εn̄(�k) are
linearly independent, we can change coordinates as (kx,ky) �→ (εn(�k),εn̄(�k)) and shift εn(�k) �→ εn(�k) − εn(�q) to make ϒ

2L;b
(0,2) (q)

independent of �q. This shows that Fig. 10(b) does not depend on �q in the small-c limit. Note that such dependence may arise at
order g4c or higher, but these contributions are subdominant to that of Fig. 10(a).

ϒ
2L;c
(0,2) (q) and ϒ

2L;d
(0,2) (q) closely resemble ϒ(0,2)(q). Because the one-loop counterterms are independent of the x and y

components of momentum, it is straightforward to shift the internal integration variable to show that 
2L;c
(0,2)(q) and 

2L;d
(0,2) (q) are

independent of �q, irrespective of the value of c. Therefore, diagrams in Figs. 10(c) and 10(d) do not contribute to Z5,1 and Z6,1.
Figure 10(e) is also subleading because χi = 0 at the one-loop fixed point.

The quantum correction due to Fig. 10(a) is

δS
2L;a
(0,2) = μ2(3−d)

8B(2L)
(0,2)

4
g4

∫
dqϒ

2L;a
(0,2) (q)Tr[�(−q)�(q)], (B27)

where

ϒ
2L;a
(0,2) (q) = −

∫
dpdk

Tr[γd−1G+(k + q)γd−1G−(p + q)γd−1G+(p)γd−1G−(k)]

|P − K|2 + (px − kx)2 + c2(py − ky)2
(B28)

and B(2L)
(0,2) = B(1L)

(2,1) as defined in Eq. (B17). In order to extract the leading order term that depends on �k in the small-c limit, we

set c = 0 and Q = 0 in ϒ
2L;a
(0,2) (q) to write

ϒ
2L;a
(0,2) (�q) = −

∫
dpdk

Tr[γd−1G+(K,�k + �q)γd−1G−(P, �p + �q)γd−1G+(p)γd−1G−(k)]

|P − K|2 + (px − kx)2
. (B29)
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Using Tr(γμγν) = 2δμ,νI2, we evaluate the trace in the numerator to obtain

ϒ
2L;a
(0,2) (�q) = −2

∫
dpdk

[|K|2 − ε+(�k + �q)ε−(�k)][|P|2 − ε−( �p + �q)ε+( �p)] − K · P[ε+(�k + �q) + ε−(�k)][ε−( �p + �q) + ε+( �p)]

[|K|2 + ε2+(�k + �q)][|K|2 + ε2−(�k)][|P|2 + ε2−( �p + �q)][|P|2 + ε2+( �p)][|P − K|2 + (px − kx)2]
.

(B30)

We change coordinates for both �p and �k as (kx,ky) �→ (k+,k−) with k± = ε±(�k), and shift k+ �→ k+ − ε+(�q) and p− �→
p− − ε−(�q) to rewrite the expression as

ϒ
2L;a
(0,2) (�q) = − 1

2v2

∫
dp′dk′ [|K|2 − k+k−][|P|2 − p+p−] − K · P[k+ + k−][p+ + p−]

[|K|2 + k2+][|K|2 + k2−][|P|2 + p2−][|P|2 + p2+]
[|P − K|2 + 1

4v2 (p+ + p− − k+ − k− + 2qy)2
] ,

(B31)

where dk′ ≡ dd−1Kdk+dk−
(2π)d+1 . It is noted that ϒ

2L;a
(0,2) (�q) has become independent of qx in the small-c limit. This implies that Z5,1 is at

most order of g4c which is negligible. From now on, we will focus on Z6,1.
We integrate over P and K after introducing Feynman parameters, x,y and u,w. Employing a Schwinger parameter, α, we

have

ϒ
2L;a
(0,2) (�q) = − 1

2π2(4π )d+1v2

∫ 1

0
dxdu

∫ 1−x

0
dy

∫ 1−u

0
dw

(1 − u − w)(3−d)/2

A(d−1)/2

∫ ∞

0
dαe−αM2

×
∫ ∞

−∞
dp+dp−dk+dk−

[{
(d − 1)2

4A
+ d2 − 1

4A2
(1 − u − w)(1 − x − y)2

}
α3−d

− (d − 1)(1 − u − w)

2A

{
p+p− +

(
(1 − x − y)2 + A

1 − u − w

)
k+k−

+ (1 − x − y)(k+ + k−)(p+ + p−)

}
α4−d + (1 − u − w)p+p−k+k−α5−d

]
, (B32)

where

A ≡ A(x,y,u,w) = (u + w) + (x + y)(1 − x − y)(1 − u − w),

M2 ≡ M2(k±,p±; x,y,u,w; v,qy) = uk2
+ + wk2

− + x(1 − u − w)p2
+ + y(1 − u − w)p2

− (B33)

+ (1 − u − w)(1 − x − y)

4v2
(p+ + p− − k+ − k− + 2qy)2.

At this stage, we subtract the mass renormalization from ϒ
2L;a
(0,2) (�q) and proceed with the computation of �ϒ

2L;a
(0,2) (�q) = ϒ

2L;a
(0,2) (�q) −

ϒ
2L;a
(0,2) (0). After integrating over p±, k±, and α, we extract the pole in ε as

�ϒ
2L;a
(0,2) (�q) = q2

yh6(v)

εv2
. (B34)

Here the function h6(v) is defined as

h6(v) = 2

(4π )4

∫ 1

0
dxdu

∫ 1−x

0
dy

∫ 1−u

0
dw

1

A

[{
1 + 2

A
(1 − u − w)(1 − x − y)2

}
J1

A

−
{

1 + 1

A
(1 − u − w)(1 − x − y)2

}
J2 − 1 − u − w

A

{
J3 + (1 − x − y)J4

}
+ (1 − u − w)J5

]
, (B35)

where

J1 ≡ J1(ηi) = η5√
η1η2η3η4

, J2 ≡ J2(ηi,fi) = f3√
η1η2η3η4

[
η5

2η4
− f4(1 + f4)

]
,

J3 ≡ J3(ηi,fi) = f1√
η1η2η3η4

[
η5

2

{
f2(1 − f2)

(
1

η3
+ (1 + f3)2

η4

)
− 1

η2

}
− f2(1 − f2)(1 + f3)2(1 + f4)2

]
,

J4 ≡ J4(ηi,fi) = f1 + f2(1 − f1)√
η1η2η3η4

{
η5

2

(
1

η3
+ (1 + f3)2

η4

)
− (1 + f3)(1 + f4)[f3 + f4(1 + f3)]

}
,
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J5 ≡ J5(ηi,fi) = f1

2
√

η1η2η3η4

[
η5

2η4

(
3f2f3(1 − f2)(1 + f3)2

η4
+ f2(1 − f2)(2 + 3f3)

η3
− f3

η2

)

− (1 + f4)

(
3f2f3(1 − f2)(1 + f3)2(1 + 2f4)

η4
+ f2f4(1 − f2)(2 + 3f3)

η3
− f3f4

η2

)]
, (B36)

with

η1 ≡ η1(a1,F ) = a1 + F, η2 ≡ η2(ai,F ) = a2F + a1(a2 + F )

a1 + F
,

η3 ≡ η3(ai,u,F ) = a2uF + a1[a2(u + F ) + uF ]

a2F + a1(a2 + F )
,

η4 ≡ η4(ai,u,w,F ) = a2uwF + a1{a2[w(u + F ) + uF ] + uwF }
a2uF + a1[a2(u + F ) + uF ]

,

η5 ≡ η5(ai,u,w,F ) = a1a2uwF

a2uwF + a1{a2[w(u + F ) + uF ] + uwF } , (B37)

f1 ≡ f1(a1,F ) = F

a1 + F
, f2 ≡ f2(ai,F ) = a1F

a2F + a1(a2 + F )
,

f3 ≡ f3(ai,u,F ) = − a1a2F

a2uF + a1[a2(u + F ) + uF ]
, (B38)

f4 ≡ f4(ai,u,w,F ) = − a1a2uF

a2uwF + a1{a2[uF + w(u + F )] + uwF } .

The functions ai and F are defined as

a1 ≡ a1(x,u,w) = x(1 − u − w), a2 ≡ a2(y,u,w) = y(1 − u − w), F ≡ F (x,y,u,w; v) = (1 − x − y)(1 − u − w)

4v2
.

(B39)

Therefore, the counterterm to �q-dependent part of the bosonic kinetic energy is given by

S
(2L)
(0,2);CT = −δS

2L;a
(0,2) = −B(2L)

(0,2)

4ε

8g4h6(v)

v2

∫
dqq2

y Tr[�(−q)�(q)], (B40)

which gives

Z5,1 = 0, (B41)

Z6,1 = −8B(2L)
(0,2)

g4h6(v)

v2c2
(B42)

to the leading order in c.

APPENDIX C: ANALYSIS OF RG FLOW AT THE CDW CRITICAL POINT

In this Appendix, we provide an analysis of the RG flow predicted by the beta functions in Eqs. (58)–(60). Let us first analyze
the flow in d = 3 [Fig. 16(a)]. According to Eq. (59), c(�) always decreases with increasing length scale. If the initial value of
c is sufficiently small such that c0  π/(Ñf + 2) with Ñf ≡ Nf Nc, the inequality will be always satisfied at lower energies. In
this case, one can ignore the last term in Eq. (58) to obtain a logarithmically decreasing Yukawa coupling,

g2(�) = g2
0

1 + αg(Ñf )g2
0�

, (C1)

where g0 ≡ g(� = 0) and αg(Ñf ) = 1
4πÑf

(1 + 4
Ñf +2

).

The RG flow of c is relatively more complicated due to the important role of the two-loop correction. When g2  c3

π2Ñf αc(Ñf )
,

where αc(Ñf ) = 32
Ñ3

f

h6(Ñf /2), the second term on the right-hand side of Eq. (59) is negligible. In this case, the beta function for
c gives

c(�) = c0

{
1 + c0

π2Ñf αg(Ñf )
ln

[
1 + αg(Ñf )g2

0�
]}−1

, (C2)
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where we have utilized the expression for g(�) in Eq. (C1). Since g2(�) ∼ �−1 and c(�) ∼ (ln �)−1 in the � → ∞ limit, the second
term on the right-hand side of Eq. (59) becomes even smaller compared to the first term as � increases, which justifies Eq. (C2)
at all l > 0. The quartic coupling flows to zero as χ1(�) ∼ �−1. Therefore, all the parameters, except for v, flow to zero in the
low-energy limit. Although c flows to zero, the critical point remains perturbatively controlled because g flows to zero much
faster, such that g2/c  1. This is a stable quasilocal marginal Fermi liquid (MFL) [65].

In contrast, the first term on the right-hand side of Eq. (59) is negligible if g2 � c3

π2Ñf αc(Ñf )
, in which case we obtain

c(�) =
√

c2
0 − [

2αc(Ñf )g2
0 − αg(Ñf )c2

0

]
g2

0�

1 + αg(Ñf )g2
0�

. (C3)

We note that the coefficient of � in the numerator in Eq. (C3) depends on the initial values of g and c. If g2
0 >

αg (Ñf )c2
0

2αc(Ñf )
, which

automatically implies g2 � c3

π2Ñf αc(Ñf )
for small c, the boson velocity becomes zero at a finite RG time

�0 = c2
0/g

2
0

2αc(Ñf )g2
0 − αg(Ñf )c2

0

. (C4)

This is different from the first case where c vanishes only asymptotically while the ratio g2/c remains small. In the current case,
the ratio g2/c blows up, resulting in a loss of control over the perturbative expansion. For example, as � → �0, χ1 diverges as

(�0 − �)−a(c0,g0,Ñf ) with a(c0,g0,Ñf ) = min{1,
αc(Ñf )g4

0�0

c2
0[1+αg (Ñf )g2

0�0]
}, which results in the theory becoming nonperturbative.

Finally, let us consider the case where c3
0

π2Ñf αc(Ñf )
 g2

0 <
αg (Ñf )c2

0

2αc(Ñf )
. In this case, c initially approaches a nonzero constant

dictated by Eq. (C3). However, the system eventually enters into the regime with g2  c3

π2Ñf αc(Ñf )
at sufficiently large length

scale. This is because g decreases much faster than c in this regime. Therefore the system again flows to the quasilocal marginal
Fermi liquid.

Having understood the fate of the critical point in three dimensions, we consider the case below three dimensions [Fig. 16(b)].
For ε > 0, g2 ∼ ε as long as c is initially small. On the other hand, c flows to zero in a finite RG time. Consequently, the system
becomes strongly coupled in the low-energy limit.
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