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Dimensionless ratios of physical properties can characterize low-temperature phases in a wide variety of
materials. As such, the Wilson ratio (WR), the Kadowaki-Woods ratio, and the Wiedemann-Franz law capture
essential features of Fermi liquids in metals, heavy fermions, etc. Here we prove that the phases of many-body
interacting multicomponent quantum liquids in one dimension (1D) can be described by WRs based on the
compressibility, susceptibility, and specific heat associated with each component. These WRs arise due to
additivity rules within subsystems reminiscent of the rules for multiresistor networks in series and parallel—a
novel and useful characteristic of multicomponent Tomonaga-Luttinger liquids (TLL) independent of microscopic
details of the systems. Using experimentally realized multispecies cold atomic gases as examples, we prove that
the Wilson ratios uniquely identify phases of TLL, while providing universal scaling relations at the boundaries
between phases. Their values within a phase are solely determined by the stiffnesses and sound velocities of
subsystems and identify the internal degrees of freedom of said phase such as its spin degeneracy. This finding
can be directly applied to a wide range of 1D many-body systems and reveals deep physical insights into recent
experimental measurements of the universal thermodynamics in ultracold atoms and spins.
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I. INTRODUCTION

One of the central challenges in condensed matter physics
is to understand how different phases of matter can arise and
how these phases can be characterized. Many phenomena
such as, e.g., superconductivity, magnetism, and quantum
phase transitions in strongly correlated systems [1], Bose-
Einstein condensation of dilute gases [2] and of excitons
in semiconductors, electronic transport in low-dimensional
systems, and heavy-fermion physics [3], are known to exist
due to the collective nature of the underlying many-body
processes. Collective phenomena are particularly strong in
low-dimensional systems where the reduced dimensionality
enhances the interaction of elementary constituents [4–7].
In order to characterize the various phases, dimensionless
ratios such as the celebrated Wiedemann-Franz (WF) law [8]
or the Kadowaki-Wood ratio [9,10] are very useful. They
usually involve ratios of measurable quantities which stem
from similar underlying processes.

The WF law is universal across a wide range of materials
and temperature regimes because nonuniversal contributions
due to, e.g., density of states and effective mass often cancel
out. Conversely, deviations from the WF law can be used to
characterize the emergence of new physical processes [11].
Remarkably, recent new experiments [12] show that the WF
law holds even at quantum phase transitions. Similarly, the
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Wilson ratio (WR) [13,14],
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between the susceptibility χ and the specific heat cV divided
by the temperature T , measures the strength in magnetic
fluctuations versus thermal fluctuations [3,15,16]. Here kB

is Boltzmann’s constant, μB is the Bohr magneton, and
gLande is the Lande factor. This dimensionless ratio has
been observed in a wide variety of Kondo systems [3,14].
Recent studies of the WR for magnetic states of a 1D spin
ladder compound [17] and the two-component attractive Fermi
gas [18] show that R

χ

W allows a convenient identification of
magnetic phases. Dimensionless ratios therefore provide an
elegant experimental and theoretical approach to a qualitative
and quantitative characterization of the nature of complex
multicomponent quantum liquids.

In Fig. 1, we show that the Wilson-like ratio

Rκ
W = π2k2

B

3

κ

cV /T
, (2)

relating particle fluctuations to energy fluctuations, is even
more successful in determining phases in quantum liquids.
Recent experiment [19] show that the compressibility WR (2)
determines the Luttinger parameter for the phase of TLL in
1D Bose gases and characterizes the quantum fluctuations
at quantum criticality. The key observation underlying the
predictive strength of both WRs is that the phases are
related to simple additivity rules of the underlying elementary
excitations. In this paper, we shall prove that such additivity
rules are in fact general for multicomponent quantum liquids
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YU, CHEN, LIN, RÖMER, AND GUAN PHYSICAL REVIEW B 94, 195129 (2016)

FIG. 1. Phase diagram for the attractive SU(2) Yang-Gaudin
model at T = 0.001ε2/kB given as a 3D plot of the WR Rκ

W in
the μ-H plane. The pair binding energy is denoted by ε2 = 0.5 and
the interaction strength g1D = −2. The expected values of Rκ

W = 1,4
in the excess fermion phase (F) and the pure pair phase (P) in the
strong coupling limit, respectively, are indicated in the legend on the
right. The mixed phase of fermions and pairs is denoted as F+P.

in 1D—and we expect that they also hold for multicomponent
Fermi liquids in higher dimensions [16]. We further show
that both WRs stem from these exact additivity rules, can
quantitatively identify quantum phases of Tomonaga-Luttinger
liquids (TLL) independent of microscopic details, and exhibit
universal scaling behavior at the quantum transitions between
phases. Their values within a given phase give information
about the internal degrees of freedom of a phase, e.g., its
spin degeneracy. Such information is important, e.g., for
the collective nature of multicomponent interacting quantum
liquids in cold atoms [20–23], large-symmetry fermionic
systems [24,25], spin chains [17,26], and the 1D Hubbard
model [5].

II. THEORY

A. General considerations

In order to show the versatility of the WRs in identifying
phases, we are interested in systems that have a rich phase
diagram. We therefore start by studying first an attractive
quantum liquid that supports a hierarchy of bound states. The
system shall consist of unbound particles, pairs of particles,
triples of particles and so on until we have at most w-tuples.
For convenience, we shall denote a bound state formed from
r particles as a r complex. Let Nr denote the number of
r complexes which have formed. Then the total number of
particles is given as N = N1 + . . . + wNw and the density of
an r complex is nr = Nr/L such that the total particle density is
n = ∑w

r=1 rnr . The relative propensity of a phase is governed
by a set of external fields Hr , r = 1, . . . ,w with Hw = 0. Here
the Hr are coupling to the (spin) moment of each r complex.

Then we can write for the Hamiltonian of the system

H = T + V −
w−1∑
r=1

HrNr − μN, (3)

where T andV are as of yet unspecified kinetic and many-body
interaction energies.

In order to compute the WRs (1) and (2), we need to
compute the susceptibility χ , the compressibility κ , and
specific heat cV for the w-component system in the Gibbs
ensemble G(μ,H1, . . . ,Hw). In a single component system,
χ and κ can be straightforwardly computed as ∂M/∂H (with
magnetization M) for a constant particle number (canonical)
or ∂n/∂μ for constant external fields (grand canonical). For
a multicomponent system, we therefore define in complete
analogy a chemical potential μr for each of the r complexes
via

μr = μ + 1

r
Hr + εr

r
, (4)

where εr denotes the binding energy of an r complex.
Remarkably, the quantity μ2 has already been measured in
a recent experimental study of the equation of state for 2D
ultracold fermions [23]. It gives a deep physical insight into the
crossover from Bose-Einstein condensate to Bardeen-Cooper-
Schrieffer superconductor. Indeed, the choice (4) allows us to
define a Fermi energy at T = 0 for each fluid of r complexes
in the same way that εF is defined in the Landau’s Fermi liquid
picture. We now introduce a stiffness in grand canonical and
canonical ensembles, respectively, as

Dκ
r = r

�π

(
∂μr

∂nr

)
H1,...,Hw−1

, D
χ

r,r ′ = r

�π

(
∂μr

∂nr
′

)
n

(5)

for a r-complex fluid subject to μ and the field Hr ′ . Also, the
sound velocity for r complexes is defined as usual via vr =
dεr (k)

dk
|kF

, where εr (k) is the dispersion relation for r complexes
and kF is the Fermi momentum. With these definitions, we can
then prove in 1D that the individual κr , χr , and cV,r in terms
of the Dκ

r , D
χ

r,r
′ , and vr are given as

κr = r2

π�

1

Dκ
r

, χr,r ′ = r2

π�

1

D
χ

r,r ′
, cV,r = πk2

BT

3�

1

vr

(6)

as shown in the Appendix. We note that similar relations hold
in Fermi liquids (FLs) [16]. Our strategy therefore is to derive
the densities nr , the chemical potentials μr , and the dispersions
εr (k) for the r complexes as functions of H1, . . . ,Hw and μ. We
expect that the definitions (5) and (6) are useful in general for
interacting quantum liquids. However, analytical or numerical
access to these quantities is not necessarily straightforward.
Following a series of recent papers [27], we prove here that
integrable 1D multicomponent systems allow the explicit
construction of nr , μr , and εr using the thermodynamic
Bethe ansatz (TBA) [28–30]. Following earlier theoretical [16]
and recent experimental [19,23] findings, we furthermore
speculate that similar relations also hold for FLs in higher
dimensions and expect that such effective chemical potentials
for multicomponent systems can therefore serve as convenient
handles to describe multicomponent quantum liquids.
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B. The w-component quantum liquid

Let us now consider a specific w-component Hamilto-
nian (3) that supports multicomponent quantum liquids. A
convenient and experimentally relevant example is the 1D
SU(w) Fermi gas with δ-function interaction confined to length
L [31,32]. The system is described by the Hamiltonian (3) with

T + V = − �
2

2m

N∑
i=1

∂2

∂x2
i

+ g1D

∑
1�i<j�N

δ(xi − xj ) (7)

and with the chemical potential μ and the effective Zeeman
energy Ez = ∑w

r=1
1
2 r(w − r)nrHr . There are w possible

hyperfine states |1〉,|2〉, . . . ,|w〉 that the fermions can occupy.
Experimentally, g1D (= −2�

2/ma1D, with a1D the effective
scattering length in 1D [33]; from now on, we choose our units
such that �

2 = 2m = 1 unless we particularly use the units)
can be tuned from a weak interaction to a strong coupling
regime via Feshbach resonances. This model provides an ideal
experimental testing ground to probe few- and many-body
physics [34–36].

For the system described by (7), the relation (4) follows
naturally from the structure of the TBA equations [27] (see
Appendix A). We will use in addition general energy-transfer
relations for breaking a w complex into smaller r complexes,
i.e.,

1

r
Hr = μr − μw + 1

w
εw − 1

r
εr (8)

with r = 1,2, . . . ,w − 1. Note that εr = 1
48 r(r2 − 1)g2

1D is the
explicit binding energy for each r complex in the system (7).
Using the energy and particle conservation conditions, (8) and
n = ∑w

r=1 rnr , respectively, we find that κ and χr obey the
additivity rules,

κ = κ1 + κ2 + · · · + κw, (9)

1

χr

= 1

χr,1
+ 1

χr,2
+ · · · + 1

χr,w

, (10)

in the TLL phases (see Appendix B). Here the susceptibility
χr represents the responses of different bound states to the
change of the field Hr . Such additivity appears naturally for
a noninteracting fluid. Determining vr from the TBA, we
similarly find that

cV = cV,1 + cV,2 + · · · + cV,w. (11)

Based on the rules given in (9), (10), and (11), we can
construct the WRs of the w-component SU(w) system to be

R
χ

W,r ′ =
(

w∑
r=1

D
χ

r,r ′

r2

)−1( w∑
r=1

1

vr

)−1

, (12)

Rκ
W =

(
w∑

r=1

r2

Dκ
r

)(
w∑

r=1

1

vr

)−1

. (13)

These ratios are dimensionless and uniquely determined by
the sound velocities and stiffnesses. We note that the form of
the WRs in (12) and (13) is similar for a w-component FL; all
interaction effects have been included into (8) via the choice
of μr .

In the strong coupling regime, Rκ
W for a pure r-complex

phase (Rχ

W = 0 in pure phases [18]) can be given in the form

R
κ,r
W = rKr = r2

(
1 − 2Br

1

|γ | + B2
r

1

γ 2

)
+ O(γ −3),

(14)

where γ = g1D/2n is the dimensionless interaction strength,
B1 = 0, and Br = ∑r−1

k=1 1/k with r = 2, . . . ,w. In the above
equation, Kr is the phenomenological Luttinger parameter
which can be directly measured through the Wilson ratio R

χ

W.
This provides an important way to test the low energy Luttinger
theory. For γ → ∞, Rκ

W then displays plateaus at the integers
12, . . . ,r2, . . . ,w2. Deviations from integer r2 = 1,4,9 occur
not because of a weakness of the ratios introduced here but
because of the physics underlying and determining the stability
and mixture of bound states in a given phase. Thus Rκ

W provides
a convenient quantitative phase characteristic for quantum
systems at finite T as well as at T → 0, see Fig. 1 and below.

C. Scaling of the WRs

It is particularly interesting that the WRs identify non-TLL
behavior and quantum criticality in the quantum critical
regime. In fact, the WRs show sudden enhancement near a
quantum phase transition due to a breakdown of the quantum
liquid nature, i.e., the vanishing linear dispersion for 1D
systems. For both WRs, we have the scaling law

R
κ,χ

W = Fκ,χ

[
(η − ηc)

T
1
νz

]
+ λ0T

−βGκ,χ

[
(η − ηc)

T
1
νz

]
, (15)

where β = (d/z) + 1 − 2/(νz) with z = 2, ν = 1/2 and d = 1
for 1D systems is universal;Fκ,χ ,Gκ,χ are the scaling functions
(see Appendix C). The second term in (15) with β = −1/2
reflects a contribution from the background at the temperatures
above the energy gap � ∼ |η − ηc|zv , with driving parameter
η (e.g., μ or Hr ). These critical exponents agree with the
experimental result for the thermal and magnetic properties of
the 1D spin chain at criticality [19,26]. For a phase transition
from the vacuum to a TLL phase, λ0 = 0. Based on (15), the
slope of the temperature-rescaled Rκ

W curves at a critical point

is given by ( ∂Rκ
W

∂μ
)
μc

= Cr/T , see Appendix C.

The significance of the WRs can also be understood from
the quantum fluctuations of magnetization, 〈δM2〉 = �dkBT χ ,
and particle number, 〈δN2〉 = �dkBT κ; �d denotes the obser-
vation volume in d dimensions. Therefore, microscopically,
χ and κ measure the strength of these fluctuations just
as cV quantifies the energy fluctuations; macroscopically,
the temperature-independent compressibility and the linear-
temperature-dependent specific heat remarkably preserve the
nature of quantum liquid at the renormalization fixed point,
see Eq. (6) like the Fermi liquid [15]. Consequently, R

χ

W
and Rκ

W characterize the competition between fluctuations of
different origin. A constant WR implies that the two types
of fluctuations are on an equal footing, regardless of the
microscopic details of the underlying many-body system. On
the other hand, the growth of the WRs in the critical regime
indicates the long-range character of the quantum fluctuations
at the quantum phase transitions.
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III. APPLICATIONS

A. The Yang-Gaudin model

In order to show the usefulness of the new ratios, we
start by considering the w = 2 1D spin-1/2 Fermi gas with
a δ-function interaction [37,38]. This Yang-Gaudin model has
already provided an ideal experimental testing ground [34–36]
for few- and many-body physics [27,39,40]. For R

χ

W , the
additivity rule of susceptibility and its connection to the D

χ
r ’s

following (12) have been reported in [18]. For Rκ
W , we now

find from (13) that

Rκ
W =

(
1

Dκ
1

+ 4

Dκ
2

)/(
1

v1
+ 1

v2

)
. (16)

Writing the explicit dependence on μ, H , and g1D is possible
but tedious (we give explicit forms for Dκ

1,2 and v1,2 in
Appendix B). In Fig. 1 we show Rκ

W in the μ-H plane. Rκ
W

elegantly maps out the three finite temperature TLL phases of
1 complexes, i.e., fully-polarized fermions (F), 2 complexes,
i.e. pairs (P), and the mixed TLL of excess fermions and
pairs (F+P). The empty vacuum phase (V) is also present
in Fig. 1. In particular, we note that for the pure phases
F and P, Rκ

W ≈ r2, i.e., close to the strong coupling value
rKr [41]. Hence for the Yang-Gaudin model in Fig. 1 we
see Rκ

W = 1 in phase F and 4 in phase P. In mixed phases,
e.g., F+P, such a constant plateau no longer exists. For Rκ

W

in the critical regime, we find a rapid increase due to a strong
increase in thermal fluctuations. In Fig. 2 we show the scaling
behavior (15) for Rκ

W close to the transition from the vacuum
phase into the F and the P phases. We find C1 ≈ 1.2546
and C2 ≈ 2 × 5.0185, respectively. Equation (15) does not
contain any free fitting parameter, so one can use this scaling to
determine the temperature of the quantum liquid. The scaling

FIG. 2. Scaling of Rκ
W at phase boundaries (a) V-F and (b) V-P

with H/ε2 = 1.16 and 0.9, respectively (cp. Fig. 1). The left panels in
(a) and (b) show Rκ

W vs μ/ε2 for reduced temperatures t = 0.003 (	),
0.002 (�), and 0.001 (◦). The vertical dotted lines indicate μc/ε2. The
dashed lines show the calculated slopes Cr/t . The right panels show
the scaled Rκ

W as in (15) with β = −1/2 vs (μ − μc)/ε2t . The vertical
dotted lines are as in the left panel while the horizontal lines indicate
the strong interaction limit of Rκ

W in the (a) F and (b) P phases.

law is also similar to the scaling in the non-FL regime of heavy
fermions [3,42].

B. A w � 3 quantum liquid

An even richer phase diagram exists for the three-
component δ-function interacting Fermi gas with an attractive
interaction [31]. Its T = 0 phases are known to consist
of excess fermions (F), pairs (P), trions (T), and mixtures
thereof [43,44]. Using the TBA equations, we again numeri-
cally and analytically calculate the WRs and determine their
H1, H2, and T dependencies. In Fig. 3 we show that in the pure
phases F, P, and T, we have Rκ

W = 1,4,9, respectively, and the
phase boundaries are clearly marked by large increases in Rκ

W

near the critical points. At T > 0, we see that the κ and cV

curves become progressively more rounded across the phase
transitions for T increases. The magnetic field associated with
the position of the finite-height peaks varies as a function of
temperature. This can be used to define a crossover temperature
T ∗ for each such magnetic field corresponding to a peak. For
T < T ∗, our analytical and numerical results reconfirm the
validity of the additivity rules (9)–(11), i.e., κ and χ remain
independent of the temperature and cV depends linearly on
the temperature in the TLL phase (cp. lower panel in Fig. 3).
This nature is also seen in Fermi liquids [14,15]. The additivity
nature of the susceptibility is presented in Appendix B. The
significance of such additivity rules is the characteristic of
quantum liquids at the renormalization fixed point, such as
TLLs in integrable models and Fermi liquids in metals, etc.

FIG. 3. Upper panel: plot of Rκ
W for the 1D three-component at-

tractive Fermi gas in the H1-H2 plane at temperature t = 0.001ε3/kB .
The values of Rκ

W = 1,4,9 in the pure phases F, P, and T, respectively,
are indicated by the colors marked on the color scale shown. The
dashed lines follow the phase boundaries as indicated. Lower panel:
compressibility κ and specific heat cV /T vs external field H2/ε3 for a
fixed choice of polarization n1 = n2 indicated by the dash-dotted line
in the phase diagram (upper panel). At zero temperature, κ and cV /T

satisfy the additivity rules (9) and (11) as shown by the solid lines
while at finite T ; they exhibit peaks as indicated by the arrows for
t = 0.003ε3/kB . Near the phase boundaries both κ and cV /T diverge
quickly as (H2 − Hc

2 )−1/2.
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FIG. 4. Mapping out quantum criticality with Rκ
W in the T -H2

plane. The H2 values have been chosen to follow the fixed polarization
n1 = n2 as indicated by the dash-dotted white line in Fig. 3. The white
dashed lines denote the crossover temperatures T ∗ beyond which the
TLL phases break down. The inset shows individual temperature
curves of Rκ

W vs H2 for representative temperatures. The bold solid
line shows the result corresponding to (13) while the thin dashed
lines show the numerical results obtained from the TBA equations
(Appendix A).

For T > T ∗, Rκ
W exhibits the critical scaling behavior (15) (see

also Appendix C). Figure 4 shows the contour plot of Rκ
W at low

temperatures. The universal quantum critical behavior (15) is
characterized by the exponents z = 2,ν = 1/2. For T < T ∗,
the critical exponents are z = ν = 1.

Moreover, using the TBA equations for the SU (w) Fermi
gases with an attractive interaction [45], we calculate the
susceptibility χr = ∂M/∂Hr in response to the change of
magnetic field Hr for the spin-gapped phases. The other
magnetic fields are fixed and the magnetization is given by
M = ∑w−1

r=1 nrr(w − r)/2. In dimensionless units, the ener-
gies are rescaled by the interaction energy εb = 1

2 �
2c2/(2m),

i.e., the temperature t = T/εb, the pressures p̃r = pr/(|c|εb),
the susceptibility χ̃ = |c|ξ/2, see the Appendix B. We obtain
explicitly a general expression of the susceptibility χr for the
gapped phase in which a small number of magnons are created
due to the change of Hr for t � 1,

χ̃r ≈ 1

4
√

2π

1√
t

√
r(w − r)re− �r

t , (17)

where the gap is given by

�r ≈ −rμ̃r +
w∑

m=1

min(r,m)∑
q = 1

2q �= r + m

4p̃m

m(r + m − 2q)
, (18)

see Appendix C. For example, from the upper panel phase
diagram in Fig. 3, we observe that in the gapped phase of
T, χ̃1 with �1 = −μ̃1 + 2p̃3/3 and χ̃2 with �2 = −2μ̃2 +
16p̃3/9 show a dilute magnon behavior related to the phase
transitions from the phase T into the mixed phase F+T and into
the the mixed P+T, respectively. They decay exponentially as
the temperature approaches zero. By properly choosing H1

and H2, we also can have a phase transition from the gapped
phase T into the mixed phase F+P+T.

C. Critical theory for the SU(w) repulsive Fermi gases

The existence of internal degrees of freedom significantly
changes the quantum magnetism and the dynamics of the
system compared to the spinless Bose gas. It is well established
that the critical behavior of the spin SU (w) chain can be
described by the Wess-Zumino-Witten σ model of level � = 1
with the Kac-Moody central charge Cs = �(w2 − 1)/(� + w)
[46]. The w-component repulsive Fermi gases display a
U (1) ⊗ SU (w) symmetry characterized by one charge degree
of freedom and w − 1 spin rapidities. The low-energy physics
of the system is described by the spin-charge separated confor-
mal field theories of an effective Tomonaga-Luttinger liquid
and an antiferromagnetic SU (w) Heisenberg spin chain [5,47].
By using the TBA equations given in [45] with H → 0 we find
that the pressure of the 1D repulsive Fermi gases is given by

p = pT =0 + w(w2 − 1)H 2

24πvs
+ πT 2

6

[
1

vc

+ Cs

vs

]
, (19)

where pT =0 is the pressure at T = 0 and vs,c are the pseudo
Fermi velocities in the spin and charge sectors, respectively.
This result is consistent with the critical field theory for the
SU (w) spin chains [46]. In the zero magnetic field limit,
the spin and charge velocities for the Fermi gas with strong
repulsion are, respectively,

vs = 2n2π3a1D

3w
(1 + 3a1DZ n),

(20)
vc = 2nπ (1 + 2a1DZ n),

where Z = − 1
w

[ψ( 1
w

) + C] and C the Euler γ constant, and
ψ(x) is the Euler ψ function. The susceptibility is then given
by Luttinger-liquid relation

χvs = 1

12π
w(w2 − 1) (21)

in the limit H → 0. Indeed the sound velocity vc (20) of the
Fermi gas in the large-w limit coincides with that for the
spinless Bose gas, whereas vs vanishes quickly as w grows.
This gives a reason why the quantum liquid of multicomponent
fermions reduces to the liquid of a spinless Bose gas in this
limit [34]. In this sense, R

χ

W captures this unique large-spin
charge separation mechanism in the w-component repulsive
Fermi gas. Its explicit expression is

R
χ

W = w(w2 − 1)vc

3[(w − 1)vc + vs]
, (22)

displaying plateaus of height w(w + 1)/3 for either strong
repulsion or in the large-w limit, hence capturing the spin
degeneracy. For example, Rχ

W = 2 and 4 for the two- and three-
component Fermi gases with strong repulsion, respectively.

IV. EXPERIMENTAL REALIZATIONS

Both WRs R
χ

W and Rκ
W are readily accessible by exper-

iments. For example, the 1D SU(w) δ-function interacting
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Fermi gas of 173Yb has been realized experimentally [34].
It was shown that in the large-w limit the ground state of
the gas with a repulsive interaction exhibits properties of a
bosonic spinless liquid. In the context of ultracold atoms, it
is highly desirable to measure the quantum criticality and the
TLL in such Fermi gases with rich spin and charge degrees of
freedom. In this scenario, the Yang-Gaudin model is an ideal
model to conceive critical phenomena induced from spin and
charge interaction effects. This model was recently studied
via an ultracold atomic gas in a harmonic trap, such as the
two-component ultracold 6Li atoms of Ref. [35].

Due to the harmonic confinement, the chemical potential
in the equation of state should be replaced by μ(x) = μ(0) −
mω2x2/2 (within the local density approximation). Here x

denotes the position along the 1D trap. Changing x is then
equivalent to changing μ, and different phases are located
at different spatial positions along the trap. Using a rescaled
coordinate y = xa1D/(2a2) with axial characteristic oscilla-
tion length a = √

�/mω, the density profile of the trapped
gas can be determined from the dimensionless quantities
Na2

1D/a2 = 2a1D
∫ ∞
−∞ dy n(y) and polarization Ma2

1D/a2 =
2a1D

∫ ∞
−∞ dy mz(y). The compressibility can be extracted via

FIG. 5. Upper panel: Contour plot of the WR Rκ
W (2) for the

Yang-Gaudin model in a harmonic trap with fixed particle number
N and three different polarizations P = n1/n at the temperature
T = 0.001ε2/kB . The WR evolves thin round peaks near the phase
boundaries, whereas the values of the WR (16) quantify different
quantum phases of the TLLs. The WR peaks are in good agreement
with the experimental phase boundaries (red and yellow dots)
observed in Ref. [35]. Lower panel: the red-dashed and yellow-solid
lines show the WR Rκ

W in the trapped gas with the polarizations
P = 0.027 and P = 0.341, respectively. They indicate segments of
the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase in the center
accompanied by the wings of the P and the F states, respectively. The
highest Rκ

W plateau approaches 4 suggesting a quasi-1D superfluid
nature, whereas the lowest plateau shows the free fermion nature with
Rκ

W = 1. For a critical polarization Pc = 0.176, the green-dashed line
shows that the trapped gas consists solely of the FFLO-like state.

κ = ∂n/∂μ = −∂n/∂x/(xmω2) [48,49], while the density
n(x) is read off from experimental profiles along x. The
specific heat can be measured through the sound velocities,
while the density waves of pairs and unpaired fermions can be
experimentally created by a density depletion or pulse with a
far-detuned laser beam [50]. In the upper panel of Fig. 5, we ob-
serve that Rκ

W at a very low temperature naturally maps out the
phase diagram of the system, showing a good agreement with
the experimental phase boundaries [35]. In the lower panel of
Fig. 5, we show the behavior for Rκ

W , exhibiting the plateau
structure as the system passes through different phases upon
changing x.

V. CONCLUSIONS

In summary, we have shown that the additivity rules of
physical properties reveal an important characteristic of the
TLL and provide the physical origin of the dimensionless
WRs. Such dimensionless ratios can be used to identify full
TLL phases and capture the essence of phenomena ranging
from quantum criticality to spin and charge separation in a
wide variety of 1D many-body systems. We have presented
some universal relations, such as the WRs (12) and (13), the
Luttinger parameter (14), the dimensionless scaling function
of the WR (15), the susceptibility for the gapped systems (17),
and the WR of SU (w) repulsive Fermi gas related to the
level-1 Wess-Zumino-Novikov-Witten conformal theory (22).
We also show excellent agreement between the phase diagram
predicted by the WRs and the experimentally determined one
for the Yang-Gaudin model [35]. Our results therefore success-
fully demonstrate how to predict universal laws for experimen-
tally realizable quantum liquids in Bose and Fermi degenerate
gases, Bose-Fermi mixtures, the 1D Hubbard model, strongly
correlated electronic systems, and spin compounds near to and
far from quantum critical points on an equal footing.
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APPENDIX A: THERMODYNAMIC BETHE ANSATZ
FOR THE SU(w) FERMI GAS

The Gibbs free energy of the SU(w) attractive gas is

G(μ,H1, . . . ,Hw) =
w∑

r=1

rT

2π

∫
dk ln[1 + e−εr (k)/T ] (A1)
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with dispersions εr (k) defined in the TBA via

εr (k) = rk2 − rμ − Hr − εr +
r−1∑
p=1

⎧⎨
⎩

w∑
q=p

aq+r−2p ∗ T ln[1 + e−εq (k)/T ] +
w∑

q=r+1

aq−r ∗ T ln[1 + e−εq (k)/T ]

⎫⎬
⎭

−
∞∑

q=1

aq ∗ T ln[1 + e−ηr,q /T ], (A2)

ηr,l(k) = l · (2Hr − Hr−1 − Hr+1) + al ∗ T ln[1 + e−εr (k)/T ] +
∞∑

q=1

Ulq ∗ T ln[1 + e−ηr,q (k)/T ]

−
∑
q=1

Slq ∗ T ln[1 + e−ηr−1,q (k)/T ] −
∞∑

q=1

Slq ∗ T ln[1 + e−ηr+1,q (k)/T ], (A3)

with

Ulj (x) =
{
a|l−j |(x) + 2a|l−j |+2(x) + . . . + 2al+j−2(x) + al+j (x), l �= j

2a2(x) + 2a4(x) + . . . + 2a2l−2(x) + a2l(x), l = j,

Slj (x) =
{
a|l−j |+1(x) + 2a|l−j |+3(x) + . . . + 2al+j−3(x) + al+j−1(x), l �= j

a1(x) + a3(x) + . . . + a2l−3(x) + a2l−1(x), l = j,

while ∗ denotes the convolution (a ∗ b)(x) = ∫
a(x −

y)b(y)dy and the ηr,l(k) represent the spin string parame-
ters; furthermore an(x) = n|c|/2π [(nc/2)2 + x2]. Here c =
mg1D/�

2 = −2/a1D. The numerical results used in the figures
were obtained by solving the above TBA equations.

APPENDIX B: ADDITIVITY RULES
FOR SU(w) FERMI GASES

From (4), we find that constant fields in the grand canon-
ical ensemble, i.e., dH1 = dH2 = . . . = dHw−1 = 0, imply
dμr = dμ for r = 1, . . . ,w. Consequently, we have

κ = ∂n

∂μ
= ∂

∑w
r=1 rnr

∂μ
=

w∑
r−1

r∂nr

∂μr

=
w∑

r=1

κr, (B1)

with κr as given by (5) and (6). Note that this result is general
and does not use special properties of the SU(w) gases.

The additivity rules for the spin susceptibility are very
intriguing. For our convenience in analysis of the SU(w) case,
we prefer to keep the ratios among the densities of the charged
bound states as n1 : n2 : . . . : nw−1 = λ1 : λ2 : . . . : λw−1,
then we can parametrize the n1,n2, . . . ,nw as

nr = λr

λ
n̂,(r = 1,2, . . . ,w − 1), nw = 1

w
(n − n̂), (B2)

where λ = λ1 + 2λ2 + ... + (w − 1)λw−1. In order to compute
the additivity rules for χ−1

r = ∂Hr/∂M , with magnetization
M = ∑w−1

r=1 r(w − r)nr/2, we start with the Legendre trans-
formation from Gibbs free energy to ground state energy: E =
G + μn + ∑w−1

r=1 nrHr , and in the ensemble {n1, · · · ,nw−1,n}
the field Hr can be obtained:

Hr = ∂E

∂nr

∣∣∣∣
n1,··· ,nr−1,nr+1,··· ,nw−1,n

= ∂E

∂nr

∣∣∣∣
n1,··· ,nr−1,nr+1,··· ,nw

− r

w

∂E

∂nw

∣∣∣∣
n1,··· ,nw−1

, (B3)

where E = ∑w
r=1 Er denotes the energy of the multicompo-

nent ground state with a subtraction of the binding energies
[27] and we have ∂E/∂nr = rμr for consistency with (4). We
emphasize that the additivity of E is a fundamental property
of a TLL, implied by the linearity of the dispersions [27].

Following the relation (B2), we can define differential forms
of any thermodynamic function f = f (n1, · · · ,nw):

d f =
w−1∑
r=1

∂f

∂nr

· λr

λ
�n̂ − ∂f

∂nw

1

w
�n̂, (B4)

d M =
w−1∑
r=1

1

2
r(w − r)

λr

λ
· �n̂. (B5)

We denote the operator Dr = ∂
∂nr

− r
w

· ∂
∂nw

with r =
1,2, . . . ,w − 1. Then the field Hr can be expressed explicitly:
Hr = DrE and the susceptibility in response to the Hr can be
expressed as

1

χr

= d Hr

d M
=

∑w−1
r=1 λrDr∑w−1

r=1
1
2 r(w − r)λr

· DrE.

We note that the last term in the Eq. (B3) linearly depends on
the density nr and nw. Therefore it can be safely dropped off
in the calculation of the susceptibilities because of the second
order of derivatives. In terms of the ground state energies
E = ∑w

�=1 E� for the individual charge bound states, we define
the stiffness as

1

χr�

= �π

r2
D

χ

r,l =
∑w−1

r=1 λrDr∑w−1
r=1

1
2 r(w − r)λr

· DrE�, (B6)

where r = 1,2, . . . ,w − 1 and � = 1,2, . . . ,w. Consequently,
we have the susceptibility (10) in response to the external
field Hr .
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FIG. 6. Susceptibilities in response to H1 and H2 for the three-component Fermi gas with a fixed ratio of n1/n2 = 1 at finite temperatures.
Under this setting the H1 and H2 have a one-to-one mapping along the line of n1/n2 = 1 with a fixed total density. These two figures show that
the susceptibility is temperature independent for the TLL phase of F+P+T indicated by the long dashed line in Fig. 3 in the main text. The
deviation from the solid lines in the two figures shows a breakdown of the TLL. Here T, B, and F stand for trions, pairs, and excess fermions,
respectively. The solid lines confirm the additivity rule Eq. (10) in the main text.

In fact, Zeeman splitting can be characterized by the
Zeeman energy levels εr

Z or by the effective magnetic fields
Hr with r = 1,2, . . . ,w. Here Hw = 0. Both sets of parameters
are related via the relation

w∑
r=1

εr
Znr = −

w∑
r=1

Hr (nr − nr+1). (B7)

A consistent solution of this equation gives the relations
between Hr and Zeeman energy levels [45]. If we denote
the difference between the energy levels of fermions in the
states |m + 1〉 and |m〉 as �m+1,m = εm+1

Z − εm
Z , then the total

susceptibility χ = d M
d �total

with �total = ∑w−1
r=1 �r+1,r is given

by

χ−1 = d
∑w−1

r=1 �r+1,r

d M
= d (H1 + Hw−1)

d M

= 1

χ1
+ 1

χw−1
. (B8)

Using the numerical calculation for the Gibbs free energy
G(μ,H1,H2) from Eq. (A1), we observe that the susceptibil-
ities χ1 and χ2 satisfy the relation (10) in the TLL phase of
trions, pairs, and single atoms, see Fig. 6.

Using the TBA equations [28,45], one can easily prove that
the specific heat can be written in terms of sound velocities,
i.e.,

cV = π2k2
BT

3

w∑
r

1

�πvr

. (B9)

APPENDIX C: SCALING FORMS ON BOUNDARIES

We focus on the low temperature behavior for w = 3 to
derive the analytical results for the thermodynamics, and
finally we derive a formula of general SU(w) gases of the
criticality about susceptibilities. In the strong interaction
limit, we can solve these TBA equations analytically at low
temperatures T � ε3/kB by simplifying

εr (k) ≈ r k2 − Ar, r = 1, 2, 3, (C1)

with

A1 = μ + H1 − 2

|c|p2 − 2

3|c|p3 + 1

4|c|3 Y2, 5
2

+ 1

9|c|3 Y3, 5
2
+ T e−(2H1−H2)/T e−J1/T I0(J1/T )

A2 = 2μ + 1

2
c2 + H2 − 4

|c|p1 − 1

|c|p2 − 16

9|c|p3

+ 8

|c|3 Y1, 5
2
+ 1

4|c|3 Y2, 5
2
+ 224

243|c|3 Y3, 5
2

+ T e−(2H2−H1)/T e−J2/T I0(J2/T ),

A3 = 3μ + 2c2 − 2

|c|p1 − 8

3|c|p2 − 1

|c|p3

+ 1

2|c|3 Y1, 5
2
+ 28

27|c|3 Y2, 5
2
+ 1

16|c|3 Y3, 5
2

(C2)

with Yr,a = −√
r

4π
T aLia(−eAr/T ). Here the effective spin

coupling constant is Jr = 2pr/r|c| with c = mg1D/�
2. The

polylogarithm function is defined as Lin(x) = ∑∞
k=1

xk

kn and
I0(x) = ∑∞

k=0
1

(k!)2 (x/2)2k . The effective pressures pr , with
r = 1, 2, 3, of excess fermions, pairs, and trions, respectively,
can be expressed as

p1 = Y1, 3
2

[
1 + 4

|c|3 Y2, 3
2
+ 1

3|c|3 Y3, 3
2

]
,

p2 = Y2, 3
2

[
1 + 4

|c|3 Y1, 3
2
+ 1

4|c|3 Y2, 3
2
+ 112

81|c|3 Y3, 3
2

]
,

p3 = Y2, 3
2

[
1 + 1

3|c|3 Y1, 3
2
+ 112

81|c|3 Y2, 3
2
+ 1

8|c|3 Y3, 3
2

]
.

1. Vacuum—Pair

The above simplified TBA equations (C1) can be used to
derive universal low temperature properties of the SU(2) and
SU(3) Fermi gases. In the following, we derive the scaling
forms of the Wilson ratios in the critical regions for the two-
component Fermi gas. Here we will use the dimensionless units
as explained in the main text. The phase boundary for the phase

195129-8



DIMENSIONLESS RATIOS: CHARACTERISTICS OF . . . PHYSICAL REVIEW B 94, 195129 (2016)

transition from V to P phase is μ̃c = − 1
2 for h = H/ε2 < 1.

Near this critical point, the scaling forms of specific heat,
compressibility, and susceptibility in dimensionless units are
given by

cV

|c|t ≈ − 2√
πt

G
(

2(μ̃ − μ̃c)

t

)
, (C3)

κ̃ ≈ − 2√
πt

F
(

2(μ̃ − μ̃c)

t

)
, (C4)

χ̃ ≈ 0. (C5)

where the functions G(x) = 3
16 Li 3

2
(−ex) − 1

4xLi 1
2
(−ex) +

1
4x2Li− 1

2
(−ex) and F(x) = Li− 1

2
(−ex).

2. Vacuum—Fully polarized

The phase boundary for the phase transition from V
to F phase is μ̃c = − h

2 , for h > 1; the scaling forms in
dimensionless units are

cV

|c|t ≈ − 1

2
√

2πt
H

(
μ̃ − μ̃c

t

)
, (C6)

κ̃ ≈ − 1

2
√

2πt
F

(
μ̃ − μ̃c

t

)
, (C7)

χ̃ ≈ − 1

8
√

2πt
F

(
μ̃ − μ̃c

t

)
, (C8)

where H(x) = 3
4 Li 3

2
(−ex) − xLi 1

2
(−ex) + x2Li− 1

2
(−ex).

3. Pair—Partially polarized

The critical fields for the phase transition from P to F+P
phase are μ̃c = − h

2 + 4
3π

(1 − h)
3
2 , for h < 1; the scaling

forms are

cV

|c|t ≈ − 1

2
√

2πt
R

(
μ̃ − μ̃c

t

)
, (C9)

κ̃ ≈ κo1 − λ1

2
√

2πt
F

(
μ̃ − μ̃c

t

)
, (C10)

χ̃ ≈ − λ2

8
√

2πt
F

(
μ̃ − μ̃c

t

)
, (C11)

where b = (1 − h)(1 + 2
π

√
1 − h),λ1 = 1 + 2

√
b

π
− 10b

π2 , λ2 =
1 − 3

√
b

π
+ 6b

π2 , κo1 = 2
π

√
b
λ1, and R(x) = 3

4 Li 3
2
(−ex) −

xLi 1
2
(−ex) + x2Li− 1

2
(−ex).

4. Fully—Partially polarized

For the phase transition from F to F+P phase, we have
μ̃c = − 1

2 + 1
3π

(h − 1)
3
2 , h > 1; with scaling forms

cV

|c|t ≈ − 1

2
√

2πt
S

(
2(μ̃ − μ̃c)

t

)
, (C12)

κ̃ ≈ κo3 − λ3

2
√

2πt
F

(
2(μ̃ − μ̃c)

t

)
, (C13)

χ̃ ≈ χo4 − λ4

8
√

2πt
F

(
2(μ̃ − μ̃c)

t

)
. (C14)

where the constants are given by a = (h − 1)(1 + 2
3π

√
h − 1),

λ3 = 4
√

2(1 +
√

a√
2π

− a
π2 ), λ4 = 8

√
2a

π2 , κo3 = 1
2
√

2π
√

a
, and

χo4 = 1
8
√

2π
√

a
(1 − 3

√
a

π
). The dimensionless function

is given by S(x) = 3
2
√

2
Li 3

2
(−ex) − √

2xLi 1
2
(−ex) +√

2x2Li− 1
2
(−ex). The slopes of the Wilson ratio curves at the

critical point μ = μc reveal a unique temperature-dependent
feature, namely the slope at the critical point, ( ∂Rκ

w
∂μ

)
μc

≡ Cr

T
,

is given as

cr = rπ2

3

(F ′(0)G(0) − F(0)G ′(0))
G(0)2

, (C15)

i.e., is a constant for the phase transition from vacuum into an
r-complex TLL phase.

5. Susceptibilities for the gapped phase in the attractive
SU(w) gases

The total polarization of SU (w) gas can be expressed as
m̃ = ∑w

r=1
1
2 ñr r(w − r), then we can obtain the susceptibility:

χ̃r = ∂m̃

∂h̃r

=
w∑

k,l=1

1

2
k(w − k)

∂2p̃(l)

∂h̃k∂h̃r

; (C16)

in the limit of t → 0 and |c| � 1, the leading behavior of the
second order derivatives of pressures reads

∂2p̃l

∂h̃k∂h̃r

≈ −
√

r

2

t−
1
2√
π

Li− 1
2

( − e
Ã(r)

t
)
δl,kδl,r. (C17)

Substituting (C17) into (C16), we arrive at the explicit form
of the susceptibility χ̃r corresponding to the field Hr when the
other fields are fixed

χ̃r ≈ − t−
1
2

4
√

2π

√
r(w − r)r Li− 1

2

( − e
Ã(r)

t
)

≈ t−
1
2

4
√

2π

√
r(w − r)r e− �r

t , (C18)

where the gap �r is related to the effective chemical potential
through �r = −Ã(r), which can be determined from the TBA
equations

Ã(r) = rμ̃ −
w∑

m=1

min(r,m)∑
q = 1

2q �= r + m

4p̃m

m(r + m − 2q)
. (C19)

Here the second approximately equal in (C18) holds when
�r > 0, which implies the existence of the gap and the
susceptibility presents exponential decay, otherwise χ̃r ≈√

r(w−r)r
4
√

2π
√−�r

, which is a positive constant when t → 0. Note

that the result in (C18) is different by a factor 1
2 due to the

convention of H1 = H/2 in the SU(2) case.

APPENDIX D: EXPLICIT FORMULAS FOR THE
SU(2) FERMI GAS

In the mixed phase for SU(2) Fermi gas with
one magnetic field H1, we have n = 2n2 + n1 and
χ1,1 = (μBg)2(∂n1/∂μ1)n, χ1,2 = 2(μBg)2(∂n2/∂μ2)n, with
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the stiffnesses in canonical ensemble D
χ

1 = 1
�π

(∂μ1/∂n1)n,
D

χ

2 = 2
�π

(∂μ2/∂n2)n. Similarly, κ1 = (∂n1/∂μ1)H
and κ2 = 2(∂n2/∂μ2)H with Dκ

2 = 2
�π

(∂μ2/∂n2)H ,
Dκ

1 = 1
�π

(∂μ1/∂n1)H defined in the grand canonical
ensemble.

For strong coupling, we find the explicit form of the μr in
terms of the densities of pairs n2 and unpaired fermions n1 (in
units of �

2/(2m)) [45] to be

μ2 ≈ π2

(
n2

2

4
+ 2n3

2

3|c| + n2
2n1

|c| + 4n3
1

3|c| + 3n2
1n

2
2

c2
+ 5n4

2

4c2

+ 4n1n
3
2

c2
+ 16n3

1n2

c2

)
, (D1)

μ1 ≈ π2

(
n2

1 + 8n2
1n2

|c| + 2n3
2

3|c| + 48n2
1n

2
2

c2
+ 4n3

2n1

c2
+ 2n4

2

c2

)
.

(D2)

Here c = mg1D/�
2 = −2/a1D is the interaction strength.

Therefore, the compressibilities and susceptibilities are given
by [in units of �

2/(2m)], e.g.,

κ−1
2 ≈ π2n2

4

(
1 + 6n1

|c| + 4n2

|c| + n2
2

2|c|n1
+ 24n2

1

c2

+ 24n1n2

c2
+ 17n2

2

c2
− 2n3

2

c2n1
+ n4

2

4c2n2
1

)
, (D3)

κ−1
1 ≈ 2π2n1

(
1 + 12n2

|c| + 16n2
1

|c|n2
+ 96n2

2

c2
+ 384n2

1

c2

−8n1n2

c2
− 96n3

1

c2n2
+ 256n4

1

c2n2

)
(D4)

χ−1
1,1 = π2n2

[
1 + 4

|c| (n− 3n2) + 3

c2

(
4n2 − 24nn2 + 30n2

2

)]
,

(D5)

χ−1
1,2 = 8π2n1

[
1 + 4

|c| (n− 2n1) + 4

c2

(
2n2 + 10n2

1 − 12nn1
)]

.

(D6)

In the above calculation for compressibility, the condition H =
2(μ1 − μ2) + c2/4 was used, i.e., dH = 0 gives (up to the
O( 1

c2 ) order):

dn1

dn2
= n2

4n1

(
1 − 8n2

|c| + 6n1

|c| + n2
2

2|c|n1
− 16n2

1

|c|n2

)
. (D7)

Moreover, the interaction effect enters into the collective
velocities v1, v2 of the excess fermions and bound pairs. For
strong attraction, they are given by [27]

v1 ≈ �

2m
2πn1

(
1 + 8n2/|c| + 48n2

2/c
2
)
,

v2 ≈ �

2m
πn2(1 + 2A/|c| + 3A2/c2), (D8)

with A = 2n1 + n2.

APPENDIX E: CONNECTION BETWEEN THE
LUTTINGER AND FERMI LIQUIDS

1. Wilson Ratios

Now we further build up a connection between the TLL
and the Fermi liquid. By definition (1) and (2), the two type of
Wilson ratios of interacting Fermi liquid in 3D are given by

R
χ

W = 1

1 + Fa
0

, Rκ
W = 1

1 + F s
0

, (E1)

which depends on Landau parameters F
a,s
0 characterizing

the interaction [3]. This is very similar to our finding for
1D systems, see Eqs. (12) and (13). However, it’s extremely
hard to calculate the Landau parameters F

s,a
0,1 in Fermi liquid

theory due to the reason that the density of state N∗(0)
cannot be obtained explicitly. Fermi liquid theory elegantly
maps an interacting system into a free fermion system where
the interaction is encoded into the density of state and
effective mass. But the Fermi liquid theory is not valid
in 1D interacting systems because there does not exist a
well-defined quasiparticle. Here we demonstrate that exact
solution of the TBA equations does show a novel existence
of Fermi-liquid-like signature in 1D interacting systems. In
fact, the additivity rules which we found in previous sections
reflect a 1D Fermi-liquid-like nature, also see a discussion in
Ref. [16].

2. Feedback interaction

The excitations near Fermi points in 1D many-body systems
can form a collective motion independent of microscopic
details of systems, namely, there exists a certain dispersion
relation between energy and momentum. We observe that
integrable systems provide a deep understanding of the
intrinsic connection between the TLL and the Fermi liquid. In
fact, the TBA equations of 1D systems give the exact dressed
energies and determine the dispersion relations of each branch.
At low temperatures, only the behavior of the dressed energies
near the zero point, or say, the kF and vF at the 1D Fermi points,
determines the first order and second orders of thermodynamic
quantities. In general, for the attractive SU (N ) Fermi gases, the
spin fluctuations are suppressed. Therefore the TBA equations
can be rewritten as

ε(r)(k) = ε0
r (k) −

N∑
s=1

Ars ∗ ε
(s)
− (k), (r = 1,2, · · · ,w),

Amn =
min(m,n)∑

q=1

am+n−q, (E2)

where ε0
r = �

2

2m
r(k2 − μr ) = p2

0
2rm

− �
2

2m
rμr is the first order

coefficient describing excitation energy of a single r complex;
here μr is the effective chemical potential. Here p0 = r�k.
The function am(x) is defined in Appendix A. These equations
show a similar form of ’feedback interaction’ equation in the
Landau Fermi liquid theory [15,16]. This encourages us to
further find a perturbation idea into our calculations. Below we
give a Fermi-liquid-like description for the low energies of the
1D attractive Fermi gases, i.e., mapping an interacting system
with multisubsystems to a multicomponent free system.
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3. Phenomenological description

The symmetry group of the interaction of quasiparticles
in the 1D “Fermi liquid” is reduced from the SO(3) group
to the cyclic group C2. Therefore, interaction parameter
between the ‘quasi’ momentum p and p′ could be written as
f

s,a
p,p′ = f

s,a
0 + f

s,a
1 sign(p · p′). Then following the conven-

tional Fermi liquid theory, we still can have Landau parameters
F

s,a
0,1 , which are interacting parameters [16] and describe the

main properties of our system. Conventional sound velocity
is associated with oscillations in the density of a fluid, and
hydrodynamics gives

v2 = κ

ρ
= κ

mn
, (E3)

where ρ = mn is the density of the fluid and κ = −L∂P
∂L

is

the bulk modulus. In FL theory κ = n2

N∗(0) (1 + F s
0 ), where the

N∗(0) denotes the density of state in momentum space near the
Fermi surface, therefore the velocity of first sound is given by

v2 = n

mN∗(0)

(
1 + F s

0

)
. (E4)

By the 1D analog of Fermi liquid theory, we have the
relations [16] n = pF

π
, N∗(0) = 1

π
m∗
pF

and m = m∗(1 + F s
1 ).

Then we obtain:

v2 = v2
F

(
1 + F s

0

)(
1 + F s

1

)
. (E5)

Here, due to the collective motion, the backflow does not exist
in 1D quantum liquids, therefore F s

1 ≈ 0. This can be seen
from the dressed energy equation (E2), where the effective
mass r m is almost unchanged up to the order of O(c−2) for
a strong coupling regime.

4. Consistency

Using the exact solutions, we can calculate the Wilson ratio
Rc

W for different phases of TLLs. For a single state of an r

complex, the Wilson ratio is known from Eq. (E1). Then the
parameter F s

0,1 could be determined by a comparison with the
Bethe ansatz result in the strong coupling limit (i.e., |c| → ∞)
via

Rc
W = 1(

1 + F s
0

) =
⎧⎨
⎩

1; for free fermions
4; for pairs
9; for trions

. (E6)

From the equation (E5) and (E6) we could calculate the relation
between Fermi speed and sound velocity. For example, the
velocities of trions, pairs, and single fermionic atoms are given
by

v3 = 1
3v

(3)
F ; v2 = 1

2v
(2)
F ; v1 = v

(1)
F , (E7)

respectively. This builds up an intrinsic connection between
the Luttinger liquid and Fermi liquid.

Furthermore, from the free fermion nature of the Fermi
liquid, we can express the specific heat in terms of these sound
velocities

cV

T
= π

3

(
1

v1
F

+ 2

v2
F

+ 3

v3
F

)
= π

3

(
1

v1
+ 1

v2
+ 1

v3

)
, (E8)

where we have dropped the unit k2
B�

−1; here the interaction
effect is encoded in the velocities v1,2,3. This equation could
be obtained by considering the leading term of the TBA
equations at low temperature region. This shows a consistency
of our derivation by the 1D Fermi-liquid-like description. The
derivation above could be extended to the SU(w) attractive
Fermi gases in a straightforward way. All the derivation above
could be directly extended to the SU(w) attractive Fermi gases:

cV

T
= π

3

(
1

v1
+ 1

v2
+ · · · + 1

vw

)
. (E9)

We can also prove this additivity rule using the TBA equations,
see Appendix B.
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