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We consider the one-band Hubbard model on the square lattice by using variational and Green’s function
Monte Carlo methods, where the variational states contain Jastrow and backflow correlations on top of an
uncorrelated wave function that includes BCS pairing and magnetic order. At half-filling, where the ground state
is antiferromagnetically ordered for any value of the on-site interaction U , we can identify a hidden critical
point UMott, above which a finite BCS pairing is stabilized in the wave function. The existence of this point
is reminiscent of the Mott transition in the paramagnetic sector and determines a separation between a Slater
insulator (at small values of U ), where magnetism induces a potential energy gain, and a Mott insulator (at
large values of U ), where magnetic correlations drive a kinetic energy gain. Most importantly, the existence
of UMott has crucial consequences when doping the system: We observe a tendency for phase separation into
hole-rich and hole-poor regions only when doping the Slater insulator, while the system is uniform by doping
the Mott insulator. Superconducting correlations are clearly observed above UMott, leading to the characteristic
dome structure in doping. Furthermore, we show that the energy gain due to the presence of a finite BCS pairing
above UMott shifts from the potential to the kinetic sector by increasing the value of the Coulomb repulsion.
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I. INTRODUCTION

The emergence of high-temperature superconductivity
upon doping in the two-dimensional copper-oxide planes of
insulating antiferromagnetic cuprate materials is still a great
puzzle in condensed-matter physics, after many years from the
first experimental evidence [1]. In particular, from a theoretical
point of view, a still-open question is about the mechanism
behind the appearance of the superconducting state. One
conservative approach is to explain the electron pairing by
invoking the electron-phonon coupling, as in standard BCS
theory; an alternative approach is based upon the so-called
resonating-valence bond (RVB) theory, as originally proposed
by Anderson [2], in which superconductivity emerges from a
Mott insulator that possesses preformed electron pairs.

In order to address the role of electron correlation on a
lattice, one of the simplest models is the single-band Hubbard
model, defined as

H = −t
∑

〈i,j〉,σ
c
†
i,σ cj,σ + H.c. + U

∑
i

ni,↑ni,↓, (1)

where the hopping amplitude between nearest-neighbor sites
on the square lattice and the on-site Coulomb repulsion
are denoted by t and U , respectively; then, c

†
i,σ (ci,σ ) is

the creation (annihilation) operator for an electron of spin
σ on site i and ni,σ = c

†
i,σ ci,σ is the electron density (per

spin) on site i. Despite its simplicity, the Hubbard model
has been proposed to capture the essential physics of high-
temperature superconductivity and interaction-driven metal-
insulator transitions [3,4]. The exact solution of this model is
not available in spatial dimensions greater than one for generic
values of electron densities; instead, Monte Carlo methods
provide numerically exact solutions at half-filling [5–9],
predicting an insulating ground state with antiferromagnetic
order for positive values of U/t . A summary of state-of-the-art
numerical methods to address the Hubbard model at different
interactions and dopings can be found in Ref. [7].

When antiferromagnetism is suppressed, a metal-insulator
transition can be identified at half-filling for a critical value of
the Coulomb repulsion [10,11], separating a metallic state, for
small values of the Coulomb repulsion, from a Mott insulator,
for a larger Coulomb interaction. The nonmagnetic sector of
the Hubbard model has been the starting point of several
studies to investigate the emergence of superconductivity upon
doping, for instance with cluster extensions of dynamical
mean-field theory (DMFT) [12,13] or with variational Monte
Carlo (VMC) [14–16]. All these studies suggest that a value
of the Coulomb repulsion of the order of the bandwidth is
necessary for stabilizing superconductivity at finite doping, the
symmetry of the order parameter being d wave. Furthermore,
the appearance of superconductivity by doping the Hubbard
model has been studied also by the diagrammatic Monte
Carlo method, indicating a BCS-type instability (with d-wave
symmetry) for dopings smaller than 40%, at U/t � 4 [17].
Analogous results have been obtained also by a weak-coupling
renormalization-group study, even if in this latter case the
presence of a next-nearest-neighbor hopping is important to
stabilize superconductivity at finite doping [18]. In the line of
weak-coupling approaches, a quantum critical point, hidden
under the superconducting dome, has been proposed as a
mechanism to generate the high-temperature superconductiv-
ity, induced by a pairing instability stronger than the BCS
logarithmic divergence [19]. The idea of a critical doping has
been also postulated a few years ago, in connection with the
formation of charge-density waves and their relation with the
formation of superconducting pairs [20].

At small doping, strong antiferromagnetic correlations are
present, possibly leading to a region where superconductiv-
ity and long-range antiferromagnetic order coexist [21–26].
Moreover, when antiferromagnetism is taken into account,
phase separation may also occur, i.e., a nonuniform charge
distribution, showing distinct hole-rich and hole-poor regions,
as originally proposed in Ref. [27]. The presence of long-
range Coulomb interactions in realistic materials would then
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“frustrate” phase separation, eventually leading to charge
density states or stripes. We remark that the formation of
striped phases is not necessarily related to the effect of
long-range Coulomb interactions, since they can just be
driven by a competition between kinetic and superexchange
energies [28]. The appearance of phase separation and the
formation of stripes have been deeply discussed in the t−J

model, which describes the strong-coupling limit of the
Hubbard model. Here, the tendency for phase separation
has been questioned by both density-matrix renormalization
group (DMRG) [29], which suggested the presence of stripes,
and Green’s function Monte Carlo (GFMC) with the fixed-
node (FN) approximation [30], which instead supported a
homogeneous and superconducting ground state. After many
years of investigations, the presence of stripes in the ground
state is still an open question [31].

In the Hubbard model, a clear tendency of phase separation
has been recently pointed out for U/t � 4, by using the
auxiliary-field quantum Monte Carlo (AFQMC) method with
modified boundary conditions [32]; for larger values of U/t ,
some indications have been provided by the variational cluster
approach (VCA) [33], by AFQMC with constrained path [34],
and by VMC [35,36]. However, determining the presence of
phase separation in the Hubbard model is a difficult task, due
to its strong dependence on the accuracy of the states that
are used to compute the energy. In particular, it has been
shown that phase separation is more favorable for less accurate
variational states [37]. The formation of stripes in the Hubbard
model, possibly favored with respect to a homogeneous
superconducting state, has been also considered [38]. In this
respect, a recent density matrix embedding theory (DMET)
study, performed up to U/t = 8, did not show clear evidences
for a striped ground state [39].

In this paper, we perform a systematic study of the Hubbard
model on the square lattice, by using accurate variational
wave functions, which include both superconductivity and
magnetism. At half-filling, our VMC results indicate that,
inside the antiferromagnetic phase, there is a hidden transition
at a finite value of the Coulomb repulsion UMott, above which
a finite BCS pairing is stabilized by energy minimization
(in addition to magnetic order that is present for any finite
value of the interaction strength U ). We relate UMott with a
crossover separating a Slater insulator at low values of U/t ,
where magnetism induces a potential energy gain, from a Mott
insulator at large values of U/t , where magnetic correlations
drive a kinetic energy gain. More importantly, the existence of
a “critical” value of the Coulomb repulsion at half-filling has
crucial consequences on the behavior of the model at finite dop-
ing. First, we consider the issue of phase separation. While at
the level of VMC, the model is prone to phase separation for all
values of U/t , the more accurate energies provided by GFMC,
within the FN approximation, allow us to clearly distinguish
two regimes: When doping a Slater insulator, phase separation
is obtained; instead, a homogeneous density distribution is
preferred when doping the Mott insulator. Most importantly,
we observe finite long-range pairing correlations, with weak
finite-size effects and a characteristic dome structure, only
when U > UMott; for U < UMott, there are strong size effects
in the pairing correlations, which may survive only in a small
part of the phase diagram. Finally, we analyze the behavior

of the condensation energy, i.e., the energy gain due to the
presence of a finite BCS pairing. We find that it changes
from being potential driven to kinetic driven by increasing
the value of the Coulomb repulsion, and its maximum value
is always located at the doping where magnetic correlations
in the wave function disappear. From our overall results, we
surmise that interaction is the crucial mechanism to observe
sizable superconducting pairing, with a hidden critical value
of the Coulomb repulsion that may be observed already within
the antiferromagnetic phase at half-filling.

The paper is organized as follows: In Sec. II, we present
the variational wave functions that are used in this work, as
well as the Monte Carlo approaches; in Sec. III, we show the
numerical results; finally in Sec. IV, we draw our conclusions.

II. VARIATIONAL AND GREEN’S FUNCTION
MONTE CARLO

Our numerical results are based on the definition of
variational wave functions that approximate the ground-state
properties beyond perturbative approaches. In order to com-
pute expectation values over these correlated variational states,
a Monte Carlo sampling is necessary. The general form of our
variational states is given by the Jastrow-Slater wave function
that extends the original formulation by Gutzwiller [40,41]:

|�〉 = PNPSz=0J |�0〉, (2)

where |�0〉 is an uncorrelated state that corresponds to
the ground state of the following uncorrelated Hamilto-
nian [42,43]:

HMF =
∑
kσ

ξkc
†
kσ ckσ +

∑
k

�kc
†
k↑c

†
−k↓ + H.c.

+ �AF

∑
i

(−1)Ri (c†i↑ci↑ − c
†
i↓ci↓),

(3)

which includes a free-band dispersion,

ξk = −2t(cos kx + cos ky) − μ, (4)

a BCS pairing with d-wave symmetry,

�k = 2�BCS(cos kx − cos ky), (5)

as well as an antiferromagnetic term with Néel order. The
parameters �AF, �BCS, and μ are optimized to minimize
the variational energy (while t = 1 sets the energy scale of
the uncorrelated Hamiltonian). The effects of correlations are
introduced by means of the so-called Jastrow factor J [44,45]:

J = exp

⎛
⎝−1

2

∑
i,j

vi,j ninj

⎞
⎠, (6)

where ni = ∑
σ ni,σ is the electron density on site i and vi,j

(that include also the local Gutzwiller term for i = j ) are
pseudopotentials that are optimized for every independent
distance |Ri − Rj |. Finally, PN is a projector on the fixed
number of particles N and PSz=0 is a projector onto the
subspace with Sz = 0.

A size-consistent and efficient way to further improve the
correlated state |�〉 for large on-site interactions is based
on backflow correlations. In this approach, each orbital that
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defines the unprojected state |�0〉 is taken to depend upon the
many-body configuration, such to incorporate virtual hopping
processes [46,47]. All results presented here are obtained by
fully incorporating the backflow corrections and optimizing
individually every variational parameter inHMF, in the Jastrow
factor J , as well as for the backflow corrections [48].

In general, on finite sizes, the presence of quantum-number
projectors in the variational state may induce an energy gain,
which, however, is expected to vanish in the thermodynamic
limit; see, for instance, Refs. [49,50]. In our case, the projector
onto the subspace with exactly N particles could introduce a
spurious stabilization of a small BCS pairing, especially for
small values of U/t . Therefore, in order to reduce the finite-
size effects, we also perform simulations without including
PN in the definition of the wave function (2), i.e., in the grand-
canonical ensemble. In practice, this kind of simulation is
performed by including in the Metropolis algorithm the option
of creating or destroying pairs of electrons with opposite spin.
The average number of particles is then fixed via the inclusion
of a chemical potential in the Hubbard Hamiltonian, namely
H → H − μN (at half-filling, μ = U/2).

The accuracy of the described variational states can be
further increased by means of the GFMC method [51], based
on the FN approximation [52]. This approach allows us to
systematically improve the variational results, still providing
an upper bound to the exact ground-state energy. In practice,
the best variational wave function |�FN〉, with the nodes
constrained by the optimal variational state |�〉, is extracted
from an imaginary-time projection. A detailed description
of the FN approximation can be found in Ref. [30], while
a comparison of the accuracy of the method with other
established numerical techniques is presented in Ref. [7].

The accurate estimates of the FN energy can be used to
evaluate the tendency of the system toward phase separation
into undoped (with antiferromagnetic order) and hole-doped
regions. Phase separation occurs when the stability condition
∂2E(n)/∂n2 > 0 is violated, i.e., when the ground-state energy
E(n), as a function of electronic density n (n = N/L, L being
the lattice size), is no longer convex. As introduced by Emery
and collaborators [27], phase separation between a hole-rich
phase and an antiferromagnetic one can be studied by looking
at the energy per hole ε(δ), defined as

ε(δ) = E(δ) − E(0)

δ
, (7)

where δ = 1 − n is the hole density. In the thermodynamic
limit, ε(δ) is monotonically increasing in a stable phase, while
it remains constant in the presence of phase separation. On a
finite system, the energy per hole has a minimum at a critical
doping δc, the system being unstable to phase separation for
δ < δc.

Finally, the calculation of expectation values of nonlocal
operators (like, for example, pairing-pairing correlations) O

in the FN method can be done by using the so-called mixed-
average correction [53]. First, we need to compute the mixed
average, that is a biased estimator of the quantum average:

〈O〉MA = 〈�|O|�FN〉
〈�|�FN〉 ; (8)

then, the true expectation value can be approximated with the
formula

〈�FN|O|�FN〉
〈�FN|�FN〉 ≈ 2〈O〉MA − 〈O〉VMC, (9)

where

〈O〉VMC = 〈�|O|�〉
〈�|�〉 (10)

indicates the variational estimate of the expectation value of
the operator O over the wave function |�〉. This approach is
justified provided the variational wave function |�〉 is close
to the FN state |�FN〉 and is expected to hold in our case,
given the good quality of a variational state, where the effect
of correlations is incorporated both in the amplitudes (via the
Jastrow factor) and in the signs (via the backflow corrections).

All the simulations are performed on 45-deg tilted clusters
with L = 2l2 sites, l being an odd integer.

III. RESULTS

A. The half-filled case

Let us start by recalling the previous VMC results for
the Hubbard model on the square lattice, when focusing
on the nonmagnetic sector, i.e., without the inclusion of
magnetism in the variational state. In this case, a transition
driven solely by electronic correlation, the so-called Mott
transition, occurs at a critical value of the Coulomb repulsion
Uc/t , that corresponds to Uc/t ∼ 7.5 ± 0.5, when backflow
correlations are not included [54], and to Uc/t ∼ 5.5 ± 0.5,
in the presence of backflow corrections [47]. Since backflow
corrections favor the recombination of holon-doublon couples
into single occupied sites, this leads to an improvement in the
description of the insulating phase, which can be stabilized at
lower values of U/t [47]. We remark that, even if the Jastrow
factor is the driving force for the system to be an insulator, the
Mott state is also characterized by a finite BCS pairing among
the electrons, reproducing the RVB state, originally proposed
by Anderson [2].

When magnetic order is allowed, the nesting properties of
the Fermi surface drive the system to be an insulator with
long-range Néel order for any U > 0. However, while the
antiferromagnetic coupling �AF is always finite, our VMC
results with fixed number of electrons, namely when using the
wave function (2), suggest that a reminiscence of the Mott
transition can still be seen in the variational parameters, with a
smooth crossover between a small-U region with no relevant
BCS pairing and a large-U region with finite �BCS; see Fig. 1.
However, non-negligible size effects are present, especially
at small values of U/t , preventing us to perform a clear size
scaling of the variational parameters. Therefore, in order to
reduce finite-size effects, we have performed the simulations
within the grand-canonical ensemble, as described in Sec. II.
These results are sharpened, with the clear identification of a
hidden critical point located at UMott/t 	 7.8 above which the
BCS pairing becomes finite; see Fig. 2(a). We remark that the
value of UMott is not significantly affected by the lattice size.
Indeed, it falls in the interval 7.5 < UMott/t < 8 for lattice
sizes ranging from L = 162 to L = 338.
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FIG. 1. Mean-field variational parameters �AF (blue dots) and
�BCS (red squares) as a function of U/t for the half-filled case on a
L = 242 lattice size.

While the insulating nature of the model at half-filling is
guaranteed by the presence of a finite antiferromagnetic field
�AF that opens a gap already at the uncorrelated level, a
reminiscence of the Mott transition can be seen also in the
behavior of the Jastrow factor. Indeed, as shown in Fig. 2(b),
the Fourier transform of the Jastrow factor vq changes its
small-q behavior from 1/q to 1/q2 at UMott, as it would

do at the true Mott transition [44,45,55], where the Jastrow
factor embodies a crucial long-range attraction between doubly
occupied and empty sites, keeping them bounded in the Mott
phase. A Jastrow factor proportional to 1/q2 is also able to
suppress the superconducting long-range order implied by the
BCS pairing of |�0〉. More importantly, a sudden change in
the average density of double occupancies

D =
〈

1

L

∑
i

ni,↑ni,↓

〉
VMC

(11)

is observed at the “critical” point where �BCS becomes finite,
as shown in Fig. 2(c). This feature suggests that the appearance
of the finite BCS pairing in the variational state coincides
with a change in the nature of the magnetic insulator at
half-filling. This change can be understood by investigating
the role of magnetism on the variational energy. At small U/t ,
the ground state exhibits the so-called Slater magnetism in
which the presence of a finite magnetic term suppresses double
occupancies and consequently induces a potential energy gain.
On the contrary, for large U/t , magnetism is favored by the
superexchange coupling J = 4t2/U and consequently drives
a kinetic energy gain, leading to the so-called Mott magnetism.
The crossover between these two regimes has been investigated
by many authors in the past: Even if it has been proposed that
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FIG. 2. All the simulations shown are performed in the grand-canonical ensemble, at half-filling on a L = 242 lattice size. (a) Mean-field
variational parameters �AF (blue dots) and �BCS (red squares) as a function of U/t . (b) Fourier transform of the Jastrow factor v(q), multiplied
by |q|2, as a function of |q|/π , for various values of U/t . The q points are taken on the path in the Brillouin zone connecting � = (0,0)
to M = (π,π ). (c) Density of double occupancies D as a function of U/t . The arrow indicates the location of UMott. (d) Energy gain
�E = Emagn − Enomagn (red squares), due to the presence of magnetism in the wave function; the potential �Epot = E

pot
magn − E

pot
nomagn (blue

dots) and kinetic �Ekin = Ekin
magn − Ekin

nomagn (black diamonds) contributions are also shown.
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the Slater mechanism is absent in the Hubbard model [56],
successive works show a general consensus on the existence
of a sharp crossover between the two regimes, with the
precise location of it depending on the method of investigation
[57–62].

The energy gain that is due to magnetism goes to zero for
U → 0 and for U → ∞ and is expected to have a maximum
when passing from Slater to Mott magnetism. Indeed, our
results show the existence of a value of the Coulomb repulsion
where the total energy gain due to magnetism �E = Emagn −
Enomagn is maximal and, at the same time, the contributions
coming from potential and kinetic energies change signs; see
Fig. 2(d). While Emagn is given by the full wave function,
as defined in Sec. II, in the computation of Enomagn we just
set �AF = 0 in the uncorrelated Hamiltonian of Eq. (3). The
results shown in Fig. 2(d) indicate that the appearance of a
finite BCS pairing in the wave function at UMott affects the
magnetic properties of the model, inducing a clear change
between Slater and Mott types of magnetism. This fact has
important consequences on the behavior of the model as a
function of doping, as presented below.

B. Phase separation

Here, we consider the tendency toward phase separation as
a function of the interaction strength U . Our results show that
UMott, where a finite BCS pairing in the uncorrelated state starts
to develop at half-filling, separates two different regimes also
at finite doping. For U � UMott, the variational state contains
only a magnetic order parameter �AF and phase separation
arises upon doping; by contrast, for U � UMott, the presence
of a finite BCS pairing �BCS inhibits phase separation, leading
to a superconducting state at finite hole dopings. In order to
determine the existence of phase separation we use the energy
per hole of Eq. (7) for the VMC and FN energies.

As already discussed in Ref. [37], the evaluation of phase
separation is strongly affected by the accuracy of the states that
are used to compute the energy, phase separation being more
favorable for less accurate variational wave functions. In fact,
at the pure VMC level, we find that phase separation dominates
the low-doping regime of the phase diagram for a wide range
of interaction strengths U , as shown below. The main problem
is that a slight difference in the accuracy for different dopings
induces huge errors in the energy per hole, especially close
to half filling, where δ is small. In this case, the application
of the grand-canonical approach does not help to stabilize a
uniform phase and phase separation still appears for all values
of U/t . This result is in the line of an independent VMC
calculation [36], which related the onset of superconductivity
with the proximity to phase separation.

Therefore, we move to the FN results, which give a much
more accurate energy estimate when varying the hole doping.
Unfortunately, the grand-canonical approach cannot be used
within the GFMC method, since the imaginary-time projection
is driven by the Hubbard Hamiltonian, which conserves the
number of particles. At U/t = 4, our results show that a rather
wide region of phase separation occurs up to δ ∼ 0.1; see
Fig. 3. This result is in agreement with recent estimates pro-
vided by the AFQMC method with modified boundary condi-
tions [32]. Moreover, the accuracy of our energies with respect
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FIG. 3. Energy per hole ε(δ) for the FN energies at U/t = 4, as
a function of the hole doping δ, for three lattice sizes: L = 98 (blue
squares), 162 (red triangles), and 242 (black circles). The error bars
are smaller than the symbol size. The inset shows the accuracy of
the FN energies with respect to the linearized AFQMC ones [63],
defined as (EAFQMC − EFN)/EAFQMC for U/t = 4, as a function of
hole doping on the L = 98 lattice size.

to the AFQMC results on the same lattice size is remarkably
good, being always lower than 10−2, as shown in the inset of
Fig. 3. The situation changes drastically when the value of U

increases above the threshold set by the appearance of a finite
BCS pairing at half filling. In Fig. 4, we present the energy per
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FIG. 4. Lower panel: Energy per hole ε(δ) for the FN energies
at U/t = 8, as a function of the hole doping δ, for three lattice
sizes: L = 98 (blue squares), 162 (red triangles), and 242 (black
circles). The VMC results are also shown on the L = 242 lattice size
(empty black circles). Upper panel: The same as the lower panel for
U/t = 10.
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TABLE I. VMC and FN energies as a function of the number of holes nh at U/t = 4 and U/t = 10 on the L = 242 lattice size. The number
in brackets denotes the error on the last digit.

nh E/t (VMC U/t = 4) E/t (FN U/t = 4) E/t (VMC U/t = 10) E/t (FN U/t = 10)

0 −0.85496(2) −0.85725(3) −0.42712(6) −0.43206(2)
8 −0.89642(2) −0.89910(2) −0.49064(4) −0.49760(2)
16 −0.93888(2) −0.94148(1) −0.55471(3) −0.56255(2)
24 −0.98315(1) −0.98501(1) −0.61879(3) −0.62651(2)
32 −1.02407(1) −1.02557(1) −0.68337(3) −0.68970(2)
40 −1.06057(1) −1.06192(1) −0.74559(2) −0.75045(1)
48 −1.09173(1) −1.09285(1) −0.80348(2) −0.80724(1)
56 −1.11919(1) −1.12027(1) −0.85625(2) −0.85938(1)

hole at U/t = 8, i.e., just above UMott. While the results at L =
98 show that there is some tendency toward phase separation,
by increasing the lattice size the appearance of phase separa-
tion becomes confined to a small doping interval δ � 0.04, for
both L = 162 and L = 242. The fact that the curves obtained
on these two lattice sizes are almost superimposed suggests
that we are close to the thermodynamic limit already on the
L = 162 lattice. Then, by increasing the Coulomb repulsion
up to U/t = 10, phase separation does not occur for the values
of doping that can be studied with the available clusters (i.e.,
δ � 0.02); see Fig. 4. Also in this case, some finite-size effects
are still visible on the L = 98 lattice size, while the curves at
L = 162 and L = 242 are almost coincident.

The absence of phase separation for large values of the
Coulomb repulsion is in marked disagreement with VMC

results: Indeed, as shown in Fig. 4, within VMC calculations,
phase separation appears also at U/t = 10 and at U/t = 8,
while it is absent once we improve the accuracy of the
calculations. The VMC and FN energies for several values
of doping at U/t = 4 and U/t = 10 are reported in Table I.

C. Superconducting properties

Here, we show the results of the pairing-pairing correla-
tions:

〈�(r)〉 = 〈Sr S
†
0〉, (12)

where S
†
r = c

†
r↑c

†
r+x↓ − c

†
r↓c

†
r+x↑ can be easily evaluated in the

VMC approach. The long-distance limit of the correlations
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FIG. 5. (a) Superconducting order parameter squared φ2 of Eq. (13) as a function of doping δ for U/t = 4, computed over the optimal
variational state. Data are shown for L = 98 (blue squares), 162 (red triangles), 242 (black circles), and 338 (purple diamonds). (b) The same
as in panel (a) computed within the FN approximation, with the mixed-average correction of Eq. (9). Data are shown for L = 98 (blue squares),
162 (red triangles), and 242 (black circles). (c) The same as panel (a), but for U/t = 8. (d) The same as panel (b), but for U/t = 8.
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FIG. 6. Left panels: Condensation energy �E (red squares) and its kinetic �Ekin (black diamonds) and potential �Epot (blue circles)
contributions, as a function of doping δ, for U/t = 8, 10, and 16, from top to bottom. Right panels: Optimal values of the antiferromagnetic
field �AF and the BCS pairing �BCS, as a function of doping δ, for the same values of U/t that are shown in the left panels. Data are presented
on the L = 162 lattice size.

gives an estimate of the superconducting order parameter:

φ2 = lim
r→∞ �(r). (13)

In analogy with what has been done in previous studies,
for the Hubbard and t−J models [15,64,65], we report the
pairing-pairing correlations at the largest distance for different
lattice sizes, to infer the behavior of φ2 in the thermodynamic
limit. The VMC results, obtained by considering the best
variational state, are shown in Fig. 5 for U/t = 4 and 8. They
clearly show that, for U � UMott (i.e., for U/t = 8), a finite
superconducting order parameter in the thermodynamic limit
can be obtained upon doping, with a characteristic dome
structure. Assuming that the critical temperature scales with
φ, our results locate the optimal doping at δ ≈ 0.1. A similar
behavior is obtained also at U/t = 10 (not shown).

On the contrary, by doping the Slater insulator at U/t = 4,
the superconducting order parameter suffers from strong finite-
size effects for δ � 0.1, indicating that no sizable superconduc-

tivity survives in the thermodynamic limit. Nevertheless, small
superconducting correlations might be finite for δ � 0.1; how-
ever, we must stress that, in this region, the system shows a ten-
dency to phase separation, see Fig. 3, so that superconductivity
is hindered by the nonhomogeneous spatial distribution of
electrons. In order to assess the validity of these VMC results,
we also consider FN estimates. In particular, we compute φ2

with the mixed-average correction of Eq. (9). The results con-
firm the above-described behavior for both regimes; see Fig. 5.

In order to further analyze the superconducting properties,
we consider the condensation energy �E, i.e., the energy gain
due to the inclusion of BCS pairing in the variational state:

�E = 〈�|H|�〉
〈�|�〉 − 〈��BCS=0|H|��BCS=0〉

〈��BCS=0|��BCS=0〉 , (14)

where ��BCS=0 denotes the best variational state without the
inclusion of BCS pairing (but still optimizing �AF). The results
for �E are shown in Fig. 6 for three values of U > UMott,
together with the optimal variational parameters �BCS and
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�AF in |�〉. We observe that the maximal energy gain is
obtained close to the point where �AF vanishes. A similar
behavior for the antiferromagnetic order parameter has been
reported also by cellular dynamical mean-field theory [24]
and by VMC [26]. Then, we turn to consider the kinetic and
potential contributions to the total condensation energy �E.
For moderate values of U/t , i.e., U/t = 8, the energy gain
originates from the potential part, while there is a loss in the ki-
netic part. This feature is consistent with standard BCS theory.
By increasing the value of the Coulomb repulsion to U/t = 10,
we observe a simultaneous gain in both components of the
energy, even though the kinetic contribution is smaller than the
potential one. Finally, for U/t = 16, the energy gain is purely
kinetic, with a simultaneous loss of potential energy (except
at half-filling), as expected in the strong-coupling limit [66].
A similar behavior of the condensation energy as a function
of U has been already reported, for instance, in a VMC study
of the nonmagnetic sector of the Hubbard model [16] and in a
diagrammatic expansion of the Gutzwiller wave function [67].
A slightly different behavior, highlighting the existence of
a critical doping, has been instead reported in Refs. [68,69].
Here, a change in the behavior of the condensation energy from
kinetic driven to potential driven is observed at a critical value
of the doping for intermediate values of U/t . Nevertheless,
all these works indicate that a critical value of the Coulomb
repulsion is necessary to observe sizable pairing correlations
and that, in some region of the phase diagram, superconduc-
tivity is kinetic-energy driven, as experimentally suggested by
optical measurements for underdoped cuprates [70,71].

IV. CONCLUSIONS

In conclusion, our variational approach suggests that the
Mott transition, which exists in the paramagnetic sector for
δ = 0 [10,11], may leave an important mark in the more
realistic phase diagram, obtained when allowing antiferro-
magnetic long-range order. First of all, our results suggest
that a reminiscence of the Mott transition at UMott, hidden
by the antiferromagnetic phase at half-filling, emerges after a
careful analysis of the BCS pairing. This hidden Mott transition
is intimately related with the change from Slater to Mott
antiferromagnetism, the former one being related to a Fermi
surface instability towards antiferromagnetic order (with a
potential energy gain), while the latter one being connected
to a superexchange mechanism (with a kinetic energy gain).
Most importantly, the Mott antiferromagnet contains electron
pairing, as originally suggested by Anderson in the RVB theory
of superconductivity [2]. Within our calculations, it is not clear
whether the “critical” behavior observed at UMott represents a
genuine phase transition, characterized by a thermodynamic
(or topological) signal, or if it is just a sharp crossover
between two physically different regimes. Nevertheless, the
presence of UMott has a clear manifestation when doping
the system with holes. Indeed, for Coulomb interactions that
are smaller than this “critical” value the system is unstable
toward phase separation and there is no strong evidence that
superconductivity may emerge, even if we cannot exclude the
presence of infinitesimal pairing correlations; by contrast, for
U > UMott, hole doping drives the Mott antiferromagnet into a

FIG. 7. Schematic phase diagram as obtained by using a com-
bined VMC and GFMC (with FN approximation) approach. The
red star labels the location of the hidden Mott transition UMott/t at
half-filling. The black line with black dots denotes the boundary of the
phase-separation region, that shrinks for U/t � UMott/t . The curve is
left open for U/t > 10, since we cannot exclude the presence of phase
separation very close to half-filling. The dashed blue line with blue
dots marks the disappearance of �AF in the optimal variational state.
The dashed red line indicates the boundary of the region where sizable
pairing correlations are detected. Finally, in the shaded gray region
finite-size effects are strong and precise results cannot be obtained in
the thermodynamic limit.

homogeneous superconducting phase, with the condensation
energy gain shifting from potential to kinetic by increasing
U/t . In Fig. 7, we report a schematic phase diagram in the
(δ,U ) plane. We remark that the presence of the hidden tran-
sition (marked by a star) influences the whole phase diagram
of the Hubbard model. First of all, strong superconducting
correlations are present when doping the Mott insulator, which
is characterized by the existence of preformed electron pairs;
in this sense, the picture is similar to the RVB theory, where
superconductivity emerges when doping a spin liquid [2] (here,
the only difference is that antiferromagnetic order may coexist
with electron pairing). The second effect of the “critical” point
at half filling is to separate a region where phase separation
is clearly present from another where it is strongly reduced
and limited to very small dopings: In this regard, we cannot
exclude that phase separation is present for all values of U/t ,
even though this must be limited to very small values of
dopings close to half-filling (for this reason, we do not show
the continuation of the continuous black line for U/t > 10).
We finally mention that no charge-density waves or stripes
have been detected in the cases that have been analyzed here
(e.g., no strong signals in the density-density correlations have
been seen); however, future investigations will consider in
more detail the possibility that a nonuniform distribution of
densities in the variational wave function may lower the VMC
or FN energies.
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G. Kotliar, and A.-M. S. Tremblay, Phys. Rev. B 77, 184516
(2008).

[25] R. S. Markiewicz, J. Lorenzana, G. Seibold, and A. Bansil,
Phys. Rev. B 81, 014509 (2010).

[26] R. Sato and H. Yokoyama, J. Phys. Soc. Jpn. 85, 074701
(2016).

[27] V. J. Emery, S. A. Kivelson, and H. Q. Lin, Phys. Rev. Lett. 64,
475 (1990).

[28] S. R. White and D. J. Scalapino, Phys. Rev. Lett. 80, 1272
(1998).

[29] S. R. White and D. J. Scalapino, Phys. Rev. B 61, 6320
(2000).

[30] M. Lugas, L. Spanu, F. Becca, and S. Sorella, Phys. Rev. B 74,
165122 (2006).

[31] P. Corboz, T. M. Rice, and M. Troyer, Phys. Rev. Lett. 113,
046402 (2014).

[32] S. Sorella, Phys. Rev. B 91, 241116(R) (2015).
[33] M. Aichhorn, E. Arrigoni, M. Potthoff, and W. Hanke,

Phys. Rev. B 76, 224509 (2007).
[34] C.-C. Chang and S. Zhang, Phys. Rev. B 78, 165101 (2008).
[35] L. F. Tocchio, H. Lee, H. O. Jeschke, R. Valentı́, and C. Gros,

Phys. Rev. B 87, 045111 (2013).
[36] T. Misawa and M. Imada, Phys. Rev. B 90, 115137 (2014).
[37] F. Becca, M. Capone, and S. Sorella, Phys. Rev. B 62, 12700

(2000).
[38] P. Corboz, Phys. Rev. B 93, 045116 (2016).
[39] B. X. Zheng and G. K.-L. Chan, Phys. Rev. B 93, 035126 (2016).
[40] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).
[41] H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 56, 1490 (1987).
[42] C. Gros, Phys. Rev. B 38, 931(R) (1988).
[43] F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, Supercond. Sci.

Technol. 1, 36 (1988).
[44] M. Capello, F. Becca, M. Fabrizio, S. Sorella, and E. Tosatti,

Phys. Rev. Lett. 94, 026406 (2005).
[45] M. Capello, F. Becca, S. Yunoki, and S. Sorella, Phys. Rev. B

73, 245116 (2006).
[46] L. F. Tocchio, F. Becca, A. Parola, and S. Sorella, Phys. Rev. B

78, 041101(R) (2008).
[47] L. F. Tocchio, F. Becca, and C. Gros, Phys. Rev. B 83, 195138

(2011).
[48] S. Yunoki and S. Sorella, Phys. Rev. B 74, 014408 (2006).
[49] D. Tahara and M. Imada, J. Phys. Soc. Jpn. 77, 114701 (2008).
[50] R. Rodrı́guez-Guzmán, K. W. Schmid, C. A. Jiménez-Hoyos,
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