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Nonadiabatic bulk-surface oscillations in driven topological insulators
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Recent theoretical and experimental work has suggested the tantalizing possibility of opening a topological gap
upon driving the surface states of a three-dimensional strong topological insulator (TI) with circularly polarized
light. With this motivation, we study the response of TIs to a driving field that couples to states near the surface.
We unexpectedly find coherent oscillations between the surface and the bulk and trace their appearance to
unavoidable resonances caused by photon absorption from the drive. We show how these resonant oscillations
may be captured by the Demkov-Osherov model of multilevel Landau-Zener physics, leading to nontrivial
consequences such as the loss of adiabaticity upon slow ramping of the amplitude. We numerically demonstrate
that these oscillations are observable in the time-dependent Wigner distribution, which is directly measurable
in time-resolved angle-resolved photoemission spectroscopy (ARPES) experiments. Our results apply to any
system with surface states in the presence of a gapped bulk, and thus suggest experimental signatures of a generic
surface-bulk coupling mechanism that is fundamental for proposals to engineer nontrivial states by periodic
driving.
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The recent emergence of topological physics in bulk
materials has brought to light an important connection between
topology in the bulk and protected states at the surface. These
surface states manifest a variety of interesting properties, such
as exhibiting anomalous behavior that is impossible in a purely
two-dimensional theory. The simplest example of this is the
one-dimensional chiral edge states in the quantum Hall effect
[1–4], and the same concept applies to helical surface states and
isolated Dirac cones in two- and three-dimensional topological
insulators respectively [5–11], as well as more exotic cases like
Fermi arcs in Weyl and Dirac semimetals [12–17]. Indeed, an
ever-expanding zoo of surface states is continuously being
discovered [18–29].

These surface states are particularly amenable to detection
by a host of modern experimental methods, such as scanning
tunneling microscopy (STM) [30–35] and angle-resolved
photoemission spectroscopy (ARPES) [11,15–17,26]. These
probes preferentially excite electrons near the surface and are
thus able to measure and distinguish surface and bulk states.
A more recent development in ARPES as well as similar
photon-in–photon-out experimental setups is time-resolved
pump-probe spectroscopy, in which the system is be excited far
from equilibrium and the state detected during the relaxation
process [36–44]. This gives much richer insight into both
the static and dynamic properties of the quantum system
and has also given rise to a recent re-emergence of theory
for such far-from-equilibrium systems. In particular, there is
an active search for examples of drive-induced topological
phases [45–47] and significant theoretical progress towards
their classification [48–53].

One important development in the field has been a recent
experiment [41] in which a time-reversal-invariant topological
insulator (TI) was irradiated with a pulse of light and imaged
via pump-probe ARPES. The Dirac cone on the surface
of these materials is a seed of topological physics, and
the experiment sees a gap open in the Dirac cone upon
applying circularly polarized light. This gap is predicted to be

topological in the sense that it realizes a half-integer quantum
Hall effect [54,55].

Motivated by this development, in this paper we explore
the nonequilibrium dynamics of a topological insulator in the
presence of a short pulsed drive. The pulse breaks the perfect
periodicity of the drive, yet we numerically see Floquet-
Bloch sidebands as in the experiments. However, we find
an unexpected oscillation in the intensity of these sidebands,
which we identify as a bulk-surface coupling induced by the
local drive at the surface. We show that this coupling leads
to coherent oscillations between the surface and the bulk
that survive in the thermodynamic limit, which generically
arise through a simple many-level Landau-Zener picture that
depends on Floquet resonances. This model yields several
nontrivial predictions, including reversing the meaning of
adiabaticity its traditional non-resonant behavior: Faster ramps
appear more adiabatic because they see the resonances for less
time, and thus decreasing the ramp rate leads to stronger bulk-
surface oscillations. We find that these resonant oscillations
are not only visible in the Wigner distribution, a nonequi-
librium observable measurable in pump-probe ARPES, but
are completely generic to periodically driving the surface of
any material with surface states inside a gapped bulk. This
provides a measurable signature of this nontrivial surface-bulk
resonance that should play a major role in Floquet engineering
of driven surface states.

The paper is organized as follows. In Sec. I we intro-
duce the idea of Floquet-Bloch states and a nonequilibrium
observable—the Wigner distribution—that can be used to
measure them. We then discuss the behavior of these states at
constant amplitude of drive for the simplest single-Dirac-cone
model of TI surface states followed by a more complicated
model in which coupling is allowed to the bulk. In Sec. II
we see how the Floquet-Bloch states are modified by turning
the drive on and off nonadiabatically via a Gaussian pump
pulse. One important effect that we see is resonance between
the surface and bulk, which we proceed to describe using a
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FIG. 1. Illustration of the setup that we consider. A pulsed
periodic electric field is incident on the surface of a topological
insulator and decays with some characteristic length scale ξ into the
bulk. Also shown the band structure of a topological insulator (TI).
The bulk appears to be a gapped semiconductor, but the difference
in the topological Z2 invariant between the TI and the surrounding
vacuum leads to Dirac cone surface states.

many-level generalization of Landau-Zener tunneling known
as the Demkov-Osherov model. Finally, in Sec. III, we
analytically derive other leading corrections to the adiabatic
Floquet-Bloch signal using the Floquet generalization of
adiabatic perturbation theory.

I. FLOQUET-BLOCH STATES FOR CONSTANT
AMPLITUDE DRIVE

A schematic setup used in many contemporary condensed
matter experiments is illustrated in Fig. 1. A laser pulse illu-
minates the sample, driving the electrons out of equilibrium.
The nonequilibrium electrons are then measured via one of
a number of methods, e.g., optical response, photoemission,
tunneling, etc. This type of setup is particularly interesting
in the case of topological insulators, whose surface states
may be readily excited by the drive. In addition, as the bulk
states have some (weak) overlap with the drive, they also are
excited. This is precisely the effect that is used in pump-probe
experiments of high-temperature superconductors and other
materials, where the nonequilibrium (bulk) population in
excited states is seen to decay as a probe of the material’s
physics.

We will examine the response of topological insulators to
this type of drive. These materials have a gapped bulk and
conducting Dirac-like surface states, as illustrated in Fig. 1.
The surface states have been probed through a number of
techniques including pump-probe ARPES. However, due to
their gapped nature, understanding the connection between the
surface and the bulk states has remained a relatively unexplored
area. In this paper we will show that an interesting connection
exists and discuss its observable consequences.

A. Driving surface states of TIs

The simplest model of a TI surface state is a single Dirac
cone with Hamiltonian [9]

HSS = −v(kxσ
x + kyσ

y) (1)

for a surface perpendicular to ẑ. The Pauli matrices often
correspond to physical spin (Sx,Sy) = (σy, − σx)/2, which
is locked perpendicular to the momentum k‖ via Rashba

spin-orbit coupling [56–58], though more generally σ could
denote spin/orbital indices. Our units are set by velocity v = 1,
as well as � = 1 throughout the paper. Consider driving this
Hamiltonian by a laser perpendicular to the surface, with
electric field E = Ex cos(�t + ϕx)x̂ + Ey sin(�t + ϕy)ŷ of
constant amplitude. This drive allows arbitrary polarization,
but we will focus on the case of linearly y-polarized light
and phase ϕy = 0. Coupling this periodic drive to the surface
states is achieved by the minimal substitution k‖ → k‖ − eA,
where we pick the gauge E = −∂A/∂t . Then the Hamiltonian
becomes time dependent:

H (t) = HSS[k‖ − eA(t)]. (2)

We first consider the case of constant drive amplitude, Ey =
�Ay , but later we will return to the case where this amplitude
in turn varies slowly as in the case of a pulsed laser [cf.
Fig. 2(b)]. Note that we are assuming the drive is uniform
over the entire sample such that the in-plane momentum k‖
remains a conserved quantity even in the presence of the drive.

1. Nonequilibrium observables: Wigner distribution
and Floquet-Bloch states

Acting on the Hamiltonian in Eq. (1) with a periodic
drive yields a fundamentally nonequilibrium problem. Flo-
quet’s theorem states that the full time evolution U (t) =
T exp[−i

∫
H (t)dt] (T = time ordering) can be decomposed

as

Uk‖(t) =Pk‖(t)e−iHF (k‖)t , (3)

where Pk‖(0) = 1 and Pk‖(t) = Pk‖(t + 2π/�). P is a pe-
riodic operator often called the micromotion and H

k‖
F is an

effective static Hamiltonian—the Floquet Hamiltonian—that
describes the behavior over many cycles. This is the temporal
analog of Bloch’s theorem, in addition to which we have
used the usual Bloch’s theorem in noting that k‖ is con-
served. The eigenstates of H

k‖
F satisfying HF (k‖)|nF (k‖)〉 =

εn
F (k‖)|nF (k‖)〉 are known as Floquet-Bloch states [41,59,60].

A system prepared in one of these Floquet-Bloch states at time
t = 0 will return to the same state stroboscopically at times
t = nT for integer n, where T = 2π/� is the driving period.

For such a nonequilibrium system, one of the most natural
observables to consider is the probability to be in each of
the Floquet-Bloch eigenstates. This is naturally described by
the nonequilibrium generalization of the occupation number,
namely the Wigner distribution:

fαβ(k‖,ω,tav) = −iG<
αβ (k‖,ω,tav)

= −iFtr [〈c†β(tav + tr/2)cα(tav − tr/2)〉],
where α and β denote spin/orbital indices and F is the Fourier
transform. To ensure basis independence we will be interested
in its trace, f (k‖,ω,tav) ≡ ∑

α fαα(k‖,ω,tav).
The Wigner distribution naturally describes equilibrium or

nonequilibrium occupation of energy eigenstates [61]. The
simplest example of this is to consider evolution of the
state |ψ〉 = c

†
0|vac〉 under a static single-particle Hamiltonian,

where c
†
0 creates a single fermion in the energy eigenvalue E0

of H . Then a straightforward calculation confirms that f is
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(a)

(b)

(c)

FIG. 2. Driving Dirac surface states of a TI model [Eq. (1)] without any bulk states. (a) Wigner distribution of equilibrium Floquet-Bloch
states with varying drive strength Ay , as derived in Eq. (8), showing hybridization of the surface states. The chemical potential μ > 0 is chosen
such that both surface states are occupied. δ-function peaks corresponding to Floquet-Bloch states have been broadened by a Gaussian of width
τpr = 24 for clarity. (b) Illustration of the pulsed drive that we will consider. For the driven Dirac model, both states in the Hilbert space are
occupied, so in the slow-ramp limit (τpump � T ) there are no additional excitations due to the ramp. This is illustrated in panel (c) by plotting
the amplitude in the � = 1,2 sidebands for kx = 1, which show no difference between the instantaneous Floquet-Bloch eigenstates (dashed
red) and the full time evolution during the ramp (blue). Data is for a linearly polarized pump perpendicular to the momentum, with parameters
τpump = 60, A0

y = 1.09, and � = 1.

just a single peak at frequency E0:

f (tr,tav) = 〈ψ |
∑

n

c†n(tav + tr/2)cn(tav − tr/2)|ψ〉

=
∑

n

〈ψ |(eiH (tav+tr/2)c†ne
−iH (tav+tr/2)

× eiH (tav−tr/2)cne
−iH (tav−tr/2))|ψ〉

= eiEψ tr
∑

n

〈ψ |c†ne−iH trcn|ψ〉 = eiE0tr ,

f (ω,tav) = 2πδ(ω − E0). (4)

Similarly, if we start with many electrons, |ψ〉 =
c
†
0 . . . c

†
N−1|vac〉, then a similar calculation shows that f

is just a sum of peaks at each electron’s energy: f (ω) =
2π

∑N−1
j=0 δ(ω − Ej ). Thus the Wigner distribution gives

information about not only the occupation via the amplitude
of the δ-function peaks (2π per electron), but also about their
time evolution via the peak frequency.

These ideas are particularly useful in driven Floquet
systems as they are out of equilibrium from the beginning.
Before deriving the Wigner distribution of a system in a
Floquet eigenstate, let us start by considering the more generic
case where one starts in an eigenstate of some static H

at time t0 but then turns on an arbitrary driving H (t). As
long as the Hamiltonian remains noninteracting, by Wick’s
theorem the Wigner distribution will remain the sum over
occupied eigenstates of the single-particle f . So if we start
from some single-particle state |ψn(t0)〉 ≡ c

†
n|vac〉 and then

turn on arbitrary drive, it is readily confirmed that f is simply
given by

fn(tr,tav) = 〈ψn(tav + tr/2)|ψn(tav − tr/2)〉, (5)

where |ψn(t)〉 = U (t,t0)|ψn(t0)〉 is the state obtained by full-
time evolution starting from |ψn(t0)〉. For N occupied single-
particle states one simply sums over n = 0,1, . . . ,N − 1.

Now consider a Floquet-Bloch eigenstate |nF (k‖)〉. As
we work with translationally invariant drives throughout this
paper, we will occasionally suppress the k‖ dependence.
Associated with a given Floquet eigenstate are a time-periodic
family of wave functions,

|nF (t)〉 ≡ P (t)|nF 〉, (6)

which describe how |nF 〉 evolves during a cycle. Note that by
our convention for P , |nF (0)〉 = |nF 〉. As this state is periodic,
we may Fourier decompose it:

|nF (t)〉 =
∑

�

ei��t
∣∣n(�)

F

〉
. (7)

These Floquet modes |n(�)
F 〉 play an important role in the theory.

In particular, if we plug the Floquet eigenstate into Eq. (5), we
see that

fn(tr,tav) = 〈ψn(tav + tr/2)|ψn(tav − tr/2)〉
=

∑
��′

ei(�−�′)�tavei[εn
F −(�+�′)�/2]tr

〈
n

(�′)
F

∣∣n(�)
F

〉
,

where |ψn(t)〉 = e−iεn
F t |nF (t)〉 accounts for time evolution due

to both micromotion and the Floquet Hamiltonian [see Eq. (3)].
This expression simplifies even further in an important limit,
namely when we average over the measurement time tav.
This naturally emerges in a number of physically relevant
situations. For instance, if we put back in the phase of the drive,
which enters the previous expression as �tav → �tav + ϕ, then
averaging over the often experimentally uncontrolled phase
is equivalent to averaging over tav. Equivalently, one often
finds that there is experimental imprecision on the time of
measurement and/or the relative phase of the pump and the
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probe. If this imprecision is long compared to the drive period,
again the averaging emerges. Denoting this so-called Floquet
nonstroboscopic (FNS [62]) averaging by an overline, we see
that [63,64]

fn(tr) =
∑

�

ei(εn
F −��)tr

〈
n

(�)
F

∣∣n(�)
F

〉
,

fn(ω) = 2π
∑

�

δ
(
ω − εn

F + ��
)〈
n

(�)
F

∣∣n(�)
F

〉
.

So each electron state is split into Fourier modes at fre-
quency εn

F − �� with amplitude pn� = 〈n(�)
F |n(�)

F 〉. Note that
these peaks sum up to 1 total electron,

∑
� pn� = 1, by the

normalization of |nF 〉. So we see that the Wigner distribution
again provides insight on the frequency of these sidebands as
well as the probability to occupy them.

Let us now apply these ideas to driving the surface states
of the TI, described by the Hamiltonian in Eq. (1). As we
have shown, the signal at each k‖ is just the sum over the
signals from each of the occupied states. In Fig. 2(a) we plot
the Wigner distribution in the Floquet eigenstates with both
branches of the Dirac cone occupied for distinct (but constant
in time) drive amplitude. For the remainder of the paper, we
focus on linearly polarized light whose polarization direction
(ŷ) is orthogonal to the momentum (ky = 0). Other choices of
polarization and momentum give qualitatively similar results.
As noted in the plots and seen elsewhere [45,47,59,65,66],
anticrossings between the surface states occur open up near the
resonance between the branches. This is the first example we
will see of Floquet resonance, here between two surface states.
These Floquet resonances, and in particular more complicated
ones between the surface and the bulk, will play a starring role
in the remainder of the paper.

As we will discuss in more detail later, actual experiments
involve a pulsed rather than fixed drive, as illustrated in
Fig. 2(b). In the slow ramp limit, τpump � T , which we always
restrict ourselves to, the drive is approximately periodic at any
point in time and we might expect the system to adiabatically
follow the instantaneous Floquet-Bloch eigenstates. In general,
if we ramp too fast, we expect nonadiabatic effects as we fail to
adiabatically follow these eigenstates. However, we note that
because both bands are occupied, there are no nonadiabatic
effects in this purely surface state model no matter how short
the pulse. The reason is simply that both states in the two-level
system are filled, and there is simply nowhere else in the Hilbert
states for the electrons to go. This is seen in Fig. 2(c), where the
�th sidebands of the Wigner distribution of the Floquet-Bloch
eigenstates are compared to those of the full time evolution,
showing no difference for τpump � T .

We are primarily interested in nonadiabatic effects in the
periodically driven system due to the pulse. We will show
that such behavior can occur when coupling these states to an
empty bulk conduction band. Therefore, let us now consider
the presence of the bulk and see how it affects this story.

B. Driving surface and bulk states of TIs

To understand the relevance of the bulk, we want to
start by constructing a simple tight-binding model of a
three-dimensional topological insulator. We consider one

of the simplest such bulk models [54], namely the lattice
regularization of (k · σ )τ z + mτx :

HbulkTI = (σx sin kx + σy sin ky + σ z sin kz)τ
z

+(m + 3 − cos kx − cos ky − cos kz)τ
x, (8)

where σ and τ are two sets of Pauli matrices corresponding to,
e.g., spin and orbital degrees of freedom. We again assume that
the electric field couples via the minimal substitution, but now
with the caveat that the electric field strength decays into the
bulk with length scale ξ , as in Fig. 1. Choosing the surface of
interest to again be perpendicular to ẑ, k‖ = (kx,ky) remain
good quantum numbers. For more details of the hopping
Hamiltonian in the z direction, please see Appendix A.

In the absence of drive, this model gives a topological
insulator for −4 < m < 0 and a trivial insulator otherwise.
In the presence of drive, we can solve this Floquet problem
and calculate its Wigner distribution. The results are shown
in Fig. 3(a). Similar to the simple surface-only model, the
surface states are strongly dressed by the drive, although
details of the signal depend heavily on microscopic details of
the model. At strong driving strength Ay = 0.25, this Floquet
equilibrium (i.e., constant drive amplitude) data already show
how coupling to the bulk changes the story, resulting in � = 3
and 4 sidebands that are stronger than � = 2 due to resonant
surface-bulk hybridization. In the next section we will see that
this surface-bulk coupling has a strong effect when we consider
a pulsed drive.

II. NONADIABATIC EFFECTS OF THE PULSED DRIVE

While the previous section considered the response in
Floquet eigenstates, which would come for example from
the steady state of a continuous-wave laser, it is often more
experimentally practical to use pulsed sources. This has
undesirable effects such as losing perfect periodicity, but the
ability to change the pulse length can also be a powerful tool
to prevent heating and target a unitary response of the system.
Therefore, in this section we will concern ourselves with the
question of how finite pulse width affects the nonequilibrium
observables of driven topological insulators.

A pulsed laser may be modeled by simply multiplying the
periodic drive by a slow envelope, such as a Gaussian: A(t) =
[A0

x cos(�t)x̂ + A0
y sin(�t)ŷ] exp(−t2/2τ 2

pump) [67] More ac-
curately, the electric field has this Gaussian envelope, but we
can approximate this as just a Gaussian on A in the limit of
a long pulse, τpump � T , which we consider throughout this
paper. The envelope breaks periodicity and thus renders this no
longer an exact Floquet problem, though in the limit of a long
pulse it is approximately periodic at any given point in time.
One might then expect that the system will adiabatically track
the Floquet eigenstates, yielding Wigner distributions similar
to Figs. 2(a) and 3(a). This is almost correct but, as we will
now see, only part of the story.

A. Coherent bulk-surface oscillations

We now simulate the coupled bulk-surface model of a TI
under such pumped drive. We start deep in the past with the
drive turned off and the chemical potential set such that all
bulk valence band and surface states are occupied [69]. Then
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FIG. 3. Driving surface plus bulk states of a model TI [see Eq. (8) and following text]. (a) Wigner distribution of Floquet-Bloch eigenstates
as a function of driving amplitude. The undriven energy spectrum is shown in blue. The surface states appear similar to Fig. 2(a), though
in this figure the color plot is on a logarithmic scale to make higher harmonics visible. We also see that starting at approximately � = 3,
the surface-state harmonics appear in the bulk. (b,c) Signal in the � = 1,2 surface sidebands for kx/2π = 0.056, indicated by the red line in
panel (a). Unlike the driven Dirac model, there is a noticeable difference between the Floquet-Bloch states (dashed red) and the exact time
evolution (blue). The intensity in the �th harmonic at time tav is given by integrating the signal I (ω,tav) from ω = εF [λ(tav)] + (� − 1/2)�
to εF [λ(tav)] + (� + 1/2)� while the equilibrium value is estimated by manually removing resonances [68]. (d) Signal in the bulk bands as
a function of tav, given by integrating the signal for all ω > Ebulk. (e) Final probability to occupy the bulk states after the ramp is finished
(t → ∞) as a function of system size showing the existence of a well-defined thermodynamic limit. All data are for kx/2π = 0.056, ky = 0,
Ax = 0, Ay = 0.25, m = −0.8, � = 0.2, τpr = 5T = 10π/�, and L = 100 unless otherwise specified.

the exact dynamics are simulated and the Wigner distribution
f (ω,tav) computed. This function is strongly peaked in ω

and highly oscillatory in tav so we smooth out the results by
convolving f by a Gaussian of width τpr in both the frequency
and time direction:

I (ω,tav) =
∫

dω′dt ′ave
−(ω−ω′)2τ 2

pre−(tav−t ′av)2/τ 2
prf (ω′,t ′av). (9)

We refer to the result as the signal and/or intensity at frequency
ω and time tav, which will be justified in Sec. II C by showing
its connection to ARPES. If the probe width τpr is much greater
than the drive frequency, this convolution has the additional
advantage of averaging over the drive phase, such that f may
be replaced by f in Eq. (9).

One striking difference between the equilibrium and
nonequilibrium case is that, even after the drive has been
turned off, population remains in the bulk conduction states, as
seen in Fig. 3(d). This phenomenon is specific to the coupled
bulk/surface model, and we do not see it in the simpler Dirac
cone model of Sec. I A. Decay of excited surface states into the
bulk has been anticipated in the presence of phonons [40], but
note that this decay mechanism does not exist in our model.
Therefore, the population transferred to the bulk may only
come from coherent nonadiabatic processes.

In addition to tunneling into the bulk, we see coherent
oscillations in the Wigner distribution of the surface states.
This is shown in Figs. 3(b) and 3(c), where the signal in
the �th sideband is given by weight in the �th peak at fixed
kx and tav normalized by the sum over all peaks. Together,

these results suggest that we are seeing coherent oscillations
of the population between the surface and the bulk states. We
have varied the microscopic parameters over a wide range
of values and found that the existence of these oscillations
are remarkably robust, always appearing in tandem with an
irreversible leaking into the bulk. We now seek to understand
this in terms of the physics of Floquet resonances.

B. Floquet resonances and Landau-Zener physics

Resonances have long been known to play a major role
in Floquet systems [70–73]. Mathematically, they come from
the fact that the drive introduces a new energy scale � such
that energies are only defined modulo �. For a many-body
system of linear size L in d dimensions, the bare spectrum is
extensive, scaling as Ld . However, Hone et al. [73] argued that
folding by � in the thermodynamic limit leads to a denser set
of quasienergy levels as the system size is increased. This in
turn leads to a dense set of weakly avoided crossings such that
even simple ideas like tracking a single quasienergy level to
achieve an adiabatic limit becomes ill defined. Thus the weakly
avoided crossings, which we call Floquet resonances, lead to
a fundamental absence of adiabaticity in Floquet systems.
Furthermore, they have been suggested to lead to heating
effects [74] and the breakdown of high-frequency expansions
[75], which are two of the most important and active topics in
the field of Floquet engineering.

As seen in Fig. 3(a), Floquet resonances between the surface
and the bulk states inevitably occur in systems such as ours,
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(a)

(b)

FIG. 4. Floquet resonances between the surface and bulk. (a)
Floquet eigenspectrum of the TI model as a function of drive strength
using the same parameters as Fig. 3(b) with L = 100 and 200. The size
of the dots is proportional to the proximity of the Floquet eigenstate to
the top surface such that the surface state appears larger than the bulk
states. (b) Illustration of the Demkov-Osherov model of the Floquet
eigenspectrum. A single surface state passes through a continuum of
bulk states. As L increases, the increase in the density of states is
offset by the decrease in the matrix elements coupling surface and
bulk. The system may be approximated by a single Landau-Zener
crossing with effective gap �eff that controls both excitation of the
bulk and oscillation frequency of the surface state. See text for details.

where the driving frequency � is less than the bandwidth.
However, there are a number of subtleties that we must con-
sider in comparing this to the Hone et al. result. Most notably,
they were considering coupling between bulk states due to the
drive, whereas here we are interested in coupling between the
bulk and the surface state. Since the drive primarily couples to
the surface states and only weakly to the bulk, one naive guess
would be that the matrix elements between these states would
scale as the spatial overlaps between them, ξ/L, vanishing
in the thermodynamic limit. This indeed seems to be the
case, but one must counterbalance it against the fact that the
(one-dimensional) density of states at fixed k‖ scales as L.
Thus these two effects conspire to create an order-1 gap in the
quasienergy spectrum which depends sensitively on various
microscopic properties. Therefore, we expect that the strength
will differ significantly from model to model, e.g., between
our simple model TI and a real material. Nevertheless, the
existence of order-1 Floquet resonances should be robust by
the above argument, and thus the phenomena we describe are
completely generic.

As seen in Fig. 4(a), Floquet resonances lead to a series of
anticrossings between quasienergies of the bulk and surface
states. As expected, the quasienergy of the surface state
depends strongly on driving amplitude, while the bulk states
are nearly independent of the drive. We also confirm that as
L increases the number of anticrossings increases as well,
while the strength (i.e., the gap) of the anticrossings decreases.
This situation, where a single dispersing level passes through
many parallel nondispersing ones is known in the non-Floquet
case as the Demkov-Osherov (D-O) model [76–78] and is

an analytically tractable many-level generalization of the
Landau-Zener (L-Z) model [79,80]. The scattering matrix of
the D-O model in the long-time limit is remarkable because
interference between the various avoided crossings is absent.
Thus, the D-O scattering problem reduces to Nc independent
L-Z transitions, where Nc is the number of bulk levels that
the dispersing level surface state crosses. In our case, Nc ∼ L

at fixed k‖ because we effectively have a one-dimensional
problem.

For slow ramps, one expects that the dynamics of a Floquet
system will be dominated by resonant effects, which are
captured within the appropriately folded effective Hamiltonian
HF . Therefore, we should be able to able to treat the Floquet
D-O model identically to the undriven case. Assume the
surface state is ramped through Nc bulk states during the first
half of the pump pulse by increasing Ay from 0 to A0

y such that
the surface state quasienergy increases at a constant velocity
v = dε/dt . As each crossing may be treated independently, the
final probability to be in the surface state is just the product of
the individual probabilities:

pA
ss = exp

⎡
⎣−2π

Nc∑
j=1

�2
j /v

⎤
⎦. (10)

This looks exactly like the L-Z problem for a single avoided

crossing with matrix element �eff =
√∑

j �2
j , as illustrated

in Fig. 4(b). In the thermodynamic limit, we expect these
gaps to scale as �j ∼ �0/

√
L from the scaling of the overlap

of bulk and surface eigenstates. Thus the dynamics of our
model is expected to have a consistent L → ∞ limit, which
is confirmed numerically in Fig. 3(e). In addition to the final
bulk occupation, this effective gap also controls the time scale
of the oscillations in the surface state sidebands. Thus we see
that both the incoherent transition to bulk states and coherent
bulk-surface oscillations survive in the thermodynamic limit
with dynamics set by the same emergent energy scale.

In addition to giving a physical picture for both the surface-
bulk oscillations and the nonadiabatic tunneling of electrons
into the bulk, the Demkov-Osherov model provides a handle
for understanding how these should change with the various
parameters, such as the experimentally controllable τpump. One
important upshot is the meaning of adiabaticity reversed from
what we expect in the absence of resonances. Normally one
expects the adiabatic limit to correspond to slow ramping, such
that the system tracks the instantaneous Floquet eigenstate.
However, it is clear for the resonant case that ramping the field
too slowly will cause the entire population to transfer into the
bulk. Therefore, to adiabatically track the surface state, one
must instead use a fast ramp, though still sufficiently slow to
prevent direct nonresonant excitations to the bulk [73,75,81].
More explicitly, we expect that the population remaining
in the surface state at the end of the ramp should scale
as p

f
ss = e−4π�2

eff/v ∼ e−(4π�2
eff/�ε)τpump ≡ e−2�τpump , where the

additional factor of two compared to Eq. (10) comes from
ramping up to A0

y then back down to 0. This dependence is
consistent with the data, as shown in Fig. 5(d). By a similar
token, increasing τpump increases the size of the resonant
bulk-surface oscillations, as seen in Figs. 5(a)–5(c). It is
interesting to note that a similar ghost surface state has been
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FIG. 5. Scaling of surface oscillations and bulk occupation with pump time τpump, confirming predictions of the Demkov-Osherov model.
(a)–(c) Oscillations of the signal in the � = 2 surface sideband as a function of τpump, showing an increase in amplitude but no apparent change
in the characteristic frequency. (d) Final occupation in the surface state, which decreases exponentially with τpump as the electrons resonantly
tunnel into the bulk (see details). The decay rate into the bulk does not depend on system size. All data are for the same parameters as Fig. 3(b).

found in static models of topological materials coupled to
a trivial bulk [82,83], which may be solved by modeling it
with the well-known Fano model [84]. Ours is the natural
Floquet generalization of these ideas, leading to fundamentally
nonequilibrium phenomena such as coherent bulk-surface
oscillations and Floquet resonances. Further discussion of the
Demkov-Osherov model and its application to surface-driven
systems may be found in Appendix B.

C. Applications to time-resolved ARPES

Before concluding this section, we note that our results
our directly applicable to time-resolved ARPES experiments.
Time-resolved pump-probe ARPES works by driving the
system at frequency � with a Gaussian envelope (the pump),
which excites the electrons in the sample but does not cause it
to photoemit. Then, at variable times during the pump, a weak
probe pulse at much higher frequency and much shorter width
τpr is shone on the sample, which excites the driven electrons
above the work function of the material. These electrons are
then (photo)emitted by the sample and subsequently detected.
By measuring the energy and momenta of the photoemitted
electrons, the detector is able to map out the material’s band
structure during the probe pulse, including any nonequilibrium
effects given by the pump.

Theoretically, the time-resolved ARPES signal for an
arbitrary driven Hamiltonian H (t) is given by [66,85]

I (ω,tav) = Im

[ ∫
dt1dt2spr(tav − t1)spr(tav − t2)

× eiω(t1−t2)TrG<

(
t1 − t2,

t1 + t2

2

)]
(11)

if one ignores that matrix elements between the electrons in the
material and the photoemitted states. A brief discussion of the
effect of nontrivial matrix elements is found in Appendix C.
If one uses a Gaussian probe, spr(t) = exp(−t2/2τ 2

pr), then
Eq. (11) reduces to Eq. (9). Thus, all of the results we have
shown so far can be simply interpreted as the signal of a
time-resolved ARPES experiment with a Gaussian pump and
probe, and our results serve as an important experimentally
accessible signature of this bulk-surface coupling.

III. LEADING CORRECTIONS IN FLOQUET ADIABATIC
PERTURBATION THEORY

We have seen that, for slow pulses, nonadiabatic corrections
to the Wigner distribution are dominated by resonances
between the bulk and the surface. In this section, we will
consider the other potential source of excitations, namely
direct excitations to the bulk due to fast ramping of the
drive. We will theoretically describe the leading corrections
using Floquet adiabatic perturbation theory [81], placing the
Wigner distribution on the same footing as static observables
(cf. Ref. [75]). We will also use this to understand the
short pump pulse limit, which remains relatively unexplored
experimentally.

A. Basics of Floquet adiabatic perturbation theory (FAPT)

Adiabatic perturbation theory (APT) is a technique to derive
leading corrections to the adiabatic limit for a system with a
parameter λ that is ramped slowly with time [86–90]. Floquet
APT (FAPT) extends this idea to a periodically driven system,
which is relevant for our setup with parameter λ = Ay ramped
slowly during the pump pulse. Consider as before the case
where the system starts with drive turned off in the single-
particle eigenstate |0〉 of undriven Hamiltonian H (λ(t0)).
Turning on the drive slowly, the full time evolution is captured
in the wave function |ψ(t)〉. We can approximately solve the
problem by doing a unitary rotation to the moving frame:
|ψ̃〉 = V †|ψ〉, where V (λ(t),t) = P (λ,t)Ud (λ) is a unitary that
maps the Floquet eigenstates |nF (λ,t)〉 [see Eq. (6)] to a fixed
basis |en〉. In particular if we were to imagine turning on λ

infinitely slowly in a gapped Floquet system, then the initial
state |0〉 would just adiabatically track to the Floquet eigenstate
|ψ(t)〉 = |0F (λ,t)〉 and V † would act to map this to a time and
λ-independent state |ψ̃〉 = |e0〉. For a generic time evolution
λ(t), the effective Hamiltonian in this moving frame is given
by

Hm = U
†
dHF Ud − iλ̇V †∂λV ≡ Hd

F − λ̇ÃF , (12)

where Hd
F is a diagonal matrix whose entries correspond

to the Floquet quasienenergies and AF (λ,t) = V ÃF V † is
the natural Floquet generalization of the Berry connec-
tion operator, with matrix elements 〈mF (λ,t)|AF |nF (λ,t)〉 =
i〈mF (λ,t)|∂λnF (λ,t)〉. In the adiabatic limit (λ̇ → 0), off-
diagonal elements of the second term in Eq. (12) are unable
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to cause transitions, which yields the adiabatic loading of the
Floquet eigenstates as we just discussed.

Floquet APT consists of solving leading corrections to
adiabaticity induced by the second term in Eq. (12). As this
term is small due to the slow ramp rate λ̇, it can be treated
perturbatively. In particular, one may note that at fixed λ, ÃF is
a periodic operator with Fourier series ÃF = ∑

� Ã
(�)
F ei��t and

similarly for V . Then Eq. (12) yields a Floquet problem which
we can approximately solve using static perturbation theory.
By expanding the wave function |ψ(t)〉 = ∑

n cn|nF [λ(t),t]〉,
the coefficients at leading order in adiabatic perturbation
theory are given by [81]

c0 ≈ e−i�0(t)

cn ≈ e−i�0(t)λ̇(t)
∑

�

〈en|Ã(�)
F [λ(t)]|e0〉

εF
n (λ) − εF

0 (λ) + ��
ei��t . (13)

The phase �0 that the wave function picks up during the ramp
consists of a dynamical and a Berry phase:

�0(t) =
∫ t

t0

[
εF

0 [λ(t ′)] − λ̇(t ′)〈e0|ÃF [λ(t ′),t ′]|e0〉
]
dt ′.

This phase is usually neglected in most APT calculations of
single-time observables, but is crucial to situations like ARPES
where nonequilibrium observables are measured.

B. Application of FAPT to Wigner distribution

One can now use the approximate wave function |ψ(t)〉
derived above to obtain the Wigner distribution, f (tav,tr) =
〈ψ(tav + tr/2)|ψ(tav − tr/2)〉. For this Floquet problem, time
enters in two ways: in the periodic part of the Floquet
eigenstates and in the slow time dependence of λ. In the
spirit of FAPT, we expand this slow dependence about the
measurement point tav, λ(tav ± tr/2) = λ(tav) ± trλ̇(tav)/2 +
O(λ̇2), and solve for the signal I keeping all terms to order
λ̇. This calculation is done in detail in Appendix D, with the
following result:

I (ω,tpr) ≈
∑

�

[(
I

(�)
0 + �I (�)

)
e−[ω−ω

(�)
0 −�ω(�)]2τ 2

pr
]
,

�ω(�) = λ̇

(
∂λϕ

(�) −
∑
�′

p0�′∂λϕ
(�′)

)
,

�I (�)

I
(�)
0

= λ̇
∑
n,�′

( 〈e0|V (−�)†V (−�−�′)|en〉〈en|Ã(�′)
F |e0〉

εF
n0 + �′�

)
, (14)

where all expressions are evaluated at time tpr, the sum is taken
for all pairs (n,�′) = (0,�), and notations are explained in the
following paragraph.

The effects of these leading corrections to adiabaticity
on the ARPES signal are illustrated in Fig. 6. Both the
intensity I

(�)
0 = p0� = 〈0(�)

F |0(�)
F 〉 and the frequency ω

(�)
0 =

εF
0 − �� of the Floquet sideband |0(�)

F 〉 defined in Eq. (7) are
modified by an amount proportional to the ramp rate λ̇. The
intensity shift �I (�) results from virtual excitations of |0(�′)

F 〉 to

|n(�+�′)
F 〉, which is a relatively standard prediction of adiabatic

perturbation theory. Much more surprising are the frequency
shifts, as they turn out to come from Berry phase effects. If we

FIG. 6. Illustration of the effects of nonadiabaticity on the
Floquet-ARPES signal with the FAPT approximation, leading to
shifts in both the peak frequency and height proportional to the ramp
rate λ̇.

isolate the Berry phase sidebands as |0(�)
F 〉 = eiϕ(�)(λ)|0̃(�)

F (λ)〉
such that |0̃(�)

F 〉 has vanishing Berry connection, then �ω(�)

gives the difference of the Berry connection in sideband �

from the average Berry connection across all sidebands. This
object seems somewhat bizarre if for no other reason than the
fact that the Berry connection is not gauge invariant. However,
this difference of Berry connections is gauge invariant and
leads to a Berry phase-dependent shift of the frequency of the
sidebands.

Interestingly, while we think of adiabatic perturbation
theory as primarily holding in the limit of small velocities,
the results above actually hold in the limit of large (but not
too large) velocities in which resonances can be neglected.
Similar to the results found earlier in the resonant limit, these
corrections in FAPT will lead to an asymmetry in the intensity
signal with respect to time t = 0, even though the Gaussian
pulse is symmetric with respect to t = 0. Unlike the resonant
case, these corrections get smaller as the velocity decreases, or
equivalently the pump time τpump increases, and the excitations
that they describe are virtual, meaning that no real population
will remain in the bulk. Combining this with our previous
results, we see that as τpump is increased from zero, we get
crossovers between various regimes, which are as follows:

(1) τpump � 1/J,1/�: Nonuniversal physics related to
microscopic details.

(2) 1/J,1/� � τpump � 1/�res: Virtual excitations de-
scribed by Floquet adiabatic perturbation theory.

(3) 1/�res � τpump: Real excitations due to surface-bulk
resonances.

In the low-frequency weak-drive limit, we expect these
regimes to be well separated [48], but whether such a
separation of scales occurs in general is an important open
question.

IV. DISCUSSION AND CONCLUSIONS

We have computed the Wigner distribution function for
a driven topological insulator with bulk-surface coupling
and study the effects of a pump pulse that weakly breaks
the periodicity. If the drive is fixed, the Floquet states are
well defined. However, the slow turning on and off of the
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drive breaks this periodicity and the Floquet states are no
longer solutions of the Schrödinger equation. This leads to
nonadiabatic population transfer from the surface states to
the bulk. We track the origin to the existence of bulk surface
avoiding crossings in the quasienergy spectrum, a signature of
which are oscillations in the ARPES signal of a pump-probe
type of experiment.

Finally we computed, using perturbation theory on the
ramp rate of the drive amplitude, leading corrections to the
adiabatic Floquet states. We showed that there are shifts of
the resonances in the quasienergy spectrum. The shifts are
a measure of the generalization of the Berry connection to
periodically driven systems and can theoretically be seen in
the ARPES spectrum.

These surface-bulk coupling effects are a very interesting
paradigm to explore in future research. Many probes involve
this basic setup, including ARPES, various types of scanning
tip microscopy, photon-in photon-out scattering experiments,
and many others. In systems with interesting topological
surface states, or even traditional nontopological ones, this
bulk/surface coupling upon resonant drive should yield inter-
esting physically measurable effects.

Topological insulators are rather weakly correlated ma-
terials [91,92], so our treatment of them as noninteracting
is well justified. Generally, one expects this story to hold
up against weak experimental realities such as interactions
or disorder as long as the time scales associated with these
processes are slower than those of the coherent bulk-surface
oscillations. A more experimentally relevant concern are
phonons, which generally have a much stronger effect on bulk
states than surface states [40]. This could have the potentially
interesting effects of preferentially dephasing or relaxing
higher harmonics of the surface states due to the presence of
nearby-in-energy bulk states coupled by bulk phonons, while
having a much weaker effect on surface harmonics that remain
in the bulk gap. The effects of these experimentally relevant
factors remain an open topic for future research.

Finally, we note that driving the surface states of TIs
and other materials was spurred by the search for novel
topological states [45–47] and rapidly expanded to other
contexts [93–102]. In particular, it was proposed that driving
a Dirac cone by circularly polarized light could open a
topological gap, yielding a Floquet Chern insulator. These
proposals formally utilize the limit where � is much larger
than the band gap, but experiments practically work in the
opposite limit. The interesting open question is then what
aspects of this topological character remain. There have been
a number of recent studies that explored the interplay of
bulk and surface states in systems driven at low frequencies
[21,29,48,49], in which topological invariants were discovered
that explicitly depend on the Floquet structure. However, those
papers consider bulk driving of an initially trivial system,
whereas our paper considers surface driving of an initially
nontrivial system. We find seemingly unavoidable surface-bulk
coupling which seems to close the Floquet gap and break
down this topological classification for such driving. However,
topological protection can also extend to gapless systems
[13,103], so we leave the open question of how this surface
driving affects the topological classification of the TI for future
work.
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APPENDIX A: FURTHER DETAILS OF
BOUNDARY-DRIVEN BULK TI MODEL

In this Appendix we briefly provide a more concrete
definition of the Hamiltonian described the main text. As
mentioned earlier, kx,y are conserved quantities, while kz

dispersion becomes hopping. Labeling the sites along the z

direction as j = 0,1, . . . ,L − 1, the Hamiltonian may then be
written

H = J

⎛
⎜⎜⎜⎜⎝

H 0
d Hod

H
†
od H 1

d Hod

H
†
od

. . .
HL−1

d

⎞
⎟⎟⎟⎟⎠,

H
j

d = τ z
[
σx sin

(
kx + aj

x

) + σy sin
(
ky + aj

y

)]
+ τ x

[
m + 3 − cos

(
kx + aj

x

) − cos
(
ky + aj

y

)]
,

Hod = iσ zτ z − τ x

2
,

where the position-dependent vector potentials are a
j
x =

Ax sin(�t) exp(−j/ξ ) and a
j
y = Ay cos(�t) exp(−j/ξ ). As

noted in the main text, we work in the case Ax = 0 and ky = 0
for all of the data shown.

APPENDIX B: FURTHER DETAILS OF THE
DEMKOV-OSHEROV MODEL

The Demkov-Osherov (D-O) model consists of N parallel
levels traversed by a single mode whose energy changes
linearly with some parameter λ [76–78]. It can formally be
solved when treated as a scattering problem, i.e., starting with
some probability pi

n in the states at λ(t = −∞) = −∞, λ is
ramped linearly according to λ = vt and the final probabilities
at t = ∞ are obtained. The nice property of this model is that
the level-crossings factorize, in the sense that the probability of
ending up in one branch can be obtained by simply taking the
semiclassical product of all the prior two-level (Landau-Zener)
avoided crossings. Essentially this implies that in the long-time
limit there are no interference effects between the various
avoided crossings.
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Motivated by the surface-bulk resonance discussed in
Sec. II B, we will consider a particular subclass of D-O model
illustrated in Fig. 7(a). A total of L levels representing the
bulk bands span the energy window εbulk ∈ (−1/2,1/2) while
the surface state disperses with bare energy ε0 = λ with some
generic parameter λ taking the place of Ay . Gaps of strength
2�0/

√
L are opened uniformly between each bulk state and

the surface state, which we will see gives a well-defined
thermodynamic limit. Choosing all matrix elements to be real
and labeling the bulk states |j = 1, . . . ,L〉 and the surface
state |0〉, this is described by the Hamiltonian

H = λ|0〉〈0| +
L∑

j=1

εj |j 〉〈j | + �0√
L

L∑
j=1

(|0〉〈j | + |j 〉〈0|),

(B1)

where εj = (j − 1/2)/L − 1/2.
We will be particularly interested in taking this model

to the thermodynamic limit L → ∞ and ascertaining what
universal properties can be found in its dynamics. Consider
first the exactly solvable case where we start in the ground
state |0〉 at λ = −∞ and ramp linearly via λ = vt . Due to the
fact that the crossings can be treated independently, at time
t = ∞ the probability to remain in the surface state is simply
p

f

0 = ∏
j e−2π�2

j /v = e−2π�2
0/v , where �j = �0/

√
L is the

off-diagonal matrix element between |0〉 and |j 〉. Note that this
transition probability is identical to that of a single Landau-
Zener transition with matrix element �eff = �0. While this
effective gap only formally gives the final transition amplitude,
one can readily confirm numerically that the dynamics of the
occupation p0(t) = |〈0|ψ(t)〉|2 during the ramp is also well
approximated by that of a single avoided crossing of strength
�eff .

Let us now apply this intuitive approximation to arbitrary
ramps λ(t/τpump) set by some time scale τpump (e.g., the
width of a Gaussian). A natural estimate for the transition
probabilities is that they will again factorize but now with
v → |vj | = |ε̇0(tj )|, where tj is the time where the j th level
is crossed: ε0[λ(tj )] = εj . Then if we start in the state |0〉 at
time ti and monotonically increase λ up to time tf , such that
|vj | = vj , the amount remaining in the surface state will be
p

ti→tf
0 ≈ e−α(ti→tf ), where

α(ti → tf ) = 2π
∑

i

�2
i /vi

L→∞→ 2π

∫
dεν(ε)

�2(ε)

dε/dt

= 2π�2
0

∫ tf

t1

dt = 2π�2
0|z1|τpump, (B2)

ν(ε) = L is the density of bulk states, and t1(λi,λf ) =
z1(λi,λf )τpump is the time where the surface state first passes
into the bulk, i.e., where it crosses ε1. Note that this can be
written as p

ti→tf
0 ≈ e−�τpump which looks like a constant rate �

of surface states leaking into the bulk during the ramp.
The story becomes even more subtle if λ(t) is not

monotonic. Then the surface state may cross a given bulk
state multiple times, and population that had transferred into
the bulk may now return to the surface. However, we are
already ignoring interference effects in the above model by,
for instance, not ramping all the way to λ = ∞ to dephase the

excitations. Therefore, at a similar level of approximation we
may assume that no population, once transferred to the bulk,
is able to return to the surface. Furthermore, if λ(t) is an even
function of time, then the magnitude of the velocity vj for
passing bulk level j during the first half of the ramp will be the
same as during the second half of the ramp. Thus, we estimate
the final surface occupation to be p

f

0 = e−2�τpump , where � is
given by Eq. (B2). We numerically test this approximation
using a Gaussian ramp that starts from λ = −λ0 and ramps
to λ = 0 as illustrated in Fig. 7(b). Plugging this ramp profile
into Eq. (B2), we find

�Gaussian = 2π�2
0

√
−2 ln[1 − 1/(2λ0)]. (B3)

This estimate is plotted against exact simulation in Fig. 7(c),
showing a good fit. This justifies our independent-level
Demkov-Osherov approximation for Gaussian ramps, which
is used in the main text to fit the data in Fig. 5.

APPENDIX C: MATRIX ELEMENTS IN ARPES

An additional complication in interpreting ARPES experi-
ments is the fact that not all electrons photoemit with identical
matrix elements, as we have tacitly assumed throughout this
work. The general expression for the ARPES signal in the
presence of photoemission matrix elements is significantly
more complicated [85] and does not provide much insight
to our analysis. However, we can slightly improve our
approximation by simply weighting the states in G< by their
position along the z direction. The intuition behind this is that
both the probe photons and the ionized electrons have some
finite penetration depth or mean free path in the bulk before
they are dissipated. Approximating this by a single length scale
ξpr, we can introduce a weighting operator

Ŵk‖ =
∑
jα

e−j/ξpr |jαk‖〉〈jαk‖|, (C1)

where j = 0,1, . . . ,L − 1 is the site number along the z

direction, α = 1 − 4 are indices in the spin-orbital basis of
σ and τ , and k‖ is the xy momentum as before. This operator
just weights single-particle states by their position along z and
thus we approximate the surface-weighted ARPES response
by replacing f by

f ′
n(tr,tav) = 〈ψn(tav + tr/2)|Ŵ |ψn(tav − tr/2)〉.

The results with this surface projection are shown in
Fig. 8 and allow us to compare surface and bulk behaviors,
particularly in higher Floquet sidebands. We see that the � = 2
sideband does not change significantly in either amplitude or
character as ξpr is varied, which is consistent with its nature
as a surface state. On the other hand, the � = 3 sideband is
dominated by excitations into the bulk, which shows up as a
strong increase in the signal with ξpr. On top of these bulk
excitations, one expects a surface sideband signal as well,
which should not depend on ξpr in the ξpr → ∞ limit. In
principle we should be able to use this idea to distinguish
the surface and bulk signals. Unfortunately, we are currently
unable to do so with our data due to finite-size effects; we leave
this distinction of surface and bulk signals in the sidebands as
a subject for future work.
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FIG. 7. Surface state occupation in Gaussian ramps of the Demkov-Osherov (D-O) model. (a) Illustration of the simplified D-O model that
we consider [Eq. (B1)] with L = 10 levels. We simulate a Gaussian ramp to the middle of the bulk spectrum (b) and track the final surface
state occupation p

f

0 = |〈0|ψ(t = ∞)〉|2 as function of the ramp rate τpump (c). The dashed lines show the predicted value p
f

0 = e−2�τpump with
� from Eq. (B3) showing a good fit for a variety of �0 and λ0.

APPENDIX D: FURTHER DETAILS OF FAPT

In this Appendix, we will derive Eq. (14) by using the
approximate time-dependent wave function derived using
FAPT [Eq. (13)] to obtain the Wigner distribution:

f (tav,tr) = 〈ψ(tav + tr/2)|ψ(tav − tr/2)〉 ≡ 〈ψ(t+)|ψ(t−)〉

≈ e−i(�0(t−)−�0(t+))

[
〈0F (λ+,t+)|0F (λ−,t−)〉 +

× λ̇−
∑
n=0,�

〈en|Ã(�)
F (λ−)|e0〉

εF
n0(λ−) + ��

ei�(�t−−ϕ0)

×〈0F (λ+,t+)|nF (λ−,t−)〉 + (λ+ ↔ λ−)

]
, (D1)

where t± ≡ tav ± tr/2 and λα ≡ λ(tα). As mentioned in the
main text, time enters via both the periodic part of the Floquet
eigenstates and the slow time dependence of λ, and we will
expand this slow dependence about the tav: λ(t±) = λ(tav) ±
trλ̇(tav)/2 + O(λ̇2).

Let us now evaluate the terms in Eq. (D1) one by one. First,
consider the phase factor eiδ�0 where

δ�0 = �0(t+) − �0(t−)

=
∫ t+

t−
(εF

0 [λ(t ′)] − λ̇(t ′)〈e0|ÃF [λ(t ′),t ′]|e0〉)dt ′. (D2)

At order λ̇, the energy can be expanded around λav as
εF

0 [λ(t ′)] ≈ εF
0 (λav) + λ̇av(t ′ − tav)∂λε

F
0 (λav). The second term

is odd about tav, so it integrates to zero. Meanwhile, it is useful
to express ÃF and V in terms of Fourier modes:

V (λ,t) =
∑

�

ei�(�t−ϕ0)V (�)(λ), (D3)

ÃF (λ,t) = i
∑
�,�′

e−i�′(�t−ϕ0)V (�′)†∂λV
(�)ei�(�t−ϕ0) (D4)

⇒ Ã
(�)
F = i

∑
�′

V (�′)†∂λV
(�+�′). (D5)

Throughout this appendix, we explicitly write the driving
phase ϕ0 to facilitate averaging over it as in Eq. (8). Then,
replacing λ(t ′) by λav in the second term of Eq. (D2) to leading
order in λ̇ we get

∫ t+

t−
〈e0|ÃF (λav,t

′)|e0〉dt ′

=
∑

�

∫ t+

t−
ei�(�t ′−ϕ0)〈e0|A(�)

F |e0〉dt ′ (D6)

=
∑

�

〈e0|Ã(�)
F |e0〉

i��
(ei�(�t+−ϕ0) − ei�(�t−−ϕ0)) (D7)
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FIG. 8. Signal in the � = 2 and 3 sidebands as a function of the length scale ξpr for approximate ARPES matrix elements [Eq. (C1)] using
the same parameters as Fig. 3(b). Data in previous figures are essentially the ξpr → ∞ limit of this model.
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=
∑

�

〈e0|Ã(�)
F |e0〉

i��
ei�(�tav−ϕ0)(ei��tr/2 − e−i��tr/2)

≡ iB1. (D8)

Unless explicitly stated otherwise, all terms in the above
expression are now evaluated at λav, which is a trick we will
employ throughout. Putting these terms together,

eiδ�0 ≈ eiεF
0 tre−iλ̇av(iB1) ≈ eiεF

0 tr (1 + λ̇avB1). (D9)

Note that this first term in this product gives the main peak
center as εF

0 , the Floquet quasienergy, while the terms like
ei��tr/2 in B1 give additional satellite peaks offset by half-
integer multiples of �. Later averaging over the phase ϕ0 will
remove all but the integer multiples of this frequency.

Next, we Taylor expand the term that appears to be O(λ̇0)
in Eq. (D1) about time tav:

|0F (λ(t−),t−)〉 ≈ |0F (λav,t−)〉 − tr

2
λ̇av∂λ|0F (λav,t−)〉 (D10)

and similarly for the bra. Thus,

〈0F (λ+,t+)|0F (λ−,t−)〉 ≈ 〈0F (λav,t+)|0F (λav,t−)〉︸ ︷︷ ︸
A0

+ λ̇avtr

2
(〈∂λ0F (λav,t+)|0F (λav,t−)〉 − 〈0F (λav,t+)|∂λ0F (λav,t−)〉)︸ ︷︷ ︸

λ̇A1

. (D11)

Now |0F (λ,t)〉 = V (λ,t)|e0〉, so ∂λ|0F 〉 = ∂λV |e0〉. Thus

A1 = tr

2
(〈e0|∂λV

†(t+)V (t−)|e0〉 − 〈e0|V †(t+)∂λV (t−)|e0〉) (D12)

= tr

2

∑
�′,�′′

(〈e0|∂λV
(�′)†e−i�′(�t+−ϕ0)ei�′′(�t−−ϕ0)V (�′′)|e0〉 − 〈e0|V (�′)†e−i�′(�t+−ϕ0)ei�′′(�t−−ϕ0)∂λV

(�′′)|e0〉) (D13)

= tr

2

∑
�′,�′′

e−i(�′−�′′)(�tav−ϕ0)e−i(�′′+�′)�tr/2(〈e0|∂λV
(�′)†V (�′′)|e0〉 − 〈e0|V (�′)†∂λV

(�′′)|e0〉). (D14)

Meanwhile,

A0 =
∑
�′,�′′

e−i(�′−�′′)(�tav−ϕ0)e−i(�′′+�′)�tr/2〈e0|V (�′)†V (�′′)|e0〉. (D15)

In the remaining two terms of Eq. (D1), at order λ̇ we can again replace λ± by λav. Then we can group these two terms into
one that we denote λ̇avA2, with

A2 =
∑
n=0,�

[ 〈en|Ã(�)
F |e0〉

εF
n0 + ��

ei�(�tav−ϕ0)e−i��tr/2〈0F (λav,t+)|nF (λav,t−)〉 (D16)

+ 〈e0|Ã(�)†
F |en〉

εF
n0 + ��

e−i�(�tav)−ϕ0e−i��tr/2〈nF (λav,t+)|0F (λav,t−)〉
]
. (D17)

Now

〈0F (t+)|nF (t−)〉 = 〈e0|V (t+)†V (t−)|en〉 (D18)

= 〈e0|
(∑

�′,�′′
V (�′)†e−i�′(�t+−ϕ0)ei�′′(�t−−ϕ0)V (�′′)

)
|en〉 (D19)

= 〈e0|
(∑

�′,�′′
ei(�′′−�′)(�tav−ϕ0)e−i(�′′+�′)�tr/2V (�′)†V (�′′)

)
|en〉 (D20)

and similarly for 〈nF (t+)|0F (t−)〉. Thus

A2 =
∑

n=0,�,�′,�′′

[ 〈en|Ã(�)
F |e0〉〈e0|V (�′)†V (�′′)|en〉

εF
n0 + ��

ei(�+�′′−�′)(�tav−ϕ0)e−i(�+�′+�′′)�tr/2 (D21)

+ 〈e0|Ã(�)†
F |en〉〈en|V (�′′)†V (�′)|e0〉

εF
n0 + ��

e−i(�+�′′−�′)(�tav−ϕ0)e−i(�+�′+�′′)�tr/2

]
. (D22)

Altogether,

f ≈ eiεF
0 tr (1 + λ̇avB1)(A0 + λ̇avA1 + λ̇avA2) ≈ eiεF

0 tr [A0 + λ̇av(A1 + A2 + A0B1︸ ︷︷ ︸
A3

)], (D23)
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where we can rewrite A0B1 as

A0B1 =
∑

�,�′,�′′

〈e0|Ã(�)
F |e0〉〈e0|V (�′)†V �′′ |e0〉

��
e−i(�′−�′′−�)(�tav−ϕ0)e−i(�′′+�′)�tr/2(e−i��tr/2 − ei��tr/2). (D24)

Together with the expressions for A0,1,2 above, this is the leading correction to f (tav,tr). However, the observable ARPES signal
comes from Fourier transforming this to get f (tav,ω), and then convolving in both the frequency and time direction by the
Gaussian probe of width τpr, e−ω2τ 2

pr and e−(tav−tpr)2/τ 2
pr respectively, to get the ARPES signal I (tpr,ω) at frequency ω for a probe

centered at time tpr. In the limit τpr � T this convolution averages over many cycles as discussed earlier, which we treat by
averaging over ϕ0. Then, for instance, the adiabatic signal reduces to

A0 =
∑

�

〈e0|V (�)†V (�)|e0〉e−i��tr , (D25)

which yields the same Wigner distribution as Eq. (8).
Let us now calculate the leading correction, A3 = A1 + A2 + A0B1, term by term:

A1 = tr

2

∑
�

e−i��tr [〈e0|∂λV
(�)†V (�)|e0〉 − 〈e0|V (�)†∂λV

(�)|e0〉], (D26)

A2 =
∑

n=0,�′,�′′
e−i�′�tr

[
〈en|Ã(�′−�′′)

F |e0〉〈e0|V (�′)†V (�′′)|en〉
εF
n0 + (�′ − �′′)�

+ H.c.

]
, (D27)

A0B1 =
∑
�′,�′′

〈e0|Ã(�′−�′′)
F |e0〉〈e0|V (�′)†V (�′′)|e0〉

(�′ − �′′)�
(e−i�′�tr − e−i�′′�tr ). (D28)

It is worth noting that A0B1 naturally breaks up into diagonal and off-diagonal terms corresponding to �′ = �′′ and �′ = �′′
respectively. The diagonal term can be rewritten as

(A0B1)d =
∑
�′=�′′

〈e0|Ã(0)
F |e0〉〈e0|V (�′)†V (�′)|e0〉

(�′ − �′′)�
e−i�′�tr (1 − e−i(�′′−�′)�tr ) (D29)

= −itr〈e0|Ã(0)
F |e0〉

∑
�′

〈e0|V (�′)†V (�′)|e0〉. (D30)

This term along with A1 are the only ones proportional to tr. They actually give rise to a shift of the peaks, since the Fourier
transform of itre

iEtr is the derivative of the δ function, δ′(ω − E). Combining these two terms gives

A1 + (A0B1)d = tr
∑

�

e−i��tr

[ 〈e0|∂λV
(�)†V (�)|e0〉 − H.c.

2
− i〈e0|Ã(0)

F |e0〉〈e0|V (�)†V (�)|e0〉
]
. (D31)

At this point it is useful to introduce the notation |n(�)
F 〉 = V (�)|en〉 as the �th Fourier mode of the nth Floquet eigenstate as

in Eq. (7). Then the first term in Eq. (D31) looks like the Berry connection of |0(�)
F 〉 with the caveat that the state is not

normalized. More explicitly, if we make so local gauge choice of states |0̃(�)
F (λ)〉 such that their Berry connection is zero, i.e.,

〈0̃(�)
F (λ)|∂λ0̃(�)

F (λ)〉 = 0, then rewriting |0(�)
F 〉 = eiϕ(�)(λ)|0̃(�)

F 〉 we find 〈0(�)
F |∂λ0(�)

F 〉 = i∂λϕ
(�)〈0(�)

F |0(�)
F 〉 = i∂λϕ

(�)p0�. Factoring this
out of each term in Eq. (D31), we find

A1 + (A0B1)d = −itr
∑

�

e−i��trp0�

[
∂λϕ

(�) −
∑
�′

p0�′∂λϕ
(�′)

]
. (D32)

In words the �th peak is shifted by an amount proportional to the difference between its Berry connection, ∂λϕ
(�), and the

mode-averaged Berry connection,
∑

�′ p
(�′)
0 ∂λϕ

(�). This is surprising, as the Berry connection is not gauge invariant and thus
observables expressed in terms of it seem not gauge invariant on their face. However, the term above is in fact gauge invariant,
which comes from the fact that all of the Fourier modes are shifted by the same the phase. To see this, consider a new gauge
choice |0′

F (λ,t)〉 = eiχ(λ)|0F (λ,t)〉. Then

|0′
F (λ,t)〉 =

∑
�

ei��t
∣∣0′(�)

F

〉 = eiχ(λ)
∑

�

ei��t
∣∣0(�)

F

〉 ⇒ ∣∣0′(�)
F

〉 = eiχ(λ)
∣∣0(�)

F

〉
. (D33)

But then ϕ(�) → ϕ(�) + χ and the χ contribution will clearly drop out in Eq. (D32), since
∑

�′ p0�′ = 1.

195124-13



KOLODRUBETZ, FREGOSO, AND MOORE PHYSICAL REVIEW B 94, 195124 (2016)

Meanwhile, the off-diagonal terms in A0B1 can be made to look more like A2. By first exchanging the indices �′ and �′′ in the
second term followed by using the fact that Ã

(−�)
F = Ã

(�)†
F from the fact that ÃF (t) is Hermitian, we find that

(A0B1)od =
∑
�′ =�′′

〈e0|Ã(�′−�′′)
F |e0〉〈e0|V (�′)†V (�′′)|e0〉

(�′ − �′′)�
(e−i�′�tr − e−i�′′�tr ) (D34)

=
∑
�′ =�′′

e−i�′�tr (
〈e0|Ã(�′−�′′)

F |e0〉〈e0|V (�′)†V (�′′)|e0〉
(�′ − �′′)�

+ H.c.) (D35)

=
∑
�′

e−i�′�tr
∑
� =0

(
〈e0|Ã(�)

F |e0〉〈e0|V (�′)†V (�′−�)|e0〉
��

+ H.c.

)
. (D36)

Adding this to A2, we find that

A2 + (A0B1)od =
∑
�′

e−i�′�tr
∑

(n,�)=(0,0)

(
〈e0|V (�′)†V (�′−�)|en〉〈en|Ã(�)

F |e0〉
εF
n0 + ��

+ H.c.

)
. (D37)

It bears mentioning that the frequency shift is zero at this
order in the undriven case. This can be seen from the above
Floquet solution by replacing the quasienergies εF

n with the ac-
tual energies En and only allowing �,�′,�′′ = 0. Then the Berry
connection term [Eq. (D32)] vanishes because one subtracts
the Berry connection of the ground state from itself. Similarly,
the off-diagonal corrections [Eq. (D37)] vanish because the
term 〈e0|V (0)†V (0)|en〉 = 〈E0|En〉 = 0 from orthogonality of
the energy eigenstates.

Finally, having solved for the Wigner distribution in terms
of the average and relative times, we must Fourier transform
and convolve with the probe to get the actual ARPES signal
and see that there are no additional corrections to order λ̇. We
rewrite the diagonal [Eq. (D32)] and off-diagonal [Eq. (D37)]
corrections as ad and aod respectively, such that

f (tr ,tav) ≈ eiεF
0 tr

∑
�

e−i��tr p
(�)
0

[
1 + λ̇av

(
a

(�)
od − itra

(�)
d

)]
.

(D38)

This is trivially Fourier transformed to get

f (ω,tav) ≈ 2π
∑

�

p
(�)
0

[(
1 + λ̇ava

(�)
od

)
δ
(
ω − εF

0 + ��
)

+ λ̇ava
(�)
d δ′(ω − εF

0 + ��
)]

. (D39)

Now let us convolve this Wigner distribution by a Gaussian
probe to get the ARPES signal and confirm that these
results are unaffected by smearing the δ-function peaks by
Gaussians. First convolving along the ω direction [see Eq. (9)],

we get

I1(ω,tav) ≡
∫ ∞

−∞
dω′f (ω′,tav)e−(ω′−ω)2τ 2

pr

≈ 2π
∑

�

p0�

[(
1 + λ̇ava

(�)
od

)
e−(ω−εF

0 +��)2τ 2
pr

+ 2λ̇ava
(�)
d

(
ω − εF

0 + ��
)
τ 2

pre
−(ω−εF

0 +��)2τ 2
pr
]

≈ 2π
∑

�

p0�

[(
1 + λ̇ava

(�)
od

)
e−(ω−εF

0 +��−λ̇ava
(�)
d )2τ 2

pr
]
,

corresponding to a frequency shift of λ̇ava
(�)
d . Second, we

must convolve in the time direction with the probe envelope
e−(tav−tpr)2/τ 2

pr . The previous expression for I1(ω,tav) only
depends on tav through λav. Therefore assuming that that probe
is short such that λ does not significantly change during it (i.e.,
τramp � τpr) we must ask when it is appropriate to simply re-
place tav by tpr. This clearly correct for all terms of order λ̇, be-
cause doing a Taylor series in the difference tav − tpr times the
derivative of these terms with respect to λ would lead to correc-
tions of order λ̇2. Thus the only potentially relevant correction
comes from the term p0�(λav) exp{−[ω − εF

0 (λav) + ��]} ≡
C0(λav). Fortunately, a Taylor expansion in tav − tpr gives
λ̇(tpr)(tav − tpr)C ′

0(λpr), which is odd with respect to (tav − tpr)
and thus vanishes under integration with the Gaussian. So at
order λ̇ we get our final answer for the ARPES signal:

I (ω,tpr) ≈
∑

�

p0�

{[
1 + λ̇pra

(�)
od (λpr)

]
× e−[ω−εF

0 (λpr)+��−λ̇pra
(�)
d (λpr)]2τ 2

pr
}
, (D40)

which is the final result reproduced in Eq. (14).

[1] K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,
494 (1980).

[2] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
[3] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.

48, 1559 (1982).

[4] X.-G. WEN, Int. J. Mod. Phys. B 06, 1711 (1992).
[5] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
[6] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).

195124-14

https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734


NONADIABATIC BULK-SURFACE OSCILLATIONS IN . . . PHYSICAL REVIEW B 94, 195124 (2016)

[7] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.
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