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Magnetic susceptibility of topological nodal semimetals
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Magnetic susceptibility of the topological Weyl, type-II Weyl, Dirac, and line node semimetals is theoretically
investigated. Dependences of this susceptibility on the chemical potential, temperature, direction, and magnitude
of the magnetic field are found. The obtained results show that magnetic measurements can be very useful
in investigating these semimetals. As an example, we calculate magnetic susceptibility of Cd3As2, Na3Bi,
and Ca3P2.
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I. INTRODUCTION

In nodal semimetals the conduction and valence bands of
electrons touch at points or along lines in three-dimensional
quasimomentum space [1–3]. There are several types of these
nodal materials. They are the Weyl, Dirac, and line node
semimetals. In the Weyl semimetals, the electron bands contact
at discrete (Weyl) points of the Brillouin zone and disperse
linearly in all directions around these critical points. The same
type of the band contact occurs in the Dirac semimetals, but
the bands are double degenerate in spin; i.e., a Dirac point
can be considered as a couple of the Weyl points overlaping
in the quasimomentum space. In the line node semimetals the
conduction and valence bands touch along lines in the Brillouin
zone and disperse linearly in directions perpendicular to these
lines. A number of the various Weyl, Dirac, and line node
semimetals were predicted and discovered experimentally in
recent years [4–26]. In this paper we call attention to the fact
that the magnetic susceptibility of electrons in topological
nodal semimetals exhibits a giant anomaly that can be useful
in experimental investigations of these materials.

As early as 1989 [27], all the types of electron-band
degeneracy in three-dimensional crystals were found that lead
to a giant anomaly in their magnetic susceptibility χ in weak
magnetic fields H . This anomaly occurs in the orbital part
of the susceptibility and is characterized by divergence of
χ at low temperatures T when the chemical potential ζ of
the electrons approaches the band-degeneracy energy εd . The
anomaly is due to virtual interband transitions of electrons
under the action of the magnetic field. These transitions
give a contribution to the susceptibility which is inversely
proportional to a gap between the electron bands, and so this
contribution is large for nearly degenerate electron states. The
type of the divergence of χ is determined by the character
of band-degeneracy lifting in the vicinity of εd . Below we
consider only those “χ -divergence” types of the electron-band
degeneracy that are appropriate to the topological semimetals.

The first type of the degeneracy is just a Dirac or Weyl point
of the electron energy spectrum in a three-dimensional crystal.
In this case the susceptibility at low temperatures and weak
magnetic fields diverges logarithmically, χ ∝ ln |ζ − εd | [27].
Later, the same divergence of χ was also obtained by Kashino
and Ando for the case of an isotropic Dirac point [28]. The
giant anomaly in χ for strong magnetic fields was studied
in Ref. [29] (see also Ref. [30]), and a dependence of χ

on H was found for such fields. In this paper, we present

the results of Refs. [27,29] that are appropriate to Dirac
and Weyl semimetals including the so-called [31] type-II
Weyl semimetals, and based on these results, we analyze
the magnetic susceptibility (and magnetic torque) of these
materials in detail.

The second type of the band degeneracy leading to the
giant anomaly in χ is the band-contact lines [32] in the
Brillouin zone of crystals. In this case the degeneracy energy
εd changes along the line and reaches its maximum εmax

and minimum εmin values at certain points pi of the line.
The giant anomaly of χ is determined by the electron states
located near these points pi and occurs at low temperatures
and weak magnetic fields only when ζ approaches εmax

from below or εmin from above [27], χ ∝ (ζ − εmin)−1/2 or
χ ∝ (εmax − ζ )−1/2. At these critical energies εmin and εmax,
the so-called electron topological transitions of the 3 1

2 kind
occur in metals [33]. For strong magnetic fields, this type of
the giant anomaly in χ was analyzed in Ref. [29], and an
H dependence of the magnetic susceptibility was derived for
this case. However, it is necessary to emphasize that these
results for χ in weak and strong magnetic fields were obtained
under the implicit assumption that the temperature T and
the characteristic spacing between the Landau subbands in
the magnetic field, �εH , are much less than the difference
εmax − εmin ≡ 2�. Then, contributions of the different critical
points pi in the band-contact line to the magnetic susceptibility
can be considered independently. However, in the line node
semimetals, the difference 2� is assumed to be small, and
so the results of Refs. [27,29] for the case of band-contact
lines are applicable to the semimetals only at not-too-high T

and H .
Recently [34], the magnetic susceptibility χ of electrons

in weak magnetic fields was estimated for a semimetal with a
band-contact ring lying at the constant energy εd (i.e., � = 0
for the ring). This ring was described by the particular model
proposed in Ref. [2], and it was found that χ (ζ ) is proportional
to the delta function δ(ζ − εd ) [34]. In this paper, we admit any
values of �, and complementing the results of Refs. [27,29],
we calculate the magnetic susceptibility (and magnetic torque)
of the line node semimetals with the band-contact lines of
arbitrary shapes in the weak and strong magnetic fields for the
cases when � is less than T or �εH .

The paper is organized as follows: In Sec. II, we describe
dependences of the magnetic susceptibility of electrons in
the Weyl and Dirac semimetals on the chemical potential,
temperature, direction, and magnitude of the magnetic field.
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As an example, we analyze the magnetic susceptibility of
electrons in Cd3As2 and Na3Bi. In Sec. III, the magnetic
susceptibility in the line node semimetals is studied at any
interrelations between T , �εH , and �. We also apply the
obtained results to Ca3P2. A brief summary of our results is
presented in Sec. IV.

II. WEYL AND DIRAC SEMIMETALS

It has been shown recently that Cd3As2 [4–10] and
Na3Bi [11,12] fall into the class of the topological Dirac
semimetals, while the Weyl semimetal phase is realized in
noncentrosymmetric crystals TX [13–15], where T is Nb or
Ta and X is As or P. We start the theoretical study of the
magnetic susceptibility for such topological semimetals with
a description of the electron spectrum near the Dirac and Weyl
points.

A. Spectrum

The most general k · p Hamiltonian Ĥ for the conduction
and valence electrons in the vicinity of a Dirac point has the
form [27,29]

Ĥ =

⎛
⎜⎝

Ec R 0 S

R∗ Ev −S 0
0 −S∗ Ec R∗
S∗ 0 R Ev

⎞
⎟⎠, (1)

where

Ec,v = εd + vc,v · p,

R = r · p, (2)

S = s · p.

Here the quasimomentum p is measured from the Dirac point;
vc,v are intraband and r and s are interband matrix elements
of the velocity operator calculated at p = 0; the vectors vc,v

are real, while r and s are generally complex quantities.
Hamiltonian (1) takes into account a twofold spin degeneracy
of electron bands in centrosymmetric crystals. If one sets
S = 0, this Hamiltonian (e.g., its upper 2×2 block) describes
the electron states near the Weyl points.

Diagonalization of the Hamiltonian (1), (2) gives the
dispersion relations for the electron bands in the vicinity of
the Dirac (Weyl) point:

εc,v = εd + a · p + Ec,v,

Ec,v = ±{(a′p)2 + |R|2 + |S|2}1/2, (3)

where the following notations have been introduced:

a = (vc + vv)/2, a′ = (vc − vv)/2.

Equation (3) shows that E2
c,v is a quadratic form in the

components of vector p. Hereafter we choose the coordinate
axes along principal directions of this form. Let bii (i = 1,2,3)
be its principal values, i.e.,

E2
c,v = b11p

2
1 + b22p

2
2 + b33p

2
3,

where bii are expressible in terms of the components of the
vectors a′, r, s. The scaling of coordinate axes, p̃i = pi

√
bii ,

p

ε
εc

εv

(a)

p

ε
εc

εv

(b)

FIG. 1. Dispersion relations εc(p) and εv(p) of the electron
energy bands in the vicinity of a degeneracy point in the cases of
ã2 < 1 (a) and ã2 > 1 (b) [Eq. (4)].

transforms Eq. (3) into the form that depends only on the
constant dimensionless vector ã:

εc,v = εd + ã · p̃ ± |p̃|, (4)

where its components are defined by ãi = ai/
√

bii . When the
length of ã is less than unity,

ã2 = a2
1

b11
+ a2

2

b22
+ a2

3

b33
< 1, (5)

the dispersion relations εc,v(p) appear as in Fig. 1(a), and
the Fermi surface at ζ = εd is a point. When ã2 > 1, there
is always a direction in p space along which the dispersion
relations εc,v(p) appear as in Fig. 1(b), and at ζ = εd the
open electron and hole pockets of the Fermi surface touch.
Thus, the case ã2 > 1 corresponds to the type-II Weyl (or
Dirac) points [31]. We shall see below that the magnetic
susceptibilities at ã2 > 1 and ã2 < 1 are essentially different.

In the magnetic field H = nH directed along the unit vector
n, the spectrum of electrons described by Hamiltonian (1), (2)
has the form [29]

εl
c,v(pn) = εd + vpn ±

[
e�αH

c
l + L(pn)2

]1/2

, (6)

where e is the absolute value of the electron charge; l = 0,1,

2, . . . ; pn = pn is the component of the quasimomentum along
the magnetic field,

α = 2R
3/2
n

b11b22b33ñ2
,

L = Rn

b11b22b33ñ4
,

Rn =
3∑

i,j=1

κijninj , (7)

κij = b11b22b33

(biibjj )1/2
[(1 − ã2)δij + ãi ãj ],

v = (ãñ)

ñ2
,

and the components of the vector ñ are determined by the
relation ñi = ni/

√
bii . For given n, the spectrum (6) describing
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the Landau subbands εl
c,v(pn) exists if Rn > 0. When ã2 < 1,

the Rn is positive at any direction of the magnetic field. We also
emphasize that in most publications dealing with the electron
energy spectrum in a magnetic field for Dirac (Weyl) points,
the simplest (isotropic) case, in which a = ã = 0, is usually
considered. However, this case can occur only if the Dirac or
Weyl point coincides with a highly symmetric point of the
Brillouin zone. Generally the vector a always differs from
zero; see, e.g., Sec. II C.

Interestingly, formula (6) is equivalent to the equation

S(εl,pn) = 2π�eH

c
l, (8)

where S(εl,pn) is the area of the cross section of the constant-
energy surface εc,v(p) = εl by the plane pn = constant. For
the Dirac points, this expression looks like the well-known
semiclassical quantization condition [35]

S(εl,pn) = 2π�eH

c

(
l + 1

2
± gm∗

4m

)
(9)

if one takes g = 2m/m∗. Here g is the electron g factor,
while m and m∗ = (1/2π )∂S(ε,pn)/∂ε are the electron and
cyclotron masses, respectively. For the two-band Hamilto-
nian (1), (2), the orbital g factor is indeed equal to 2m/m∗
[36–38]. This means that this large g factor has been implicitly
taken into account in deriving Eq. (6). However, we have
neglected the direct interaction (e�/mc)sH of the electron
spin s with the magnetic field H and a contribution of the
bands different from c and v to the electron g factor. The
impact of all these effects on the Landau subbands and
on the magnetic susceptibility is relatively small and is of
the order of m∗/m ∼ |ζ − εd |/mV 2 where ζ is the chemical
potential, and V is the velocity determining the characteristic
slope of Dirac cone, V ∼ |dεc,v/dp| ∼ √

bii . With these
effects, a small splitting of the Landau subbands appears for
the Dirac point. Hence, if a noticeable splitting of the subbands
occurs in an experiment, this is a signal that one should
take into account more than two bands in the Hamiltonian
describing the Dirac points. In other words, terms of higher
orders in pi than the linear ones should be incorporated in
Hamiltonian (1), (2) in this case.

B. Magnetic susceptibility

We define the magnetic susceptibility tensor as −∂2�/

∂Hi∂Hj where � is the � potential per unit volume of a
crystal. When the chemical potential ζ lies near εd , the total
magnetic susceptibility tensor χ

ij
tot consists of its special part

χij determined by the electron states located near the Dirac
(Weyl) point and a practically constant background term χ

ij

0
specified by electron states located far away from this point,

χ
ij
tot = χij + χ

ij

0 .

It is the special part of the tensor that is responsible for
dependences of the susceptibility on the chemical potential,
temperature, and magnitude of the magnetic field.

In weak magnetic fields H � HT , when the characteristic
spacing �εH between the Landau subbands is much less
than the temperature T , the susceptibility χij is practically
independent of H . On the other hand, at H > HT , when

�εH > T , a noticeable H dependence of χij appears, and
it is more convenient to consider the magnetization M rather
than the magnetic susceptibility in this case. The background
term χ

ij

0 remains constant at all magnetic fields.
According to Eqs. (6) and (7), we have the following

estimate for the spacing �εH between the Landau subbands
of electrons in the magnetic field: �εH ∼ (e�HV 2/c)1/2, and
hence

HT ∼ cT 2

e�V 2
≈ 0.7×1012 T 2

V 2
, (10)

where, in the last equality, the velocity V characterizing the
slope of the Dirac cone is measured in m/s, the temperature
T in K, and HT in Oe. If V ∼ 106–105 m/s, we obtain
HT ∼ 10–1000 Oe at T = 4 K. In other words, at low
temperatures, a noticeable dependence of χij on H is expected
to occur at sufficiently low magnetic fields in the vicinity of
the Dirac and Weyl points.

The special part χij of the magnetic susceptibility as-
sociated with a Dirac or Weyl point can be calculated at
arbitrary magnetic fields with Eqs. (6) and (7) [29]. Below we
discuss only the case of the Dirac point and present formulas
for χij in weak magnetic fields and for the magnetization
Mi = −∂�/∂Hi in strong magnetic fields. For the case of the
Weyl point, these formulas should be divided by two.

1. Weak magnetic fields

In the region of weak magnetic fields (H � HT ) and under
condition (5), ã2 < 1, we find the following expression for χij

per unit volume [27]:

χij = − 1

6π2�

(
e

c

)2
κij

(b11b22b33)1/2

∫ ε0

0

dε

ε
[f (−ε) − f (ε)],

(11)

where κij is given by Eq. (7), f (ε) is the Fermi function with
the chemical potential ζ ,

f (ε) =
[

1 + exp

(
ε + εd − ζ

T

)]−1

, (12)

and ε0 is a sufficiently high energy specifying the interval
(εd − ε0,εd + ε0) in which Eqs. (1)–(3) are valid. Different
choices of ε0 would change only the background term χ

ij

0
which is unimportant and is not calculated here.

Calculating the integral in Eq. (11) in the limit T → 0, we
arrive at

χij = − 1

6π2�

(
e

c

)2
κij

(b11b22b33)1/2
ln

(
ε0

|ζ − εd |
)

. (13)

Thus, at ã2 < 1 the giant anomaly of the magnetic suscep-
tibility is of the logarithmic character in ζ − εd . If ã2 > 1,
the appropriate χij proves to be a constant independent of
ζ [27], and hence there is no giant anomaly in the magnetic
susceptibility for the cases of the type-II Dirac or Weyl
semimetals. In the particular case when ã = 0 and b11 = b22 =
b33 = V 2, expression (13) coincides with the last formula in
Eq. (38) of Ref. [34].

Formula (13) gives χij (ζ,T ) at |ζ − εd | � T . In this
region of ζ the susceptibility is practically independent of T .
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However, at |ζ − εd | � T a T dependence of the susceptibility
appears. According to Eq. (11), in this region the divergence
of χij (ζ ) in Eq. (13) is cut off, and at ζ = εd we have

χij (εd,T ) = − 1

6π2�

(
e

c

)2
κij

(b11b22b33)1/2
ln

(
ε0

T q

)
, (14)

where

ln q =
∫ ∞

0

ln x

(1 + cosh x)
dx = ln(π/2) − CEM ≈ −0.1256;

CEM ≈ 0.5772 is the Euler-Mascheroni constant, and hence
q ≈ 0.882.

2. Strong magnetic fields

In strong magnetic fields, H � HT , and at ζ = εd , we find
the following expression for the components Mi of the special
part of the magnetization [29]:

Mi(εd,H ) = − e2QiH

6π2� c2(b11b22b33)1/2

[
A − 1

4

+ 1

2
ln

(
2ε2

0c

e�(1 − ã2)R1/2
n H

)]
, (15)

where Qi = ∑
j κijnj , A ≈ 1.50, κij and Rn are given by

Eq. (7), and n is the unit vector along the magnetic field,
Hj = njH . If ζ does not coincide exactly with εd , the
magnetization Mi is the sum of Mi(εd,H ) described by
Eq. (15) and the additional term

δMi = e2

2π2c2�

QiH

(b11b22b33)1/2

{
u + 2

M∑
m=1

[√
u(u − m)

− 2m ln

(√
u + √

u − m√
m

)]}
, (16)

where

u ≡ (ζ − εd )2c

2e�(1 − ã2)R1/2
n H

= Sexc

2π�eH
, (17)

M ≡ [u] is the integer part of u, and Sex is the area of the
extremal cross section of the constant-energy surface εc,v(p) =
ζ by the plane pn = constant which is perpendicular to the
magnetic field. The extremum is found relative to pn. The
integer M is the number of the Landau subbands occupied by
electrons in the conduction band or by holes in the valence
band. At u < 1 the term δMi reduces to the constant

δMi = e

4π2c�2

Qi(ζ − εd )2

(b11b22b33)1/2(1 − ã2)R1/2
n

. (18)

When u increases and u > 1, oscillations of the magnetic
moment appear. According to formulas (13), (15), and (16),
the magnetization Mi can be represented as follows:

Mi = χ
ij

H→0njH + eQi(ζ − εd )2g(u)

12π2�2c(b11b22b33)1/2(1 − ã2)R1/2
n

,

(19)

where χ
ij

H→0 is the susceptibility in the weak-field region,
Eq. (13), and g(u) is the function which is independent of the

FIG. 2. The function g(u), Eq. (20), that describes the oscillations
of the magnetization.

parameters of the Dirac point:

g(u) = − ln(2
√

u) + A − 1
4

u
+ 3 + 6

u

M∑
m=1

[√
u(u − m)

− 2m ln

(√
u + √

u − m√
m

)]
. (20)

This function for not-too-high u is shown in Fig. 2. At u � 1,
the second term in formula (19) describes the well-known
oscillations in the de Haas–van Alphen effect [35]. However,
a phase of the oscillations is shifted by π as compared to
the usual case. In other words, if one plots 1/Hl versus l

where Hl is the magnetic field corresponding to lth peak in the
magnetization and draws a straight line through these point,
this line extrapolated to the origin of the coordinates passes
through the point l = 0 rather than through l = 1/2. This is
the distinguishing property of a Dirac (Weyl) point.

Consider now the longitudinal magnetization M‖ =∑
i Mini in more detail. In an appropriate formula for this

quantity, the coefficient before the oscillating function g(u)
can be expressed in terms of the extremal cross-section area
Sex of the Fermi surface and of the cyclotron mass m∗
corresponding to this cross section. This representation enables
one to describe the oscillations of the magnetization even in
the case when the chemical potential ζ is not close to εd . As
was mentioned in Sec. II A, in this situation, terms of higher
orders in the quasimomentum than the linear ones should be
incorporated in Hamiltonian (1), (2). This leads to a change of
the electron spectrum (3) and to a small splitting of the Landau
subbands. In this case, the longitudinal magnetization M‖ can
be described by the following formula generalizing Eq. (19):

M‖ = χ‖(H → 0)H + C
g(u+) + g(u−)

2
, (21)

where χ‖(H → 0) = ∑
i,j χ

ij

H→0ninj is the longitudinal mag-
netic susceptibility in weak magnetic fields,

C = eS
3/2
ex

6
√

2π3�2c|m∗||S ′′|1/2
,

u± = u ± �gm∗
4m

, (22)
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S ′′ = ∂2S(ζ,pn)/∂p2
n|pn,ex is the second derivative of the cross-

section area calculated at pn corresponding to the extremal
cross section, and �g = g − (2m/m∗) is the deviation of the
g factor from the value (2m/m∗). It is this �g that leads to the
splitting of the Landau subbands; the value of �g can be found
with a perturbation theory [38]. As to Sex, m∗, and S ′′, these
quantities can be calculated if corrections to the spectrum (3)
are known.

It follows from formulas (13)–(20) that the angular depen-
dence of the special part of the magnetization is completely
determined by the tensor κij . The components χ

ij

0 of the
background term are constant, but they generally differ
from each other, and so χ

ij

0 also give a contribution to the
angular dependence of the total magnetization. However, a
comparison of the total magnetization or magnetic torque in
weak (H �HT ) and strong (H � HT ) magnetic fields permits
one to eliminate the effect of the background susceptibility χ

ij

0
and of the cutoff parameter ε0 on these quantities. For example,
the difference M‖,tot(H ) − χ‖,totH is independent of χ

ij

0 and ε0

if the total longitudinal magnetization M‖,tot(H ) = ∑
i Mi,totni

is measured in strong magnetic fields and the total longitudi-
nal susceptibility χ‖,tot = ∑

i,j χ
ij
totninj in weak fields. This

difference is completely determined by the parameters of the
Dirac point; see Sec. II C.

Finally, let us briefly discuss the effect of impurities
in crystals on the magnetization of the electrons with the
Dirac spectrum. This effect for a two-dimensional metal was
considered in a number of papers; see, e.g., Refs. [39,40].
In the simplest approximation, in which the width � of the
Landau-level broadening associated with electron scattering
from impurities is independent of H and is the same for
all the levels, the magnetization Mim in the sample with the
impurities can be obtained from the magnetization M at � = 0
as follows [39]:

Mim(ζ ) =
∫ ∞

−∞
dεM(ε)P (ε − ζ ), (23)

where P (ε) is the probability distribution function describing
the broadening of a Landau level,

P (ε) = 1

π

�

ε2 + �2
. (24)

Interestingly, if in Eq. (23) the quantities Mim(ζ ) and M(ε) are
replaced by M(ζ,T ) and M(ε,0), respectively, and instead of
Eq. (24), one takes

P (ε) = 1

4T

[
cosh

(
ε

2T

)]−2

,

the obtained formula describes the effect of temperature on the
magnetization; see also Sec. III B. It is clear from the similarity
of the formulas that in the approach based on Eqs. (23)
and (24), any singularity in the magnetization is smeared by the
impurities. As shown in Ref. [39], this approach is equivalent
to the introduction of the Dingle temperature TD = π� in
describing the oscillation part of the magnetization.

C. Example: Cd3As2 and Na3Bi

As an example, we apply the formulas of Sec. II B to Cd3As2

and Na3Bi. In these crystals the electron spectra in the vicinities
of their Dirac points coincide [4,11], and for simplicity, we
discuss only Cd3As2 below.

According to Ref. [4], in Cd3As2 in the axis Z-�-Z of its
Brillouin zone the two Dirac points with coordinates px = 0,
py = 0, pz = ±pc

z exist, and in the vicinity of any of these
points the electron spectrum has the form [4]

εc,v = εd + azδpz ± {(Aδpx)2 + (Aδpy)2 + bzz(δpz)
2}1/2,

(25)

where δp is the quasimomentum measured from the Dirac
point, and the constants pc

z , az, and bzz in the notations
of Ref. [4] are pc

z = �
√

M0/M1, az = ±2C1p
c
z/�

2, bzz =
(2M1p

c
z/�

2)2. In Cd3As2 the axes 1, 2, and 3 coincide with
the coordinate axes x, y, and z. Equation (25) shows that
the vector a is directed along the z axis, and b11 = b22 = A2.
Then, according to Eq. (7), the tensor κij is diagonal and
has the following nonzero components: κ11 = κ22 ≡ κ =
A2(bzz − a2

z ), κ33 = A4, whereas Rn = κ33 cos2 θ + κ sin2 θ

where θ is the angle between the magnetic field and the z axis.
The background-susceptibility tensor χ

ij

0 is also diagonal and
is defined by the two constants: χ33

0 and χ11
0 = χ22

0 ≡ χ⊥
0 .

Let the chemical potential ζ not coincide with εd .
Such a situation usually occurs in Cd3As2 [5–8]. Consider
the magnetization component M‖ = ∑

i Mini directed along
the magnetic field. At sufficiently high temperatures, when the
de Haas–van Alphen oscillations are suppressed, the regime
of weak magnetic fields, H < HT , occurs, and M‖ = χ‖H
where χ‖ = ∑

i,j χ ijninj , and χij is described by Eq. (13). At
the same H but at low temperatures, when HT decreases and
HT � H , the expression for M‖(H ) follows from Eq. (19). As
a result, we obtain for the difference of the total magnetizations
at low and high temperatures

M‖,tot(H ) − χ‖,totH = 2C0F (θ )g(u), (26)

where the factor 2 is due to existence of the two Dirac points in
Cd3As2, C0 is the constant factor depending on the parameters
of the Dirac point,

C0 = e(ζ − εd )2√bzz

12π2�2c
(
bzz − a2

z

) , (27)

the factor F (θ ) specifies the angular dependence of this
difference,

F (θ ) = (cos2 θ + γ sin2 θ )1/2,

γ ≡ (
bzz − a2

z

)/
A2, (28)

γ > 0 is the parameter characterizing the anisotropy of
the Dirac cone, the function g(u), Eq. (20), describes the
oscillations of the magnetization with changing H , and u is
given by Eq. (17),

u = c(ζ − εd )2bzz

2e�A2
(
bzz − a2

z

)
HF (θ )

. (29)

Note that u depends on the direction of the magnetic field
through the same factor F (θ ). This factor in u specifies the

195123-5



G. P. MIKITIK AND YU. V. SHARLAI PHYSICAL REVIEW B 94, 195123 (2016)

angular dependence of extremal cross section of the Fermi
surface. Interestingly, if one replaces the right-hand side of
Eq. (26) by C[g(u+) + g(u−)] where C and u± are given by
formulas (22), the obtained expression can be used even in
the case when |ζ − εd | is so large that the electron spectrum
begins to deviate from that given by Eq. (25).

Consider now the magnetic torque K (per unit volume) of
the sample at high and low temperatures. The value of this
K for Cd3As2 is independent of the direction of the two-
dimensional vector (nx,ny) in the x-y plane, and so without
the loss in generality, we may assume that the magnetic field
lies in the x-z plane, n = (sin θ,0, cos θ ). Then, we obtain
the following formula for the difference of the total magnetic
torques at low (Kl

tot) and high (Kh
tot) temperatures:

Kl
tot(H ) − Kh

tot(H ) = 2C0H
(1 − γ ) sin θ cos θ

F (θ )
g(u), (30)

where the constants C0, γ and the functions F (θ ), g(u) are the
same as in Eq. (26).

Interestingly, a dependence of the magnetic susceptibility
of liquid alloys Na1−xBix on the concentration x was measured
many years ago [41], and a noticeable diamagnetic deep on
a smooth background was observed at the concentration x =
0.25 which corresponds to the stoichiometric formula Na3Bi.
This result can be qualitatively understood from our Eq. (13)
if one considers the x dependence of the susceptibility near
the point x = 0.25 as the dependence of χ on the chemical
potential in Na3Bi.

III. LINE NODE SEMIMETALS

The band-contact lines are widespread in crystals
[20,32,33,42]; e.g., they exist in graphite [43] and beryl-
lium [44]. However, as was mentioned in the Introduction,
the band-contact lines in the line node semimetals are
characterized by a relatively small difference εmax − εmin ≡
2� of the maximum and minimum band-degeneracy en-
ergies as compared to the inherent energy scale of crys-
tals (1–10 eV). Such line nodes exist in rhombohedral
multilayer graphene [16,17] and three-dimensional graphene
networks [18]. Besides, the class of the topological line node
semimetals includes Ca3P2 [19], Cu3NPd [20,21], CaAgP [22],
ZrSiS [24], PbTaSe2 [25], and SrIrO3 [26].

In most of these line node semimetals the spin-orbit
interaction is weak, and the band-contact lines exist if one
neglects this interaction. The spin-orbit coupling lifts the
degeneracy of the conduction and valence bands along the line,
and a small gap between the bands appears. The effect of this
gap on the magnetic susceptibility was studied in Refs. [27,29],
and it was found that this effect, as a rule, is negligible. Because
of this, we neglect the gap below. However, we shall point out
a situation for which the effect of the gap becomes noticeable.

A. Spectrum

In the vicinity of a band-contact line along which the con-
duction and valance bands touch, let us introduce orthogonal
curvilinear coordinates so that the axis 3 coincides with the
line. The axes 1 and 2 are perpendicular to the third axis
at every point of the band-contact line, and the appropriate

coordinates p1 and p2 are measured from this line. In these
coordinates, in the vicinity of the line, the most general form
of the electron spectrum for the conduction and valence bands
looks like

εc,v = εd (p3) + a⊥p⊥ ± Ec,v,

E2
c,v = b11p

2
1 + b22p

2
2, (31)

where εd (p3) describes a dependence of the degeneracy
energy along the line; p⊥ = (p1,p2,0) and a⊥ = (a1,a2,0)
are the vectors perpendicular to the line; the parameters of
the spectrum b11, b11, and a⊥ generally depend on p3. As in
Sec. II A, it is implied here that the directions of the axes 1
and 2 are chosen so that the quadratic form E2

c,v is diagonal.
Below we shall consider only the case when the length of the
vector ã⊥ ≡ (a1/

√
b11,a2/

√
b22,0) is less than unity,

ã2
⊥ = a2

1

b11
+ a2

2

b22
< 1, (32)

since at ã2
⊥ > 1 the giant anomaly of the magnetic susceptibil-

ity is absent [27].
Let us introduce the notations

ε0
d ≡ εmax + εmin

2
, � ≡ εmax − εmin

2
,

where εmax and εmin are the maximum and minimum values of
εd (p3) in the line. When � is relatively small and ã2

⊥ < 1,
the Fermi surface εc,v(p⊥,p3) = ζ in the semimetals is a
narrow electron or hole tube for ζ − ε0

d � � or ζ − ε0
d � −�,

respectively. The band-contact line lies inside these tubes.
If |ζ − ε0

d | < �, the Fermi surface consists of the electron
and hole parts and has a self-intersecting shape, Fig. 3.
When the chemical potential ζ passes through the critical
energies ε0

d ± �, the electron topological transitions of the
3 1

2 kind occur [33]. We shall assume below that the transverse
dimensions of the Fermi-surface tube, which are of the order
|ζ − εd |/V (V ∼ √

bii as in Sec. II A), are essentially less
than the characteristic radius of curvature for the band-contact
line. In this case practically all electron orbits in the p space,

FIG. 3. The Fermi surface of electrons in a line node semimetal
at ζ > ε0

d + � (a), ε0
d + � > ζ > ε0

d − � (b), and ε0
d − � > ζ (c).

Letters e and h indicate the electron or hole type of the Fermi surface.
(d) The band-contact line, and the definition of the angles θ , θ0, and
ϕ; the vector t is the tangent to the line at a point p3. (e) Directions
of the magnetization components M‖, M⊥, and Mφ with respect to H
and the normal z to the plane of the band-contact line.
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which are intersections of the Fermi surface with planes
perpendicular to the magnetic field, are small and lie near
the band-contact line. In other words, a small region in the
p space determines the local electron energy spectrum in the
magnetic field almost for any point of the line. This spectrum
can be found [29], and it has the form

εl
c,v(p3) = εd (p3) ±

(
e�αH | cos θ |

c
l

)1/2

, (33)

where α = α(p3) = 2(b11b22)1/2(1 − ã2
⊥)3/2; l is a non-

negative integer (l = 0,1, . . .), and θ = θ (p3) is the angle
between the direction of the magnetic field and the tangent
t to the band-contact line at the point with the coordinate p3,
Fig. 3. Formula (33) fails only for those points of the line for
which θ is close to π/2 [29]. However, these points do not lead
to the giant anomaly in the susceptibility [27].

In a number of the topological semimetals, the band-contact
line is a closed curve lying in a plane that is perpendicular to an
axis of n-fold symmetry. Therefore, the line remains invariant
under the rotations through the angles 2πi/n about this axis.
(Here i = 1,2, . . . ,n.) Then, εd (p3) is a periodic function with
the period L/n where L is the length of the band-contact line
in the p space. Below, for the purposes of illustration, we shall
use the following simple model dependence for εd (p3):

εd (p3) = ε0
d + � cos(2πp3n/L). (34)

When � is very small, one may expect that b11, b22, and
ã2

⊥ are almost constant along the band-contact line, and this
closed curve is approximately a circle. Note also that if a band-
contact line in a topological semimetal is not a closed curve
but it begins and ends on the opposite faces of the Brillouin
zone, formula (34) with n = 1 provides a simple model for the
function εd (p3) in this case as well.

B. Magnetic susceptibility

As in the case of the Weyl and Dirac semimetals, the total
magnetic susceptibility of the line node semimetals consists of
its special part determined by the electron states located near
the band-contact line and a practically constant background
term specified by electron states located far away from this
line. It is the special part that is responsible for dependences
of the susceptibility on the magnetic field, temperature, and
the chemical potential ζ when this ζ lies inside or close to the
narrow energy interval from ε0

d − � to ε0
d + �.

In weak magnetic fields H � HT , when �εH � T , the
special part of the magnetic susceptibility is practically inde-
pendent of H , whereas at H > HT , a noticeable H dependence
of the susceptibility appears, and the magnetization becomes
a nonlinear function of H . The boundary HT between the
regions of weak and strong magnetic fields, which is defined
by the condition �εH ∼ T , is still estimated by Eq. (10) where
V is the characteristic slope of the Dirac cone, V ∼ (bii)1/2.
However, since in topological semimetals the value of �

is relatively small, it is necessary to take into account the
interrelations between the three parameters T , �εH , and
� when one analyzes the magnetic susceptibility and the
magnetization. This situation differs from that of Refs. [27,29]
where � was assumed to be much larger than the temperature
T and the spacing between the Landau subbands �εH .

In this section we present formulas for the susceptibility
and the magnetization assuming the twofold degeneracy of the
conduction and valence bands in spin. However, in the case
of a noncentrosymmetric line node semimetal with a strong
spin-orbit interaction (e.g., in PbTaSe2 [25]), this degeneracy
is absent. In this situation the formulas given below should be
divided by two.

1. Weak magnetic fields

In weak magnetic fields when �εH � T , we find the fol-
lowing expression for the longitudinal magnetic susceptibility
χ‖ defining the magnetization component M‖ = χ‖H parallel
to the magnetic field:

χ‖ = e2

6π2�c2

∫ L

0
dp3(b11b22)1/2(1 − ã2

⊥)3/2f ′(εd ) cos2 θ,

(35)

where L is the length of the band-contact line in the Brillouin
zone; the integration is carried out over this line; f ′(εd ) is the
derivative of the Fermi function (12),

f ′(εd ) = −
[

4T cosh2

(
εd (p3) − ζ

2T

)]−1

, (36)

and θ = θ (p3) is the angle between the direction of the
magnetic field and the tangent to the band-contact line at
the point with the coordinate p3. Formula (35) describes the
special part of the magnetic susceptibility.

At T � 2�, we find from Eq. (35) that χ‖(ζ ) = 0 if ζ

does not lie between ε0
d − � and ε0

d + �. If |ζ − ε0
d | < �, we

obtain

χ‖(ζ ) = − e2

6π2�c2

∑
j

(b11b22)1/2(1 − ã2
⊥)3/2 cos2 θ

|dεd/dp3| ,

(37)

where all the quantities on the right-hand side of the formula
are calculated at the points p3 = p3j . These p3j are found
from the equation

εd (p3j ) = ζ. (38)

Taking into account that εd , bii , and ã2
⊥ are periodic functions

along the band-contact line, it can be shown that the sum in
Eq. (37) reduces to the sum over p3j lying inside a single period
of εd (p3), with the additional factor n/2 appearing before the
sum, and cos2 θ being replaced by cos2 θ0. Here θ0 is the angle
between the magnetic field and the plane of the line, Fig. 3.

If εd (p3) is given by Eq. (34), one finds the two points p3j

(j = 1,2) inside the period,

p3j = ± L

2πn
arccos

(
ζ − ε0

d

�

)
,

and the following derivative |dεd/dp3| which is identical for
both the points p3j :∣∣∣∣dεd

dp3

∣∣∣∣ = 2πn

L

√
�2 − (

ζ − ε0
d

)2
.
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FIG. 4. The dependence of χ‖ on the chemical potential ζ at
(1) T → 0, Eq. (39); (2) T/� = 0.25; and (3) T/� = 2, Eqs. (39)
and (41). At T/� � 2, the ζ dependences of the susceptibility
calculated with Eqs. (39) and (41) and with approximate formula (42)
practically coincide. The susceptibility is measured in units of C/�

where the constant C is defined by formula (43); ζ is measured
from ε0

d .

Eventually, in the case of Eq. (34) we obtain

χ‖(ζ ) = − e2

6π2�c2

L(b11b22)1/2(1 − ã2
⊥)3/2 cos2 θ0

2π

√
�2 − (

ζ − ε0
d

)2
, (39)

where bii and ã2
⊥ are calculated at one of p3j . This function

χ‖(ζ ) is shown in Fig. 4 assuming that bii and ã2
⊥ are constant

along the line. When ζ tends, e.g., to εmax = ε0
d + �, Eq. (38)

reduces to ζ = εmax − Bp2
3j where

B = 2π2n2�

L2
, (40)

and one derives χ‖ ∝ (εmax − ζ )−1/2 from Eq. (39), with the
coefficient of proportionality agreeing with Eq. (12) from
Ref. [27]. Of course, at |εmax − ζ | � T the divergence of
χ‖ in Eq. (39) is cut off as in the case of the Dirac points.
Thus, formulas (37) and (39) extend the result of Ref. [27]
for the magnetic susceptibility near the point of the electron
topological transition to the whole interval from εmin to εmax.
In the middle of this interval the divergence of χ‖ is absent,
but the susceptibility is still large due to a small value of � in
the denominator of Eq. (39) and essentially depends on ζ .

In a number of line node semimetals the degeneracy of
the conduction and valence bands along the line is lifted by
the spin-orbit interaction which generates a small gap �so(p3)
between the bands. If the temperature is lower than this gap,
the divergence of the susceptibility at ζ → εmax in Eq. (39)
is cut off at |εmax − ζ | � �so(p3i). In other words, at low T

the magnitude of the susceptibility near the critical energies
εmax and εmin is determined by the spin-orbit gap rather than
by the temperature. The detailed analysis of the magnetic
susceptibility at the chemical potential lying in this gap is
presented in Ref. [29].

Consider now the case when the temperature is not small
as compared with � (and T � �εH ). In this situation, it is

convenient to rewrite formula (35) as follows:

χ‖(ζ,T ) = −
∫ ε0

d+�

ε0
d−�

dεχ‖(ε,0)f ′(ε), (41)

where χ‖(ζ,0) is given by Eq. (37) or Eq. (39). The ζ

dependence of this χ‖(ζ,T ) is shown in Fig. 4, assuming that
bii and ã2

⊥ are independent of p3. In the limiting case when
� is so small (or the temperature is so high) that � � T

(the interrelation between � and �εH may be arbitrary), an
explicit formula for χ‖(ζ,T ) can be obtained. In this case
εd (p3) is approximately equal to ε0

d in formula (36), and the
factor (b11b22)1/2(1 − ã2

⊥)3/2 in Eq. (35) can be replaced by
its value averaged over the band-contact line. Taking into
account that the band-contact line is invariant under the
rotations through the angles 2πi/n, it can be shown that∫ L

0 cos2 θdp3 = (L cos2 θ0)/2. Eventually, we arrive at

χ‖(ζ,T ) = −e2 cos2 θ0

6π2�c2

∫ L

0 dp3(b11b22)1/2(1 − ã2
⊥)3/2

8T cosh2
[(

ε0
d − ζ

)/
2T

] . (42)

The data of Fig. 4 show that this formula well describes
χ‖(ζ,T ) at T/� � 2.

Interestingly, formula (42) can be also obtained from
Eq. (41) if the susceptibility at zero temperature χ‖(ε,0) is
replaced by Cδ(ε − ε0

d ), where the constant C is

C =
∫ �

−�

χ‖(ζ )d
(
ζ − ε0

d

)

= − e2L

12π2�c2
(b11b22)1/2(1 − ã2

⊥)3/2 cos2 θ0, (43)

and χ‖(ζ ) is given by Eq. (39). Formula χ‖(ζ,0) = Cδ(ζ − ε0
d )

corresponds to the result of Koshino and Hizbullah [34].
Therefore, at T � 2�, i.e., when the structure of χ‖(ζ,0)
shown in Fig. 4 at |ζ − ε0

d | < � becomes unimportant,
Koshino’s result is equivalent to ours.

It is necessary to emphasize that the susceptibility χ‖ found
in this section is invariant under rotations of the magnetic field
through any angle φ about the z axis that is perpendicular
to the plane of the band-contact line. This χ‖ is proportional
to cos2 θ0 where θ0 is the angle between the magnetic field
and this plane. When θ0 differs from zero and π/2, there is
also a nonzero component M⊥ of the magnetization that is
perpendicular to the magnetic field H, Fig. 3. This component
lies in the plane passing through the vector H and the z

axis. Interestingly, the magnetic susceptibility χ⊥ defined by
the relation M⊥ = χ⊥H is also described by formulas (39)
and (42) in which cos2 θ0 should be replaced by cos θ0 sin θ0.
This χ⊥ determines the magnetic torque Kφ = χ⊥H 2. As to
the background contributions to the total susceptibilities χ‖,tot

and χ⊥,tot, they look like χ0
‖ = χ0

zz + (χ0
x−y − χ0

zz) cos2 θ0,
χ0

⊥ = sin θ0 cos θ0(χ0
x−y − χ0

zz), where χ0
x−y and χ0

zz are the
components of the background susceptibility tensor in the
plane of the line and perpendicular to this plane, respectively.
Thus, in weak magnetic fields the angular dependences of
the special and background contributions to the magnetic
susceptibility have the same form.

195123-8



MAGNETIC SUSCEPTIBILITY OF TOPOLOGICAL NODAL . . . PHYSICAL REVIEW B 94, 195123 (2016)

2. Strong magnetic fields

Generalizing the results of Ref. [29], we find the following
expression for the longitudinal magnetization in strong mag-
netic fields (�εH � T ):

M‖(ζ,H ) = e3/2H 1/2

2π2�3/2c3/2

∫ L

0
dp3| cos θ |3/2

√
α(p3)K(u),

(44)

where

α(p3) = 2(b11b22)1/2(1 − ã2
⊥)3/2,

K(u) = 3
2ζ

(− 1
2 ,[u] + 1

) + √
u
(
[u] + 1

2

)
.

ζ (x,a) is the Hurwitz zeta function, [u] is the integer part
of u,

u = [ζ − εd (p3)]2c

e�α(p3)H | cos θ | = cS(p3)

2πe�H
; (45)

S(p3) is the area of the cross section of the Fermi surface
by the plane perpendicular to the magnetic field and passing
through the point p3. The quantity u is similar to that defined
by Eq. (17). In calculations with Eqs. (44) and (45), it is
convenient to use the geometrical relation cos θ = cos θ0 cos ϕ

in which ϕ is the angle between the tangent to the band-contact
line at the point with the coordinate p3 and the projection of
magnetic field on the plane of the line, and θ0 is the angle
between the magnetic field and this plane, Fig. 3. It is clear
that only the angle ϕ depends on p3.

As in the case of the weak magnetic fields, the magnetiza-
tion in the region of strong magnetic fields has the component
M⊥ that is perpendicular to H and lies in the plane containing
the vectors H and z. This component is expressed via M‖ as
follows:

M⊥ = tan θ0M‖. (46)

However, in contrast to the case of weak fields, in the region
of strong magnetic fields there is also a nonzero component
Mφ directed perpendicularly both to H and M⊥, Fig. 3. This
component is described by the formula that is similar to
Eq. (44):

Mφ(ζ,H ) = e3/2H 1/2(cos θ0)1/2

2π2�3/2c3/2

∫ L

0
dp3σ (ϕ) sin ϕ

×
√

α(p3)| cos ϕ|K(u), (47)

where σ (ϕ) is a sign of cos ϕ. The components M⊥ and Mφ

determine the magnetic torque of the sample.
Strictly speaking, formulas (44) and (47) describe M‖

and Mφ at T → 0. For nonzero temperatures (including the
case of weak magnetic fields, T � �εH ), the magnetizations
M‖(ζ,H,T ), M⊥(ζ,H,T ), and Mφ(ζ,H,T ) can be calculated
with the relationship [45]

M‖,⊥,φ(ζ,H,T ) = −
∫ ∞

−∞
dεM‖,⊥,φ(ε,H,0)f ′(ε), (48)

where f ′(ε), M‖,⊥,φ(ζ,H,0) are given by Eqs. (36), (44), (46),
and (47), respectively.

Consider now M‖(ζ,H ) and Mφ(ζ,H ) in limiting cases.
When �εH � �, the results of Ref. [29] are valid. In

particular, when ζ is not close to the critical energies ε0
d ± �,

the magnetization M‖ is described by usual formulas [35]
for the de Haas–van Alphen effect, with the phase of the
oscillations being shifted by π [46]. As in Sec. II B, this
shift is caused by the large value of the g factor, g = 2m/m∗,
occurring even at a weak spin-orbit interaction [47]. Here m∗
is the cyclotron mass and m is the electron mass. This large
value of the g factor is due to the Berry phase π for the electron
orbits surrounding the band-contact lines [46,48].

When ζ tends to one of the critical energies ε0
d ± �, the

magnetization M‖ is determined by those critical points in the
band-contact line which correspond to this energy. Near such
a point, we obtain εd (p3) − ζ ≈ Bp2

3 where B is a constant
[see, e.g., Eq. (40)], and now u ∝ p4

3/(H | cos θ |). Changing
the variable of the integration in Eq. (44) from p3 to u, we
arrive at

M‖(H ) = − f0e
7/4α

3/4
c n

π2�5/4c7/4|B|1/2
H 3/4(cos θ0)7/4�n(φ), (49)

where f0 ≈ 0.156, αc denotes the value of α at one of the
critical points, φ is the angle between the tangent to the band-
contact line at this point and the projection of magnetic field
on the plane of the line, and the factor �n(φ),

�n(φ) = 1

n

n∑
i=1

∣∣∣∣cos

(
φ + 2πi

n

)∣∣∣∣
7/4

, (50)

describes the dependence of M‖(H ) on the direction of this
projection. Formula (49) shows that M‖ ∝ H 3/4 and that the
angular dependence of the magnetization on θ0 has changed as
compared to the case of the weak magnetic fields. Moreover,
M‖(H ) is not isotropic in the plane of the band-contact line
since the functions �n(φ) are not constants. However, when
H rotates about the z axis, the variation of M‖ is relatively
small. This follows from that the functions �n(φ) are well
approximated by the expressions

�4(φ) ≈ 0.5526 − 0.0226 cos(4φ),

�3(φ) = �6(φ) ≈ 0.5249 + 0.0066 cos(6φ), (51)

and their change with φ is of the order of 1%–4%.
Interestingly, at �εH � � and ζ → ε0

d ± � there is also a
nonzero component Mφ . This component is given by Eq. (49),
with (cos θ0)7/4 and �n(φ) being replaced by (cos θ0)3/4 and
�n(φ), respectively. Here

�n(φ) = 1

n

n∑
i=1

σi sin

(
φ + 2πi

n

)∣∣∣∣cos

(
φ + 2πi

n

)∣∣∣∣
3/4

, (52)

and σi is a sign of cos(φ + 2πi
n

). The functions �n(φ) can be
approximately described by the expressions

�4(φ) ≈ −0.046 sin(4φ) − 0.01 sin(8φ),

�3(φ) = �6(φ) ≈ 0.02 sin(6φ) − 0.0045 sin(12φ). (53)

Thus, in the region of the magnetic fields, T � �εH � �,
the component Mφ at ζ → ε0

d ± � is an order of magnitude
smaller than M‖.

Consider now the case of strong magnetic fields
(T � �εH ), and let � be so small (or the magnetic field be
so large) that � � �εH . If |ζ − ε0

d | � �εH , the de Haas–van
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Alphen oscillations occur, with the phase of the oscillations
being shifted by π . If |ζ − ε0

d | � �, the parameter u in Eq. (45)
is small (u � 1) practically for all points of the band-contact
line, and Eq. (44) reduces to

M‖(ζ,H ) ≈ 3e3/2H 1/2

4π2�3/2c3/2
ζ

(
−1

2
,1

)
(cos θ0)3/2G‖(φ)

+ e cos θ0

4π2�2c

∫ L

0
dp3|[ζ − εd (p3)] cos ϕ(p3)|, (54)

where ζ (− 1
2 ,1) = −ζ (3/2)/4π ≈ −0.653/π , ζ (a) is the Rie-

mann zeta function,

G‖(φ) =
∫ L

0
dp3| cos ϕ(p3)|3/2

√
α(p3), (55)

ϕ(p3) is the angle between the tangent to the band-contact
line at the point p3 and the projection of magnetic field on
the plane of the line, and the angle φ defines a direction of
this projection in the plane. The second term in Eq. (54) is
relatively small, and it gives only a correction to the first one.
The first term is independent of ζ and reveals that in this field
region, M‖ ∝ H 1/2 rather than M‖ ∝ H 3/4.

As to the component Mφ , we obtain from Eq. (47),

Mφ(ζ,H ) ≈ 3e3/2H 1/2

4π2�3/2c3/2
ζ

(
−1

2
,1

)
(cos θ0)1/2Gφ(φ)

+ e

4π2�2c

∫ L

0
dp3|[ζ − εd (p3)]|σ (ϕ) sin ϕ,

(56)

Gφ(φ) =
∫ L

0
dp3σ (ϕ) sin ϕ| cos ϕ(p3)|1/2

√
α(p3), (57)

where σ (ϕ) is a sign of cos ϕ. Of course, Eqs. (54) and (56)
are true only when cos θ0 is not small so that one has u � 1 at
θ = θ0 for the parameter u defined by Eq. (45).

Let us apply the results of this section to the model in which
εd (p3) is described by Eq. (34) with a small value of �, i.e.,
when � � ε0

d . In this case, in the leading order in the small
parameter �/ε0

d , we may expect that α(p3) ≈ constant, and the
band-contact line is practically a circle. In this approximation,
we find that the first (main) term in Eq. (54) is equal to

M‖(H ) ≈ −0.85

π4

(
e

�c

)3/2

(αH )1/2(cos θ0)3/2L, (58)

and it is isotropic in the plane of the band-contact line. In the
same approximation, the first term in Eq. (56) vanishes, and
the component Mφ is determined by the second term which
reduces to

Mφ(ζ,φ) = eL�

4π2�2c
mn(ζ̃ ,φ), (59)

mn(ζ̃ ,φ) = 1

2π

∫ 2π

0
dϕ|ζ̃ − cos(n[ϕ + φ])|σ (ϕ) sin(ϕ).

(60)

This Mφ is independent of the magnetic field magnitude, but
it depends on ζ̃ ≡ (ζ − ε0

d )/� and the angle φ defining a

direction of the magnetic field projection on the plane of the
band-contact line. The angle φ in Eq. (60) is measured from
the tangent to this line at the point p3 = 0. Formulas (59), (60)
are valid when �,ζ − ε0

d � �εH � ε0
d .

At ζ̃ � 1 the quantities mn are independent of ζ̃ , and
Eq. (60) yields the following simple expressions:

m3 = 0, m4 =− 8

15π
sin(4φ), m6 = 12

35π
sin(6φ). (61)

At ζ̃ � −1, mn are still given by formulas (61) but with the
opposite sign. The functions mn(φ) at two values of ζ̃ < 1
are shown in Fig. 5. We see that with decreasing ζ̃ , the shape
of the curves m4(φ) and m6(φ) deform, and at ζ̃ = 0 we find
that m4 ∝ sin(8φ) and m6 ∝ sin(12φ). On the other hand, the
period of the function m3(φ) remains constant on decreasing
|ζ̃ |, but the amplitude and the shape of its oscillations change
essentially, and m3(φ) ∝ sin(6φ) at ζ̃ = 0. In Fig. 5 we
also show how the amplitudes of the oscillations in mn(φ)
depend on ζ̃ .

Therefore, when � is so small that it is less than an
experimental value of T , and the chemical potential is close
to ε0

d , |ζ − ε0
d | � �, the behavior of magnetization with

increasing H can be described as follows: In the weak
magnetic fields (�εH < T ), one has M‖ = χ‖H , with χ‖ being
described by Eq. (42). In strong magnetic fields (�εH > T ),
we find M‖ ∝ H 1/2; see Eq. (58). The intermediate asymp-
totic behavior M‖ ∝ H 3/4 does not occur in this situation.
Interestingly, the same dependences of χ‖ on ζ in the weak
magnetic fields [40,49,50] and of the magnetization on H in
the strong fields [39] were obtained for the case of a Dirac
point in a two-dimensional layer in the magnetic field that is
perpendicular to this layer. In other words, in the case of an
“ideal” topological line node semimetal (when � → 0), its
magnetization M‖ is somewhat similar to the magnetization
of graphene if one does not pay attention to the dependences
of M‖ on θ0 and φ in the semimetals. As to Mφ , this quantity
is zero in the weak magnetic fields, but in the region of the
strong fields, its magnitude has a tendency to increase with
H . Within the framework of Eq. (34), this magnitude is even-
tually saturated, and formulas (59), (60) give these saturated
values of Mφ .

If a band-contact line in a topological semimetal is not a
closed curve but it begins and ends on the opposite faces of
the Brillouin zone, the formulas of this section remain valid.
However, the angular dependences of the magnetic suscepti-
bility in the weak magnetic fields and of the magnetization in
the strong magnetic fields change and are determined by the
shape of the line.

C. Example: Ca3P2

In Ca3P2 the band-contact line looks like a circle which
lies in the x-y mirror-reflection plane and is perpendicular to
a sixfold axis (the z axis) [19]. In this case the curvilinear
coordinates introduced in Sec. III A coincide with cylindrical
ones (pr,pϕ,pz), and we have the following correspondence of
the axes: p1 = pz, p2 = pr , p3 = pϕ . The spectrum near the
band-contact line is described by Eq. (31) with a⊥ = (0,ar ,0)
where ar is a constant. In principle, the parameters brr , bzz,
and ar can be found from the calculations of the electron-band
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FIG. 5. Dependences mn(φ), Eq. (60), at ζ̃ = 0.9 (top) and 0.25
(middle). The bottom panel shows the ζ dependence of the amplitude
of the oscillations in mn(φ). Here ζ is measured from ε0

d , the solid
lines correspond to n = 3, the dashed lines to n = 6, and the dotted
lines to n = 4.

structure of Ca3P2 presented in Ref. [19], and as follows from
Fig. 3 of that paper, the value ar is relatively small as compared
to

√
brr , i.e., ã2

⊥ < 1. This means that the giant anomaly of the
magnetic susceptibility should occur in Ca3P2, and formulas
of Sec. III B enable one to calculate the magnetization and
the magnetic susceptibility of this semimetal. Although the
value of � is not extractable from the data presented by Xie
et al. [19], it is seen from their figures that � is relatively small,
and so the reasonable assumption is that the model based on
Eq. (34) with n = 6 is applicable to Ca3P2. Therefore, the data

FIG. 6. The H dependence of the quantity M‖/H calculated with
formulas (44), (48), and (34) at α = constant, T = 0.25�, θ0 = 0,
φ = 0 for the three values of the chemical potential: ζ = 0, �,
and 1.5� (ζ is measured from ε0

d ). The dashed line shows M‖/H
according to Eq. (58). The quantity M‖/H is measured in units of
C/� where the constant C is defined by formula (43); the H axis is
presented in the logarithmic scale.

of Figs. 4 and 5 are likely to be suitable for this semimetal.
Using this model and Eqs. (44) and (48), we also calculate the
H dependence of the quantity M‖/χ̄‖H for various positions
of ζ relative to ε0

d at temperature T = 0.25� and the magnetic
fields lying in the plane of the band-contact line (i.e., at θ0 = 0),
Fig. 6. In Fig. 6, χ̄‖ = C/�, and C is defined by Eq. (43). The
quantity M‖/χ̄‖H at T = 0.25� is practically independent of
the angle φ, and for definiteness, we take φ = 0 in Fig. 6
(the angle φ is measured from the tangent to the band-contact
line at the point p3 = 0). The data of Fig. 6 show that at
weak magnetic fields the values of M‖/χ̄‖H coincide with
the results obtained from Eq. (35); cf. Fig. 4. At very strong
magnetic fields, �εH � �, the magnetization is described by
formula (58) and is independent of ζ . At �εH ∼ �, a de
Haas–van Alphen oscillation is visible, and for ζ = ε0

d +
�, this oscillation is superimposed on the dependence ap-
proximately described by formula (49). Thus, this figure
demonstrates that M‖(H )/H is sensitive to the position of
the chemical potential relative to characteristic energies of the
band-contact line.

IV. CONCLUSIONS

We have considered the magnetic susceptibility and mag-
netization of electrons in topological Weyl, Dirac, and line
node semimetals. In weak magnetic fields, when the spacing
between Landau subbands �εH ∝ √

H is less than the
temperature T , the susceptibility is independent of H . In the
opposite case, when �εH > T , the magnetic susceptibility
is a function of H , and it is more convenient to consider
the magnetization in this case. Results of our analysis can be
qualitatively summarized as follows.

In the case of the Dirac and Weyl semimetals, the magnetic
susceptibility χ (ζ ) in the region of the weak magnetic fields
exhibits the giant anomaly of the logarithmic type when the
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chemical potential ζ shifts with respect to the degeneracy
energy εd , χ = AD ln(ε0/|ζ − εd |). Here the constant AD

is a combination of the parameters characterizing the Dirac
(Weyl) point, and the cutoff parameter ε0 is of the order of the
energy spacing between εd and other electron energy bands
at this point of the Brillouin zone. In the weak magnetic
fields, the magnitude of the anomaly is determined by the
temperature, χ (εd ) ≈ AD ln(ε0/T ). In strong magnetic fields,
when �εH becomes larger than T , the magnitude depends
on H logarithmically, χ (εd ) ≈ AD ln(ε0/�εH ), and hence
the magnetization is proportional to H ln H . When ζ is not
close to the energy εd , in the strong magnetic fields the de
Haas–van Alphen oscillations appear. However, the phase of
these oscillations is shifted by π as compared to the usual
case. It is also necessary to note that the giant anomaly in
susceptibility is absent for type-II Weyl or Dirac semimetals.

In the case of the line node semimetals, the degeneracy
energy εd changes along the band-contact line in the interval
2� ≡ εmax − εmin from its minimum value εmin to its max-
imum value εmax. In the weak magnetic fields and at low
temperatures, the longitudinal magnetic susceptibility χ‖(ζ )
exhibits the giant anomaly of the type χ‖ = Aln/

√|ζ − εc|
when ζ lies inside the interval 2� and tends to one of the
critical energies εc (εc = εmin or εmax). Here Aln is a negative
constant specified by certain parameters of the band-contact
line. For ζ in the middle of the interval, one has χ‖ ∼ Aln/

√
�,

and |χ‖| may be large if � is small. If ζ is outside the interval,
the susceptibility is practically independent of the chemical
potential. The divergence of χ‖(ζ ) at ζ → εc is cut off at
|ζ − εc| ∼ max(T ,�εH ). Hence, in the strong magnetic fields,
when T � �εH � �, we arrive at χ‖(εc) ≈ Aln/

√
�εH ∝

H−1/4 and M‖ ∝ H 3/4. When H further increases so that
�εH � T and �, the magnetization is proportional to H 1/2.
Interestingly, the angular dependences of the magnetization
in the strong magnetic fields essentially differ from the
appropriate dependences in the weak fields. As in the case
of the Dirac semimetals, in the strong magnetic fields, the de
Haas–van Alphen oscillations of the magnetization can appear
for the line node semimetals, with the phase of the oscillations
being shifted by π as compared to the usual case.

Apart from the longitudinal magnetization M‖, the magne-
tization components M⊥ and Mφ , which are perpendicular
to H, generally exist for the line node semimetals. These
components generate the magnetic torques M⊥H and MφH .
The component M⊥, which lies in the plane passing through
H and the normal z to the plane of a closed band-contact line,
is simply expressed in terms of M‖, Eq. (46). The second
perpendicular component Mφ appears only in strong magnetic
fields, and it oscillates when H rotates about the normal z (z
usually coincides with a symmetry axis). The appearance of
this Mφ in the strong magnetic fields is a distinguishing feature
of the band-contact lines.

Since the magnetization and magnetic susceptibility of
the topological nodal semimetals are expressible in terms of
the parameters characterizing the Dirac (Weyl) points and
the band-contact lines, the magnetic measurements can be
useful in investigating these semimetals.
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