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Spontaneous charge ordering occurring in correlated systems may be considered as a possible route to generate
effective lattice structures with unconventional couplings. For this purpose we investigate the phase diagram of
doped extended Hubbard models on two lattices: (i) the honeycomb lattice with on-site U and nearest-neighbor
V Coulomb interactions at 3/4 filling (n = 3/2) and (ii) the triangular lattice with on-site U , nearest-neighbor
V , and next-nearest-neighbor V ′ Coulomb interactions at 3/8 filling (n = 3/4). We consider various approaches
including mean-field approximations, perturbation theory, and variational Monte Carlo. For the honeycomb case
(i), charge order induces an effective triangular lattice at large values of U/t and V/t , where t is the nearest-
neighbor hopping integral. The nearest-neighbor spin exchange interactions on this effective triangular lattice are
antiferromagnetic in most of the phase diagram, while they become ferromagnetic when U is much larger than
V . At U/t ∼ (V/t)3, ferromagnetic and antiferromagnetic exchange interactions nearly cancel out, leading to a
system with four-spin ring-exchange interactions. On the other hand, for the triangular case (ii) at large U and
finite V ′, we find no charge order for small V , an effective kagome lattice for intermediate V , and one-dimensional
charge order for large V . These results indicate that Coulomb interactions induce [case (i)] or enhance [case(ii)]
emergent geometrical frustration of the spin degrees of freedom in the system, by forming charge order.
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I. INTRODUCTION

Correlated systems with competing on-site and intersite
Coulomb interactions [1] and fillings away from one electron
per site (n = 1, half filling) are presently a subject of intensive
investigation due to the appearance of complex phases such
as unconventional charge and magnetic orders. These systems
become even more challenging when novel lattice structures
emerge out of the original lattice in the region of strong corre-
lations [2]. This phenomenon is often found in geometrically
frustrated systems, such as triangular and kagome lattices.

On the triangular lattice, for instance, large on-site U and
nearest-neighbor V Coulomb interactions generate effective
honeycomb and enlarged triangular lattices at 1/3 filling
(n = 2/3) by inducing charge disproportionation [3–5]. When
V � U/3 the system tends to create a honeycomb lattice
of empty sites and an enlarged triangular lattice of doubly
occupied sites, while at smaller ratios of V/U the system
evolves into a honeycomb lattice of singly occupied sites
with long-range antiferromagnetic order. A similar charge
ordered state with noncollinear magnetic order has also been
proposed in the Kondo lattice system [6]. While these states
are insulating, such exotic charge and magnetic orders become
metallic away from the commensurate filling [4]. Furthermore,
at quarter filling (n = 1/2), metallic states, named pinball
liquids, have been also recently proposed [7–10]. They are
characterized by a three-sublattice structure, in which the
carriers of one sublattice are essentially localized (pins), with
the remaining charges (balls) building an itinerant liquid on
the interstitials. Recently, other mechanisms than direct charge
disproportionation have been also proposed to generate new
lattice structures such as the emergence of a kagome lattice via
spontaneous ferrimagnetic order coexisting with a

√
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3
charge order pattern in a triangular Kondo lattice [11].

Similarly, on the kagome lattice, large values of U and V

have been discussed to induce nearly isolated six-site rings and

an enlarged kagome lattice at 1/3 filling (n = 2/3) [12–14].
Specifically, when U,V > 0 and t = 0, each corner-sharing
triangle possesses charge order characterized by two singly
occupied sites and an empty site. The empty site randomly
sits on one of the three vertices of a triangle, which gives
macroscopic charge degeneracy. Nonzero hopping t lifts the
charge degeneracy and appears to stabilize a

√
3 × √

3 charge
pattern, whose unit cell contains nine sites [12–14]. Recently,
by mapping the system into a hard-core boson Hamiltonian, a
topological liquid was also proposed [15].

Reported realizations of such emergent lattices are for
instance the generation of a honeycomb structure through
charge disproportion in the metallic magnet AgNiO2 [16,17]
or the appearance of effective spin-1/2 chains in the heavy-
fermion spinel LiV2O4 [18,19].

Actually, even when the lattice structures themselves are
not geometrically frustrated, such a formation of new lattices is
possible due to strong electron correlations. For example, in the
cubic lattice, a staggered (π,π,π ) charge order generates dou-
bled face-centered-cubic lattices [20]. Moreover, effective spin
and charge interactions in such systems may acquire additional
geometrical frustrations. Indeed, unconventional noncoplanar
magnetic orders have been proposed in the periodic Anderson
model on the cubic lattice at n = 3/2 filling [20].

One of the most discussed bipartite lattices in two-
dimensional systems is the honeycomb lattice. While corre-
lation effects on the honeycomb lattice have been intensively
discussed in the past, many studies focused mostly at half
filling [21–28]. Castro et al. [29] and Grushin et al. [30]
studied extensively the phase diagram in honeycomb systems
for arbitrary filling; however, they considered only the spinless
Hubbard model.

In this work, we investigate the possible emergence of
correlation-induced new lattice structures both in a bipartite
and in a geometrically frustrated lattice at fillings that, to our
knowledge, have not been investigated before. In particular, we
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perform an extensive analysis of the spinful extended Hubbard
model on honeycomb and triangular lattices away from half
filling, and focus on the interplay between on-site U and
intersite nearest- and next-nearest Coulomb interactions V and
V ′, respectively. By using the Hartree-Fock approximation, as
well as perturbation theory and the variational Monte Carlo
method, we find that a triangular structure emerges from charge
order on the honeycomb lattice for large values of U and V at
3/4 filling (n = 3/2, three electrons per two sites on average).
Charge-poor sites possess spin degrees of freedom, and their
spin correlations are found to be antiferromagnetic in most of
the phase diagram, while they become ferromagnetic when U

is much larger than V .
On the other hand, for the triangular lattice with U,V , and

V ′ interactions at 3/8 filling (n = 3/4, three electrons per four
sites on average), considering large values of U and a finite
V ′ (we set V ′ = V/5), we find that the system shows rich
charge orders: a kagome structure emerges for intermediate
values of V , while a one-dimensional structure is stabilized
for large values of V . Both examples show an enhancement of
geometrical frustration, from the honeycomb to the triangular
lattice in the former case, and from the triangular to the kagome
in the latter one.

The paper is organized as follows. In Sec. II, we present
the extended Hubbard model on the honeycomb lattice and
show the possible phases of the model as a function of U

and V obtained with the Hartree-Fock approximation and
with variational Monte Carlo. We also discuss how U and V

determine magnetic patterns of the emergent charge ordered
states by means of perturbation theory. In Sec. III, we present
variational Monte Carlo results for the extended Hubbard
model on the triangular lattice and discuss possible phases
of the model as a function of V for large U and V ′ = V/5.
Finally, in Sec. IV, we draw our conclusions.

II. EMERGENT TRIANGULAR STRUCTURE ON A
HONEYCOMB SYSTEM

A. Extended Hubbard model on a honeycomb lattice

We consider an extended Hubbard model on the isotropic
honeycomb lattice [see Fig. 1(a)] where the Hamiltonian is
given as

H = −t
∑

〈i,j〉,σ
c
†
i,σ cj,σ + H.c.

+U
∑

i

ni,↑ni,↓ + V
∑
〈i,j〉

ninj ; (1)

t denotes the hopping parameter, and U and V are the on-
site and nearest-neighbor Coulomb interaction, respectively.
Hereafter, we investigate repulsive Coulomb interactions
(U,V � 0), and focus on 3/4 filling (n = 3/2). We note that
on the honeycomb lattice 3/4 and 1/4 fillings are equivalent
via the particle-hole transformation.

This model, being defined on a lattice with two sites per unit
cell, can be also regarded as a two-band (two-orbital) Hubbard
model whose hoppings connect only different orbitals [see
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FIG. 1. The extended Hubbard model with hopping t , on-site
Coulomb interaction U , and nearest-neighbor Coulomb interaction
V , Eq. (1) and Eq. (2), on (a) the honeycomb lattice and (b) its
equivalent two-band representation, Eq. (2). Blue and red circles
denote orbitals c and d , respectively.

Fig. 1(b)],

H = −t
∑
i,σ

(
d
†
i,σ ci,σ + d

†
i,σ ci+ex ,σ

+ d
†
i,σ ci+ey ,σ

+ H.c.
)

+U
∑

i

(
nc

i,↑nc
i,↓ + nd

i,↑nd
i,↓

)

+V
∑

i

(
nd

i n
c
i + nd

i n
c
i+ex

+ nd
i n

c
i+ey

)
. (2)

Both representations of the Hamiltonian are equivalent and we
will make use of the latter representation for computational
purposes.

B. Mean-field phase diagram

In order to investigate the interplay between charge and
magnetic order, we start with a mean-field analysis of the
above presented Hamiltonian. Figure 2(a) shows the U -V
phase diagram of the honeycomb model of Eq. (2) at 3/4
filling obtained with the restricted Hartree-Fock method (as
explained in Appendix A 1). For simplicity, we have restricted
ourselves to coplanar magnetic order patterns.

In the absence of nearest-neighbor Coulomb interaction V

(along V = 0) we find four ground-state candidates: normal
metal, ferromagnetic metal [Fig. 2(b)], and antiferromagnetic
insulator with and without charge order [see Fig. 2(d) and
Fig. 3]. As shown in Fig. 4(a), the energies of antiferromagnetic
and charge ordered states are always higher than those of
normal and ferromagnetic metal states. A continuous phase
transition from normal to ferromagnetic metal occurs at U/t ∼
5, as shown in Fig. 4(b). This ferromagnetic metal [Fig. 2 (b)] is
consistent with the result obtained by Hanisch et al. [31]. When
U/t � 6, spins are fully polarized. In the ferromagnetic state
at 3/4 filling, the up-spin lower band is fully occupied while
the down-spin upper band is half filled and the density of states
(DOS) is zero at the Fermi energy indicating a semimetallic
behavior. Figure 4(c) shows the DOS as a function of U .

On the other hand, in the absence of on-site Coulomb
interaction U (along U = 0) and for finite V , within the 2 × 2
sublattice structure, we obtain a staggered charge order state,
where c-orbital sites are charge-rich (nc = nc↑ + nc↓ > 3/2)
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FIG. 2. (a) Hartree-Fock phase diagram of the Hubbard model at n = 3/2, see Eq. (1), on the honeycomb lattice. (b) Illustration of the
ferromagnetic metallic state (FM metal), with one up-spin and half a down-spin (on average) per site. (c) Charge ordered metallic state (CO
metal), with alternating doubly and singly occupied site (large/small circles). (d) Charge ordered antiferromagnetic insulating state (CO+AF
insulator). (e) Charge ordered ferromagnetic insulating state (CO+FM insulator).

while d-orbital sites are charge-poor (nd = nd↑ + nd↓ < 3/2),
as shown in Fig. 2(c). In the absence of on-site Coulomb
interaction (U = 0), this charge ordered state does not have
any magnetic order. As shown in Fig. 5, we find a phase
transition from the nonmagnetic metal to the charge ordered
metal at V/t ∼ 2 which is stabilized by splitting the upper
and lower bands. This state is metallic since the upper band is
always half filled for n = 3/2.

We consider now the case of large U and V values, where
charge order is expected to generate complex magnetic orders.
As shown in Fig. 2(a), when both U and V are large, we
find a charge ordered antiferromagnetic insulator. It has a
rich-poor-rich-poor type charge pattern, and the charge-poor
sites form an emergent triangular structure. Magnetic order
is found to be collinear and shows stripe order [Fig. 2(d)].
On the other hand, when U is much larger than V , a charge
ordered ferromagnetic insulating phase [Fig. 2(e)] appears. It
also has triangular-like charge order, and charge-poor sites
show dominant ferromagnetic order.

In order to investigate the possible antiferromagnetic
patterns on the emergent triangular structure, we consider the
collinear and the commensurate spiral state with 120◦ order
of Fig. 6 along the U = V line of the phase diagram. We note
that, in general, magnetic states may show incommensurate

FIG. 3. Metastable state found at V = 0. Antiferromagnetic (up-
up-down-down) insulator without charge order.

coplanar spiral order or noncoplanar order in doped Hubbard
models [32]. However, here we restrict ourselves to the
coplanar case. As shown in Fig. 7, the stripe antiferromagnetic
charge ordered state is found to have a lower energy than
the 120◦ Néel ordered state, although the energy difference
becomes extremely small as U and V increase.

The stability of the collinear phase should be induced by
second-order processes where a doubly occupied site is formed
in the charge-poor sublattice, after the hopping of one electron
from the charge-rich sublattice. Indeed, the hopping of one
electron from a doubly occupied site to a singly occupied
neighboring one is favored when collinearity holds, even for
large values of U and V . Since the intermediate state costs
an energy 2V , see for instance the first part of the process in
Fig. 19, the energy of the second-order process scales as t2/V ,
as confirmed by the Hartree-Fock calculations for both stripe
and 120◦ Néel antiferromagnetic charge ordered states in the
insulating phase. Moreover, as discussed in Appendix A 4,
effective next-neighbor exchange couplings on the emergent
triangular lattice are generated for moderately large values
of U and V , favoring collinear orderings [33,34]. All these
contributions may then break down the 120 Néel spin state,
and induce the observed collinear pattern.

C. Spin correlation in charge ordered states

In the previous section, we showed that when correlations
generate staggered charge order patterns on the honeycomb
lattice, charge-rich and charge-poor sites form triangular
lattices, respectively. At 3/4 filling, charge-rich sites contain
two electrons on average, while charge-poor sites contain one
electron on average with spin degrees of freedom. In order to
investigate how magnetic order appears in this limit, we apply
perturbation theory to obtain an effective spin Hamiltonian.

At the lowest order, the effective low-energy spin Hamil-
tonian on the triangular lattice (see Fig. 8) contains a spin
exchange interaction and a three-particle permutation term,
namely,

Hspin = J1

∑
〈i,j〉1

Si · Sj (3)
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FIG. 4. Results for the honeycomb lattice at 3/4 filling for V = 0
obtained by the Hartree-Fock method. (a) Energy of each state as
a function of U/t . (b) Magnetization of the metallic ground state
(normal and FM). (c) Density of states for the ground-state FM metal
at each value of U/t . The Fermi level is set to 0. When the up-
spin band is completely below the Fermi level, the state becomes
semimetallic.

and

Hperm = K3

∑



(
P3 + P −1

3

)
. (4)

(Further details are given in Appendix A 4.) Here, the sum
is taken over all nearest-neighbor sites denoted by 〈i,j 〉1 for
Hspin, while it is taken over all triangles, which connect charge-
poor sites, for Hperm, as illustrated in Fig. 8. The symbol Pn

denotes a cyclic permutation operator.
By considering virtual hopping processes, as shown in

Fig. 19, the exchange interaction J1 can be evaluated as a
function of t, U , and V , namely, J1 = c1t

4/(V 2U ) with a

FIG. 5. Results for the honeycomb lattice at 3/4 filling for U = 0
obtained by the Hartree-Fock method. (a) Energy of metallic states
as a function of V/t . (b) The number of electrons per each sublattice
for the metallic ground states (with and without charge order). (c)
Density of states for the ground-state metallic states. The Fermi level
is set to 0.

(a) (b) (c)

FIG. 6. States found for U = V . (a) Normal metal without charge
and magnetic order. (b) Charge ordered stripe antiferromagnetic
insulator. (c) Charge ordered 120◦ antiferromagnetic insulator. The
energy of the stripe antiferromagnetic state is found to be the lowest
one.
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FIG. 7. Results for the honeycomb lattice at 3/4 filling for U = V

obtained by the Hartree-Fock method. (a) Energy of each state as a
function of U = V . (b) The number of electrons per each sublattice
for ground states (normal metal and charge ordered collinear AF
state). (c) Magnetization of ground states. Charge-poor (charge-rich)
sites show large (small) magnetization. (d) Density of states for the
ground state. The Fermi level is set to 0.

(a) (b) (c)

FIG. 8. Illustration of effective (a) two-, (b) three-spin interaction
terms of Eqs. (3) and (4) and (c) a four-site spin ring exchange.

positive constant c1 = 1. This results in antiferromagnetic spin
correlations.

Similarly, the coefficient K3 in the permutation terms can be
evaluated by considering six cyclic processes for right-pointing
triangles that lie inside the hexagons (K�

3 ) and for left-pointing
triangles that connect three hexagons (K�

3 ). In Appendix A 4
we show in Fig. 21 one of the virtual processes generating K�

3 ,
which does not require the formation of intermediate double-
occupied sites. This coefficient survives even for U = ∞,
namely, K�

3 = −d3t
6/V 5 with a positive constant d3. When

U < ∞, the formation of intermediate double-occupied sites
leads to other six cyclic process in K�

3 and in K�
3 . Since

P3 can be mapped to two-spin exchange operators [35], these
permutation terms finally result in ferromagnetic exchange
interactions. The effective spin Hamiltonian is given by

H = J eff
1

∑
〈i,j〉1

Si · Sj (5)

with J eff
1 = J1 + 2K�

3 + 2K�
3 .

In the limit (V/t)3 � U/t , antiferromagnetic spin corre-
lations become relevant (J1 � K3), and hence J eff

1 becomes
antiferromagnetic. On the other hand, when U/t � (V/t)3,
antiferromagnetic spin correlations are suppressed (K3 � J1),
leading to a ferromagnetic J eff

1 . This is consistent with the
results in the previous section.

Furthermore, when (V/t)3 ∼ U/t , ferromagnetic K3 and
antiferromagnetic J1 nearly cancel out. In this case, higher
order processes in the perturbation theory become relevant.
One of the dominant terms is a four-spin ring-exchange
interaction K4(P4 + P −1

4 ) on the effective triangular lattice, as
shown in Figs. 8(c) and 22. This may induce exotic spin liquid
states [36–38] or chiral magnetic order [39,40]. Moreover,
the effective energy scale is extremely small (|J eff

1 | ∼ |K4| ∼
t8/V 7), which induces highly degenerate low-energy states.

D. Charge ordering vs phase separation

The presence of charge order is a necessary condition for the
validity of the perturbation expansion discussed in Sec. II C.
The mean-field approach tends however to overestimate the
stability range of ordered phases and to underestimate the
stability of nonordered metallic phases stabilized in turn by
quantum fluctuations. In what follows, we investigate the
stability of the ordered state performing variational Monte
Carlo simulations. We prepare the initial states by choosing
the charge ordered states found in the restricted Hartree-Fock
method and then optimize the variational parameters. The
details of the method are presented in Appendix A 3.
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FIG. 9. Variational Monte Carlo (symbols) and Hartree-Fock (lines) results for the nonmagnetic metallic state (U/t = V/t = 2, top row)
and the charge ordered antiferromagnetic insulating state [U/t = V/t = 10, bottom row; as illustrated in Fig. 2(d)]. In the first column [panels
(a) and (d)] the number of electrons for the two sites making up the unit cell are given [denoted as c and d orbitals; compare Eq. (2)]. In the
second column [panels (b) and (e)] the respective sublattice magnetizations. In the last column [panels (c) and (f)] the respective momentum
distributions n(k), as evaluated for 200 sites (using VMC) are presented. The hexagon denotes the Brillouin zone of the honeycomb lattice.

The Hartree-Fock calculation suggests that a triangular-
like charge order appears at large V . We first check with
variational Monte Carlo (VMC) the stability when U as well
as V are large. We confirm the presence of the insulating
state with charge order and stripe antiferromagnetic order at
U/t = V/t = 10. Both the number of electrons per orbital
and the magnetization are nearly saturated as shown in
Figs. 9(d)–9(f). The momentum distribution n(k) is a smooth
function of k [Fig. 9(f)], suggesting the state to be insulating.
Note that our variational wave function also finds a metallic
state without charge and magnetic orders at U/t = V/t = 2
[see Figs. 9(a)–9(c)]. Figure 10 presents the schematic phase
diagram for V = U obtained with the various approaches
considered here.

Besides, we do not find any indication of phase separation,
which can be detected by the divergence of the charge
structure factor N (q) at the smallest achievable wave vector
q ∼ 2π/L [41].

We now investigate the case of U = 0 and large V ,
namely, V/t = 10, 20, 30, with the VMC method. Note that
perturbation theory is not applicable in this case since U is not
large enough. When V/t = 10, the charge ordered metallic
state found in the mean-field calculation is replaced by a metal

FIG. 10. Schematic phase diagram for the honeycomb lattice at
3/4 filling for U = V obtained using Hartree-Fock (MF, top) and
variational Monte Carlo (VMC, bottom).

without any charge order. The total charge structure factor
N (q), see Eq. (A52), shows q-linear behavior near q ∼ 0,
suggesting the state to be metallic.

FIG. 11. Charge structure factors at (U/t,V/t) = (0,30) (phase
separated state) for the honeycomb lattice with 288 sites, as obtained
by VMC. (a) Total charge structure factor N (q). (b) Charge-rich
orbital (c-orbital-c-orbital) charge structure factor Ncc(q). (c) Charge
structure factor between two different orbitals (c-orbital and d-orbital)
Ncd (q). (d) Charge-poor orbital (d-orbital-d-orbital) charge structure
factor Ndd (q). The total charge structure factor N (q) shows sharp
peaks at the achievable smallest wave vector q, suggesting phase
separation. Since Ndd (qpeak) � Ncc(qpeak) and N (q) is similar to the
d-orbital (charge-poor orbital) charge structure factor Ndd (q), phase
separation mainly occurs in the d-orbital sector.
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(a) (b) (c)

FIG. 12. Snapshot of a phase separated state at (U/t,V/t) = (0,30) for 288 sites in the VMC calculation. Large and small circles correspond
to doublons and spinons, respectively. Dots correspond to holons. Up and down arrows correspond to up and down spins, respectively. (a) Spin
and charge configurations for both orbitals. (b) Same snapshot for only charge-rich c orbital. It mainly consists of doublons. (c) Same snapshot
for only charge-poor d orbital. It consists of large doublon and holon islands.

On the other hand, when V/t = 20 and 30, we find a charge
disproportionate state, where the average number of c electrons
is larger than that of d electrons. As shown in Fig. 11, N (q) is
found to have sharp peaks near q ∼ 2π/L, suggesting phase
separation [41]. The peaks in N (q) appear to be dominated
by that of the charge-poor d-orbital charge structure factor
Ndd (q); see Eq. (A51). This means that phase separation is
mainly activated in the d-orbital sector.

In order to clarify the mechanism of phase separation, we
also take a snapshot of this state. As shown in Fig. 12(a), phase
separation is characterized by the charge ordered insulating
state with a 2020 · · · structure (doubly occupied–empty–
doubly occupied–empty · · · sites) and the metallic state with
a mixture of doubly occupied and singly occupied sites.
Following the conventions [42], we denote single-occupied
sites with spin as “spinons” while doubly occupied (empty)
sites with no spin as “doublons” (“holons”). For the charge-rich
c orbital, each site is nearly doubly occupied and there are no
holon sites (empty sites) [see Fig. 12(b)]. On the other hand,
for the charge-poor d orbital there are two islands: one formed
by holons and the other one that is a mixture of doublons
and spinons [see Fig. 12(c)]. In this doublon-spinon mixture
region, each spinon can hop through a doublon sea of the c

and d orbitals. This does not cost an additional energy if two
spinons are not next to each other on the original honeycomb
lattice. Each spinon is always surrounded by three doublons,
which reside on the nearest-neighbor sites of the honeycomb
lattice. It can be assumed that one spinon and at least one
doublon are bound together, and this new quasiparticle freely
moves inside the doublon sea. The total kinetic energy gain
is determined by the size of the doublon sea and the effective
filling of the new quasiparticles. We note that the concept
of spin-charge separation has been only rigorously defined
in one spatial dimension; however, such a possibility has
been also discussed in higher dimensions in the presence of
geometrical frustrations [43,44]. Our numerical results imply
that the system wants to generate a larger doublon sea with
spinons to gain kinetic energy. This mechanism is similar to
what has been found in the doped extended Hubbard model on
a one-dimensional chain [45,46] and a two-leg ladder [47].

Summarizing, a nearest-neighbor Coulomb interaction V

at U = 0 stabilizes a charge ordered metal at the Hartree-
Fock level. However inclusion of quantum fluctuations via the
Gutzwiller approximation (GA), see Appendix A 2, and via
finite-size VMC calculations suggests that the charge ordered
metal is replaced by phase separation, see Fig. 13, although

the energies of these two states are found to be very close, as
shown in Appendix B 2. Figure 13 shows the schematic phase
diagram for U = 0 and finite V . We note that the critical U is
shifted to a larger value in the VMC result.

III. EMERGENT KAGOME AND CHAIN STRUCTURES
ON A TRIANGULAR SYSTEM

In this section we investigate the extended Hubbard model
on the isotropic triangular lattice, as defined by the Hamilto-
nian

H = −t
∑

〈i,j〉,σ
c
†
i,σ cj,σ + H.c. + U

∑
i

ni,↑ni,↓

+V
∑
〈i,j〉

ninj + V ′ ∑
〈〈i,j〉〉

ninj , (6)

where t denotes the hopping parameter, U is the on-site
Coulomb repulsion, V is the nearest-neighbor Coulomb
interaction, and V ′ is the next-nearest-neighbor one. As
in the previous section, we investigate repulsive Coulomb
interactions, focusing on the appearance of charge ordered
states induced by a nonlocal potential. Here, we focus on
3/8 filling (n = 3/4), where emergent kagome and one-
dimensional structures may be generated by the appearance of
charge order. Both effective lattices are shown in Fig. 14. When
U � V , double occupancies are prohibited and the charge
ordered ground state has a kagome-like structure, with three

FIG. 13. Schematic phase diagrams for the honeycomb lattice at
3/4 filling and U = 0 obtained using restricted Hartree-Fock (MF,
top), the Gutzwiller approximation (GA, middle) and variational
Monte Carlo (VMC, bottom). CO denotes a charge ordered phase,
while PS denotes a phase separated phase.
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1D chain

unit cell

FIG. 14. (a) Effective kagome lattice generated by charge order
at n = 3/4 on the triangular lattice. The unit cell contains four sites
and is denoted by a green parallelogram. Small empty circles denote
empty sites, while full red circles denote single occupied sites. (b)
Effective 1D chains generated by charge order at n = 3/4 on the
triangular lattice. Small empty circles denote empty sites, full small
red circles denote single-occupied sites, while full large red circles
denote double-occupied sites.

sites of the unit cell singly occupied and one site empty. By
increasing the ratio V/U , the number of empty sites increases
in order to avoid the energy loss from the V term, thus
inducing a one-dimensional (1D) charge structure. We remark
that the presence of a nearest-neighbor Coulomb repulsion
is not sufficient to stabilize the aforementioned charge orders
and one additional next-nearest neighbor V ′ is necessary in the
triangular lattice case. Indeed, if we consider for example the
kagome-like order of Fig. 14(a), we can describe it as alternate
rows that are fully occupied and rows where only half of
the sites are occupied. If interaction is restricted to nearest
neighbors, the reciprocal positions of the empty sites between
different rows can be changed without any further energy cost,
implying the absence of charge order in the system.

In the t → 0 limit, the energy of the kagome and the 1D
phases can be easily computed being equal to E = 3/2(V +
V ′) for the kagome substructure and to E = V + V ′ + U/4
for the 1D one. The 1D phase is then more favorable than
the kagome one when V + V ′ � U/2. Here we set U = 30,
in analogy with our former investigation of charge ordered
phases on the triangular lattice [4], and V ′ = V/5.

The model of Eq. (6) is studied by means of the varia-
tional Monte Carlo method, the details being presented in
Appendix A 3. In order to distinguish the different kinds of

FIG. 15. Electronic density nα as a function of V/t obtained from
VMC calculations for each of the four sublattices A, B, C, and D,
as present in the effective lattices emerging from the charge ordered
n = 3/4 triangular lattice, as illustrated in Fig. 14. The data are for
U/t = 30, V ′ = V/5, and a lattice size L = 144.

charge ordering in the model, we plot in Fig. 15 the average
electronic density per sublattice nα , with α = A,B,C,D for
each of the four sublattices that build up the unit cell (see
Fig. 14). Our results show that for V/t � 5, the charge is
uniformly distributed in the lattice, while for 6 � V/t � 12
one sublattice depletes, with the electrons forming an effective
kagome lattice. In this case the frustration of the original lattice
is effectively enhanced. Finally, as expected from the Coulomb
energy argument, the 1D substructure of Fig. 14 is stabilized
for V/t � 13.

As discussed also in the honeycomb lattice section, the
static structure factor N (q) = 〈nqn−q〉 is a good indicator
for metallic behavior. The metallic phase is characterized by
N (q) ∝ |q| for q → 0, which implies a vanishing gap for
particle-hole excitations. On the contrary, N (q) ∝ q2 for q →
0, implies a finite charge gap and insulating behavior [4,48].
The results shown in Fig. 16 indicate that the system is metallic
in the absence of charge order (V/t = 4,5), while the charge
ordered state with an effective kagome lattice exhibits an

FIG. 16. Variational Monte Carlo results for N (q)/|q| as a
function of |q|/π for different values of V/t . The data are for n = 3/4
and U/t = 30 for the triangular lattice and for momenta q connecting
� = (0,0) and M = (π,π/

√
3). The results for lattice sizes L = 144

and L = 256 are superimposed.
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FIG. 17. S(q)/|q| as a function of |q|/π for different values of
V/t , within the region where the effective kagome lattice is stabilized.
Data are shown along the line between � = (0,0) and M = (π,π/

√
3)

in the Brillouin zone on the L = 144 and the L = 256 lattice sizes.

insulating behavior (V/t = 6,8,10,12). N (q) is shown along
the path in the Brillouin zone connecting the point � = (0,0)
to the point M = (π,π/

√
3) but a similar behavior can be

obtained also along other directions. The results for the 1D
charge ordered phase at V/t = 13 indicate also an insulating
behavior although we observe a dependence on the path
chosen in the Brillouin zone, with strong finite-size effects.
By increasing the lattice size up to L = 400 we find, however,
an insulating behavior along all the selected paths (not shown).

In a similar way, one can consider the small-q behavior
of the spin-spin correlations S(q) = 〈sqs−q〉 to discriminate
between a spin gapped and a spin gapless behavior. Our
results indicate that the effective kagome lattice, induced by
charge order, is characterized by gapless spin excitations,
since S(q) ∝ |q| for q → 0; see Fig. 17. Moreover, no peak
can be observed in the spin-spin correlations, implying the
absence of magnetic correlations, even at the short-range scale.
We point out that gapless spin excitations have been also
proposed for the Heisenberg model on the kagome lattice, by
a similar variational approach [49], while the density matrix
renormalization group approach suggests a finite gap in the
spin excitations [50].

We finally summarize the VMC phase diagram of the model
of Eq. (6) at 3/8 filling, as a function of V/t , in Fig. 18.

IV. CONCLUSIONS

In conclusion, by using a combination of Hartree-Fock,
perturbation theory, and variational Monte Carlo, we have

FIG. 18. Schematic VMC phase diagram of the model of Eq. (6)
as a function of V/t at 3/8 filling, where we set U/t = 30 and
V ′ = V/5. For V/t � 5 we observe a metallic phase with a uniform
charge distribution. For 6 � V/t � 12 we stabilize the charge
ordered insulator with an effective kagome lattice of Fig. 14(a).
Finally, for V/t � 13, the charge ordered insulator with effective
1D chains of Fig. 14(b) occurs.

investigated the possibility of novel lattice structures emerging
from charge disproportionation in doped systems via strong
correlations. In particular, we find an emergent geomet-
rical frustration on bipartite honeycomb lattices, and an
enhancement of the underlying geometrical frustration on a
triangular lattice when Coulomb interactions beyond on-site
are considered.

Concerning the honeycomb lattice, we have found that
in the presence of both on-site U and nearest-neighbor V

Coulomb interactions, charge order converts the original
honeycomb structure at 3/4 filling into an effective half-
filled triangular lattice where the charge ordered state is
characterized by a 2121 · · · ordered pattern, while the singly
occupied sites have a macroscopic spin degeneracy. A nonzero
hopping t lifts the spin degeneracy by forming magnetic
order, which can be controlled by the Coulomb interactions U

and V .
Our analysis via Hartree-Fock of charge order and spin

correlations shows that most of the U -V phase diagram
at large values of U and V is characterized by a charge
ordered antiferromagnetic insulator. This result is corroborated
by VMC calculations for selected values of the parameter
space. The emergent antiferromagnetic spin correlations are
consistent with the effective antiferromagnetic Heisenberg
model predicted by our perturbation theory analysis. When
U is much larger than V , a charge ordered ferromagnetic
insulating state appears instead, which is consistent with the
results from perturbation theory. By further decreasing V ,
charge order completely disappears, and eventually a Nagaoka
ferromagnetic semimetal [51] appears for V/t � 6.

For U = 0 and finite V , we find a charge ordered metal as
the ground-state candidate. Inclusion of quantum fluctuations
via the VMC method, as well as the Gutzwiller approximation,
suggests however that this state may be unstable towards phase
separation by forming a 2020 · · · charge ordered insulating
region and a metallic one.

Concerning the triangular lattice, we find that effective
kagome and one-dimensional lattices are generated at 3/8
filling (n = 3/4) because of the presence of charge order.
We consider a large value of the on-site Coulomb repulsion
U and a small, but finite, value of the next-nearest-neighbor
Coulomb interaction V ′ = V/5. By increasing the ratio V/U

above V/U � 5.5, the uniform metallic phase evolves into
an insulating state, where the electronic charges form a
kagome structure, each site being singly occupied. The
emergence of a kagome lattice out of the original triangular
one effectively enhances the frustration of the original lat-
tice. The behavior of the spin-spin correlations S(q) shows
that the effective kagome lattice generated by charge order
is nonmagnetic, with gapless spin excitations. By further
increasing the ratio V/U above V/U � 12.5, the number
of empty sites increases in order to avoid the energy loss
due to the V term, thus generating another charge ordered
insulator, where electrons form a one-dimensional charge
structure.

Note added. Recently we became aware of a paper [52]
by Sugita and Motome that reports the emergence of
kagome and one-dimensional charge orders on a triangu-
lar extended Hubbard model in the presence of spin-orbit
coupling.
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APPENDIX A: THEORETICAL METHODS

For the honeycomb lattice, we have analyzed the extended
Hubbard model on the honeycomb lattice by (1) the restricted
Hartree-Fock method, (2) the Gutzwiller approximation, (3)
the variational Monte Carlo (VMC) method, and (4) pertur-
bation theory. For the extended Hubbard model (up to second
neighbors) on the triangular lattice we have restricted ourselves
to the VMC calculations. In this appendix we show the details
of the methods.

1. Restricted Hartree-Fock method

We consider a system size of Ns = 2Ndimer = 2L2.
The restricted Hartree-Fock approximation consists of a

mean-field decoupling of the Hamiltonian of Eq. (2). The
mean-field Hamiltonian up to constant terms is given as

HMF =
∑
k,σ

(εkc
†
k,σ dk,σ + ε∗

kd
†
k,σ ck,σ )

+U
∑
i,σ

(〈
nc

i,σ

〉
nc

i,σ̄ + 〈
nd

i,σ

〉
nd

i,σ̄

)

+V
∑

i

(〈
nd

i

〉
nc

i + 〈
nc

i

〉
nd

i + 〈
nd

i

〉
nc

i+ex

+〈
nc

i+ex

〉
nd

i + 〈
nd

i

〉
nc

i+ey
+ 〈

nc
i+ey

〉
nd

i

)
−V

∑
i,σ

(〈d†
i,σ ci,σ 〉c†i,σ di,σ

+〈d†
i,σ ci+ex ,σ 〉c†i+ex ,σ

di,σ

+〈d†
i,σ ci+ey ,σ 〉c†i+ey ,σ

di,σ + H.c.), (A1)

εk = −t(1 + e−ikx + e−iky ), (A2)

nα
i = nα

i,↑ + nα
i,↓(α = c,d). (A3)

For a collinear state, we assume〈
nc

i,σ

〉 = nc
σ + (−1)Ri δnc

σ , (A4)〈
nd

i,σ

〉 = nd
σ + (−1)Ri δnd

σ , (A5)〈
d
†
i,σ ci,σ

〉 = χσ + (−1)Ri δχσ , (A6)

〈d†
i,σ ci+ex ,σ 〉 = 〈d†

i,σ ci+ey ,σ 〉 (A7)

= ησ + (−1)Ri δησ , (A8)

which contains 16 independent parameters. Here, (−1)Ri =
ei Q·Ri with the momentum Q = (π,π ) for a 2 × 2 sublattice.

We can rewrite the Hamiltonian as

HMF =
RBZ∑
k,σ

(c†k,σ c
†
k+ Q,σ d

†
k,σ d

†
k+ Q,σ

)

×

⎛
⎜⎜⎝

Oc,σ 
c,σ ε̃k,σ Yk,σ


c,σ Oc,σ Yk+ Q,σ ε̃k+ Q,σ

ε̃∗
k,σ Y ∗

k+ Q,σ Od,σ 
d,σ

Y ∗
k,σ ε̃∗

k+ Q,σ 
d,σ Od,σ

⎞
⎟⎟⎠

×

⎛
⎜⎝

ck,σ

ck+ Q,σ

dk,σ

dk+ Q,σ

⎞
⎟⎠ (A9)

with

Oc,σ = Unc
σ̄ + 3V (nd

↑ + nd
↓), (A10)

Od,σ = Und
σ̄ + 3V (nc

↑ + nc
↓), (A11)


c,σ = Uδnc
σ̄ − V (δnd

↑ + δnd
↓), (A12)


d,σ = Uδnd
σ̄ − V (δnc

↑ + δnc
↓), (A13)

ε̃k,σ = εk − V [χσ + ησ (e−ikx + e−iky )], (A14)

Yk,σ = −V [δχσ + δησ (e−ikx + e−iky )]. (A15)

We further diagonalize the Hamiltonian and determine the
above parameters self-consistently. The self-consistent equa-
tions are given by

nc
σ = 1

N

RBZ∑
k

[〈c†k,σ ck,σ 〉 + 〈c†k+Q,σ ck+Q,σ 〉], (A16)

nd
σ = 1

N

RBZ∑
k

[〈d†
k,σ dk,σ 〉 + 〈d†

k+Q,σ dk+Q,σ 〉], (A17)

δnc
σ = 1

N

RBZ∑
k

[〈c†k,σ ck+Q,σ 〉 + 〈c†k+Q,σ ck,σ 〉], (A18)

δnd
σ = 1

N

RBZ∑
k

[〈d†
k,σ dk+Q,σ 〉 + 〈d†

k+Q,σ dk,σ 〉], (A19)

χσ = 1

N

RBZ∑
k

[〈d†
k,σ ck,σ 〉 + 〈d†

k+Q,σ ck+Q,σ 〉], (A20)

δχσ = 1

N

RBZ∑
k

[〈d†
k,σ ck+Q,σ 〉 + 〈d†

k+Q,σ ck,σ 〉], (A21)

ησ = 1

N

RBZ∑
k

[eikx 〈d†
k,σ ck,σ 〉 (A22)

−eikx 〈d†
k+Q,σ ck+Q,σ 〉], (A23)

δησ = 1

N

RBZ∑
k

[eikx 〈d†
k+Q,σ ck,σ 〉 (A24)

−eikx 〈d†
k,σ ck+Q,σ 〉], (A25)
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with N = L2 being the number of k points in the Brillouin
zone. The ground states are obtained by filling the lowest-
energy orbitals up to the number of electrons. We employ an
antiperiodic-periodic boundary condition, and set the number
of k points as 120 × 120.

Each state is characterized by the magnetization and the
number of electrons for orbitals c and d, which are defined as

〈Sz,α〉 = 1

Ndimer

∑
i

(−1)Ri
〈
S

z,α
i

〉
, (A26)

〈nα〉 = 1

Ndimer

∑
i

〈
nα

i

〉
(α = c,d). (A27)

Similarly, for spiral states, we consider momentum Q =
(−2π/3,2π/3) for a 6-site sublattice, namely, the order param-
eters are given as 〈nc

i,σ 〉 = nc, 〈nd
i,σ 〉 = nd (< nc), 〈c†i,↑c

†
i,↓〉 =

mce
i Q·Ri with mc = 0 (for charge-rich sites), 〈d†

i,↑d
†
i,↓〉 =

mde
i Q·Ri with md �= 0 (for charge-poor sites), 〈d†

i,σ c
†
i,σ 〉 =

χ , and 〈d†
i,σ c

†
i+ex (ey ),σ 〉 = η, and the corresponding reduced

Brillouin zone.
We also calculate the gap in the density of states at the

Fermi level to check whether the state is metallic or insulating.

2. Gutzwiller approximation

We applied the Gutzwiller approximation to the extended
Hubbard model on the honeycomb lattice. In the Gutzwiller
approximation, the nearest-neighbor correlations 〈Tcdσ 〉 =
〈c†i,σ dj,σ 〉 in the correlated wave function |ψ〉 are evaluated
via those in the uncorrelated wave function |ψ〉0 through the
renormalization factor ηcdσ [54,55]:

〈c†i,σ dj,σ 〉 = ηcdσ 〈c†i,σ dj,σ 〉0. (A28)

The matrix elements of c
†
i,σ dj,σ in the uncorrelated wave

function |ψ〉0 are proportional to√
n0

cσ

(
1 − n0

cσ

)√
n0

dσ

(
1 − n0

dσ

)
. (A29)

Here, n0
cσ = n0

dσ = 3/4 at 3/4 filling. Generalizing this to the
matrix elements of the correlated state, we find

ηcdσ = (
√

hcscσ + √
scσ̄ dc)(

√
sdσ hd + √

ddsdσ̄ )√
n0

cσ

(
1 − n0

cσ

)√
n0

dσ

(
1 − n0

dσ

) (A30)

for the Gutzwiller approximation of the kinetic energy term
Tcdσ . We define occupancies for empty (h), singly (s), and
doubly (d) occupied sites for orbital c (similarly for orbital d):

hc = 〈(1 − c
†
↑c↑)(1 − c

†
↓c↓)〉, (A31)

scσ = 〈c†σ cσ (1 − c
†
σ̄ cσ̄ )〉, (A32)

dc = 〈c†↑c↑c
†
↓c↓〉. (A33)

The expectation value of the nearest-neighbor Coulomb
interaction is given as

〈(c†↑c↑ + c
†
↓c↓)(d†

↑d↑ + d
†
↓d↓)〉 = (nc↑ + nc↓)(nd↑ + nd↓).

(A34)

The energy per bond in the Gutzwiller approximation is
finally given as

E = −t
∑

σ

ηcdσ 〈Tcdσ + Tdcσ 〉0

+U

3
(dc + dd ) + V (nc↑ + nc↓)(nd↑ + nd↓). (A35)

The 1/3 factor in the U term comes from the number of nearest-
neighbor bonds per site. Here, the expectation value of the
hopping is a function of ncσ + ndσ , and is defined as

−t〈Tcdσ + Tdcσ 〉0 = 1

Nbond

∑
|k|<kσ

F

εk (A36)

with Nbond = 3L2. Besides, the renormalization factor ηcdσ

is a function of hc(d), sc(d)σ , and dc(d). One can eliminate the
spinon scσ and the holon hc using

scσ = ncσ − dc, (A37)

hc = 1 − sc↑ − sc↓ − dc = 1 − nc↑ − nc↓ + dc. (A38)

Therefore, the energy becomes a function of the parameters
ncσ , ndσ , dc, and dd .

Naively, the energy minimum can be obtained by the
condition

∂E

∂dc

= ∂E

∂dd

= 0. (A39)

In the absence of on-site Coulomb interaction (U = 0), this
yields

dc = nc↑nc↓, (A40)

dd = nd↑nd↓. (A41)

The expectation value of the doublon is a simple product
of the number of up and down spins. This simplifies the
renormalization factor:

ηcdσ =
√

ncσ (1 − ncσ )
√

ndσ (1 − ndσ )√
n0

cσ

(
1 − n0

cσ

)√
n0

dσ

(
1 − n0

dσ

) . (A42)

Now, the energy is a function of a few parameters, namely, ncσ

and ndσ . The energy minimum can be searched analytically.
For U �= 0, however, the stationary condition does not give us
simple conditions. We, instead, numerically find the energy
minimum by controlling parameters ncσ , ndσ , dc, and dd .

3. Variational Monte Carlo method

As a third method which includes the effects of quantum
fluctuations beyond mean field, we consider the variational
Monte Carlo (VMC) technique. We use the Jastrow-Slater
wave functions which allow metallic and insulating states
with charge and antiferromagnetic orders. For the honeycomb
lattice Eq. (2), we define

|ψ〉 = PCJPSJ|φ〉, (A43)
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|φ〉 =
⎡
⎣∑

ij

(
f cc

ij c
†
i,↑c

†
j,↓ + f cd

ij c
†
i,↑d

†
j,↓

+ f dc
ij d

†
i,↑c

†
j,↓ + f dd

ij d
†
i,↑d

†
j,↓

)⎤⎦
Ne/2

|0〉, (A44)

fij =
{

f A(rj − r i), i ∈ A sublattice,

f B(rj − r i), i ∈ B sublattice,
(A45)

PCJ = exp

⎡
⎣1

2

∑
ij

(
v

CJ,cc
ij nc

i n
c
j + v

CJ,cd
ij nc

i n
d
j + v

CJ,dd
ij nd

i n
d
j

)⎤⎦,

(A46)

PSJ = exp

⎡
⎣2

∑
ij

′(vSJ,cc
ij S

z,c
i S

z,c
j + v

SJ,cd
ij S

z,c
i S

z,d
j

+ v
SJ,dd
ij S

z,d
i S

z,d
j

)⎤⎦, (A47)

vSJ
ij = vSJ(|rj − r i |), (A48)

vCJ
ij = vCJ(|rj − r i |). (A49)

Here,
∑′

ij denotes a sum over i �= j . We prepare the Slater
part |φ〉 by taking the Hartree-Fock solutions as initial
states, and optimize the variational parameters fij , vSJ

ij , and
vCJ

ij .
We use Eqs. (A26) and (A27) to characterize each phase.

In order to see whether the phase is metallic or insulating, we
calculate the total momentum distribution:

n(k) = 1

2Ns

∑
ijσ

〈c†i,σ cj,σ + d
†
i,σ dj,σ 〉eik·(ri−rj ), (A50)

and the density-density structure factors for two orbitals:

Nαβ(q) = 1

Ndimer

∑
i,j

〈nα
i n

β

j 〉eiq·(ri−rj ) (α = c,d). (A51)

Metallic states are detected by the jump of the momentum
distribution n(k) and q-linear behavior of the total charge
structure factor

N (q) = Ncc(q) + Ncd (q) + Ndc(q) + Ndd (q) (A52)

near q ∼ 0. On the other hand, n(k) is smooth and N (q) ∼ q2

(q ∼ 0) for insulating states.
Analogously, in order to simulate the triangular lattice

model of Eq. (6), we have used the variational Monte
Carlo method based on the variational ansatz |�〉 = PCJ|FS〉
[55–57], where |FS〉 is the noninteracting filled Fermi sea, to
which a finite small superconductive term is added in order
to regularize the wave function, i.e., to separate the highest
occupied and the lowest unoccupied states by a gap. The
term

PCJ = exp

⎛
⎝−1

2

∑
i,j

vijninj

⎞
⎠ (A53)

is the density-density Jastrow factor [57], where the vij ’s are
optimized with variational Monte Carlo calculations for every
independent distance |r i − rj | (including on site). In order to
investigate the formation of charge ordered phases, we include
four different chemical potentials in |FS〉, as variational
parameters, one for each site of the unit cell, similarly to what
has been done in Ref. [4]. We tested that inclusion of backflow
correlations to further improve the correlated state |�〉 [48,58]
is not crucial to describe charge ordered states. All results
presented here are obtained by optimizing individually [59]
every variational parameter in the wave function and then
performing a Monte Carlo sampling of the observables over
the optimal state. The error bars are not shown since they are
always smaller than the symbol size.

4. Details of the perturbation calculations
on honeycomb systems

On the honeycomb lattice, when U = V = ∞, we expect
a triangular charge order at 3/4 filling (n = 3/2). Charge-
rich sites contain two electrons per site, and do not have any
left spin degrees of freedom. On the other hand, charge-poor
sites contain one electron per site, and possess macroscopic
spin degeneracy. The ground-state degeneracy is lifted in the
presence of hopping t . From perturbation theory, the effective
Hamiltonian can be obtained as a sum of the Heisenberg spin
exchange and permutation terms:

H =
∑
〈i,j〉1

J1

(
Si · Sj − 1

4

)

+
∑
〈i,j〉2

J2

(
Si · Sj − 1

4

)
+ · · ·

+
∑
�

K�
3

(
P3 + P −1

3

)

+
∑
�

K�
3

(
P3 + P −1

3

)

+
∑
�

K4
(
P4 + P −1

4

) + · · · . (A54)

For the spin exchange terms the sum is taken over all
nearest-neighbor (next-nearest-neighbor) sites on an effective
triangular lattice for 〈i,j 〉1 (〈i,j 〉2). On the other hand, for the
permutation terms, the sum is taken over all right-pointing
(left-pointing) triangles which are located inside (outside) of
hexagons for � (�) and all squares for �. The symbol Pn

denotes a cyclic permutation operator.
Unlike the perturbation expansion in the triangular and

kagome systems where electrons can hop odd times in local
triangles, spin exchange interactions appear through only
an even number of electron hoppings. Besides, the spin
degeneracy is first lifted by a four virtual hopping process
rather than a conventional two hopping process. For example,
as shown in Fig. 19, nearest-neighbor exchange on the
triangular lattice appears through four hopping processes. The
intermediate states have energy 2V,U , and 2V , respectively.
There are four different ways of exchanging spins. This gives
antiferromagnetic exchange J1 = 4t4/[(2V )2U ] = t4/(V 2U ).
Similarly, next-nearest-neighbor exchange on the triangular
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FIG. 19. Virtual hopping process which generates an effective
nearest-neighbor spin exchange interaction between the triangular
lattice sites emerging from the charge ordered n = 3/2 honeycomb
lattice. Compare Eq. (A54).

lattice is given as J2 = c2t
8/(V 5U 2) + c′

2t
8/(V 4U 3) with

c2, c
′
2 being positive constants (see Fig. 20). These exchange

interactions are always antiferromagnetic:

J ∝ t2n

Coulombinteraction2n−1 > 0, (A55)

which results in strong geometrical frustration. They are
similar to what has been found in the quarter-filled extended
Hubbard models on a two-leg ladder [47] and a square
lattice [60].

Analogously to spin exchange interactions, permuta-
tion terms in the present system always appear through
an even number of virtual processes. As shown in
Fig. 21, three-site permutation terms appear through six
cyclic processes, namely, K�

3 = −d3t
6/V 5 + d ′

3t
6/(V 4U )

[K�
3 = d ′′

3 t6/(V 3U 2)] for triangles in (out of) hexagons
with d3, d

′
3, and d ′′

3 being positive constants. Note that
K�

3 = −d3t
6/V 5 survives even when U = ∞, which

gives ferromagnetic interactions. Moreover, four-site per-
mutation terms appear through eight cyclic processes as
shown in Fig. 22, namely, K4 = d4t

8/V 7 + d ′
4t

8/(V 6U ) +
d ′′

4 t8/(V 5U 2) + d ′′′
4 t8/(V 4U 3) with d4, d

′
4, d

′′
4 , and d ′′′

4 being
constants.

Since the three-spin permutation operator can be written as
a product of two exchange operators

P3 = Pijk = PijPik = 1
4 (1 + 4Si · Sj )(1 + 4Si · Sk)

(A56)

FIG. 20. Virtual hopping process which generates an effective
next-nearest-neighbor spin exchange interaction between the triangu-
lar lattice sites emerging from the charge ordered n = 3/2 honeycomb
lattice. Compare Eq. (A54).

FIG. 21. Virtual hopping process which generates an effective
three-spin permutation K�

3 (surviving even in the limit U → ∞)
between the triangular lattice sites emerging from the charge ordered
n = 3/2 honeycomb lattice. Compare Eq. (A54).
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FIG. 22. Virtual hopping process which generates an effective
four-spin permutation between the triangular lattice sites emerging
from the charge ordered n = 3/2 honeycomb lattice. Compare
Eq. (A54).

these terms become nearest-neighbor exchange interactions on
the effective triangular lattice [35]

P3 + P −1
3 = 1

2 (1 + 4Si · Sj + 4Sj · Sk + 4Sk · Si). (A57)

K�
3 and K�

3 will be renormalized into J1, and the Hamiltonian
up to the constant term is rewritten as

H =
∑
〈i,j〉1

J eff
1 Si · Sj +

∑
〈i,j〉2

J2 Si · Sj + · · ·

+
∑
�

K4
(
P4 + P −1

4

) + · · · . (A58)

Here, J eff
1 is a linear combination of J1, K�

3 , and K�
3 , namely,

J eff
1 = J1 + 2K�

3 + 2K�
3 .

The effective nearest-neighbor interaction J eff
1 can be both

ferromagnetic and antiferromagnetic depending on the size of
U/t and V/t , as shown in Fig. 23. When U is moderately large
and V is extremely large [U/t � (V/t)3], |J1| � |K�

3 |,|K�
3 |

and hence J eff
1 ∼ J1 ∝ t4/(V 2U ) is antiferromagnetic. Since

|J2| ∼ |K4| ∼ t8/(V 4U 3), the Hamiltonian effectively be-
comes an antiferromagnetic J eff

1 -J2 Heisenberg model with
four-spin ring exchange interaction K4. When J2 is large
enough, collinear antiferromagnetic order overcomes 120◦
order [33,34].

When U is extremely large and V is moderately large
[U/t � (V/t)3], |K�

3 | � |J1|,|K�
3 | and hence J eff

1 ∼ K�
3 ∝

−t6/V 5 is ferromagnetic. Since |J1| � |K4| � |J2|, the

FIG. 23. Effective Hamiltonians for the triangular lattice emerg-
ing from the charge ordered n = 3/2 honeycomb lattice, see
Eq. (A58), as a function of U/t and V/t .

Hamiltonian effectively becomes a ferromagnetic Heisenberg
model with small four-spin ring-exchange K4.

Finally, when U/t ∼ (V/t)3, t6/V 5 terms in interactions
|J1|, |K�

3 |, and |K�
3 | nearly cancel out, and J eff

1 becomes
extremely small ∼ t8/V 7. In this case, J2 ∼ t12/V 11 is much
smaller than J eff

1 , while K4 ∼ t8/V 7 is comparable to J eff
1 . The

Hamiltonian effectively becomes a four-spin ring-exchange
model.

APPENDIX B: GUTZWILLER APPROXIMATION
RESULTS ON THE EXTENDED HUBBARD MODEL

ON THE HONEYCOMB LATTICE AT n = 3/2

In this Appendix we present details on the calculations of
the phase diagram for the extended Hubbard model on the
honeycomb lattice at n = 3/2 by employing the Gutzwiller
approximation.

1. In the absence of nearest-neighbor Coulomb interaction
(V = 0)

We consider the case U �= 0 and V = 0 on the doped
honeycomb model at 3/4 filling where charge order and/or
ferromagnetism [31,51] are expected to be stable.

As we have discussed in the main text, by using first
the restricted Hartree-Fock method, we find the transition
from a normal metal to a ferromagnetic metal at U/t ∼ 5.
When U/t � 6, spins are fully polarized. An up-spin band
becomes fully occupied, while a down-spin band becomes
half occupied. Since the up- and down-spin bands are similar
to the original honeycomb band, the Fermi level is located at
the Dirac node of the down-spin band (semimetallic).

FIG. 24. Magnetization for the metallic state at V = 0 obtained
by the Gutzwiller approximation for the n = 3/2 honeycomb lattice.
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In order to assert the stability of the ferromagnetic state
against quantum fluctuations beyond the mean-field treatment,

we apply the Gutzwiller approximation. By assuming that the
c and d orbitals are equivalent, we obtain the energy per bond
as

E(ne,m,D) = U

3
2D − t

〈
Tcd↑ + Tdc↑

〉
0

[√
(1 − 2ne + D)(ne + m − D) + √

(ne − m − D)D
]2

(ne + m)[1 − (ne + m)]

−t
〈
Tcd↓ + Tdc↓

〉
0

[√
(1 − 2ne + D)(ne − m − D) + √

(ne + m − D)D
]2

(ne − m)[1 − (ne − m)]
, (B1)

where ne = (nc,↑ + nc,↓)/2 = (nd,↑ + nd,↓)/2 = 3/4 is the
number of electrons, m = (nc,↑ − nc,↓)/2 = (nd,↑ − nd,↓)/2
is the magnetization, and D = dc = dd is the number of
doublons. Here, 〈Tcdσ + Tdcσ 〉0 is a function of nσ = ne +
σm. By numerically searching the energy minimum for
D ∈ [1/2,9/16] and m ∈ [0,|ne − D|], we find a first-order
transition from a normal metal to a ferromagnetic metal
at U/t ∼ 16, as shown in Fig. 24. Inclusion of quantum
fluctuations as done in the Gutzwiller approximation shifts
the critical U to larger values than in the Hartree-Fock
approximation (see Fig. 25). Quantum fluctuations seem to
favor a metallic state without ferromagnetism.

2. In the absence of on-site Coulomb interaction
(U = 0)

We focus here on possible charge ordered states and phase
separation for U = 0 and V �= 0.

FIG. 25. (a) Comparison of the energies at V = 0 obtained for
the honeycomb lattice at 3/4 filling by Hartree-Fock and by the
Gutzwiller approximation. The energy is saturated when the FM metal
becomes fully polarized. (b) Schematic phase diagrams obtained by
each method.

As we have discussed in the main text, the restricted
Hartree-Fock method finds the transition from a normal metal
to a charge ordered metal at V/t ∼ 2. Charge-poor sites
form an emergent triangular structure as shown in Fig. 2(c);
however, we find it to be nonmagnetic.

We now proceed with the Gutzwiller approximation. Let us
first focus on the uniform charge ordered state. We assume the
absence of magnetization:

nc↑ = nc↓ = ncσ , (B2)

nd↑ = nd↓ = ndσ . (B3)

FIG. 26. Results for the honeycomb lattice at 3/4 filling for
U = 0 obtained by the Gutzwiller approximation. (a) Charge order
parameter na as a function of V/t , from the uniform to the charge
ordered state. The number of electrons of charge-rich sites is given
as 2na . (b) Energy difference between charge ordered and phase
separated states. They are nearly degenerate.
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Since the total number of electrons is conserved (ncσ + ndσ =
3/4), the energy is given as a function of a single parameter
ncσ :

E(ncσ ) = 4V ncσ

(
3

2
− ncσ

)
− 32

3
t〈Tcdσ + Tdcσ 〉0

×
√

ncσ (1 − ncσ )

(
3

2
− ncσ

)(
ncσ − 1

2

)
. (B4)

The expectation value of the hopping 〈Tcdσ + Tdcσ 〉0 is a
constant since nc↑ + nd↑ = nc↓ + nd↓ = 3/4 is a constant.
Hereafter, we abbreviate t〈Tcdσ + Tdcσ 〉0|ncσ +ndσ =3/4 = t0 ∼
0.36. By minimizing the energy for ncσ ∈ [3/4,1], we find
a phase transition from a normal metal to a charge ordered
metal at Vc/t0 = 40/9. The charge order parameter for V > Vc

is given as

ncσ = 3

4
+ 1

2

√√√√5

4
−

[
1 −

(
8t0

3V

)2
]−1/2

. (B5)

In the metallic phase the energy is E = (9/4)V − 2t0, while
in the charge ordered phase the energy is E = V {1 +√

1 − [8t0/(3V )]2}. Thanks to the kinetic energy gain, the
latter energy is lower than that of the fully charge ordered
(2121 · · · ) insulating state (E = 2V ).

Next, we consider the possibility of phase separation
consisting of charge ordered insulator and metal phases. We
separate the system into two regions: in the region κ a
fully charge ordered insulating state (ncσ = 1 and ndσ = 0)
is realized, while in the region (1 − κ) a metallic state (the
average number of electrons is ne) is realized. In the former
region, there is no kinetic energy gain (〈Tcdσ 〉 = 0) and no
intersite Coulomb energy loss (EV = 0 since ndσ = 0). One
only has to consider energy in the latter region, which is given
as

E(κ,ne) = (1 − κ)
[
4V n2

e − 2t〈Tcdσ + Tdcσ 〉0

]
. (B6)

The conservation of charge yields

2κ + (2ne + 2ne)(1 − κ) = 3, (B7)

κ = 1 − 1

4ne − 2
, (B8)

which simplifies the energy

E(ne) = 1

2ne − 1

[
2V n2

e − t〈Tcdσ + Tdcσ 〉0

]
. (B9)

Here, 〈Tcdσ + Tdcσ 〉0 is a function of ne. If the energy
is minimized for κ > 0, phase separation takes place. By
numerically searching the energy minimum for ne ∈ [3/4,1]
(κ ∈ [0,1/2]), we find a phase separated state for V > Vc.
The charge ordered and phase separated states are found to be
nearly degenerate, as shown in Fig. 26, with the energy of the
phase separated state being slightly lower.
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