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Nonsymmorphic symmetry-required band crossings in topological semimetals
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We show that for two-band systems nonsymmorphic symmetries may enforce the existence of band crossings
in the bulk, which realize Fermi surfaces of reduced dimensionality. We find that these unavoidable crossings
originate from the momentum dependence of the nonsymmorphic symmetry, which puts strong restrictions on the
global structure of the band configurations. Three different types of nonsymmorphic symmetries are considered:
(i) a unitary nonsymmorphic symmetry, (ii) a nonsymmorphic magnetic symmetry, and (iii) a nonsymmorphic
symmetry combined with inversion. For nonsymmorphic symmetries of the latter two types, the band crossings
are located at high-symmetry points of the Brillouin zone, with their exact positions being determined by the
algebra of the symmetry operators. To characterize these band degeneracies we introduce a global topological
charge and show that it is of Z2 type, which is in contrast to the local topological charge of Fermi points in, say,
Weyl semimetals. To illustrate these concepts, we discuss the π -flux state as well as the Su-Schrieffer-Heeger
model at its critical point and show that these two models fit nicely into our general framework of nonsymmorphic
two-band systems.
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I. INTRODUCTION

Since the experimental discovery of topological insulators
[1,2], symmetry protected topological phases have become
a major research subject [3–8]. Recent studies have been
concerned with topological phases that are protected by spatial
symmetries, such as topological crystalline insulators [9–12]
and topological semimetals stabilized by reflection, inversion,
or other crystal symmetries [13–15]. Until recently, the study
of these topological crystalline materials has focused on the
role of point-group symmetries. However, besides point-group
symmetries the space group of a crystal can also contain
nonsymmorphic symmetries, which are combinations of point-
group operations with nonprimitive lattice translations. It has
been shown that the presence of nonsymmorphic symmetries
leads to new topological phases, which can be insulating
[16–21], or semimetallic with Dirac points protected by non-
symmorphic symmetries [22,23]. In the latter case, the Dirac
points possess local topological charges, which guarantees
their local stability.

However, as we show in this paper, nonsymmorphic
symmetries restrict the form of the band structure not only
locally but also globally, which may lead to unavoidable band
crossings in the bulk [24–28]. Indeed, the nonsymmorphic
symmetries can put such strong constraints on the global
properties of the band structure that the system is required by
symmetry to be in a topological semimetal phase, with Fermi
surfaces of reduced dimensionality. These symmetry-enforced
semimetals possess low-energy excitations with unconven-
tional dispersions and may exhibit novel topological response
phenomena and unusual magnetotransport properties. In the
following we consider three different types of nonsymmor-
phic symmetries: (i) unitary nonsymmorphic symmetries, (ii)
nonsymmorphic symmetries combined with inversion, and
(iii) nonsymmorphic magnetic symmetries. We first rigorously
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prove that for any one-dimensional (1D) two-band system uni-
tary nonsymmorphic symmetries enforce the existence of band
crossings, due to global topological constraints on the band
structure. In the presence of an additional inversion symmetry,
the symmetry enforced band degeneracies are located either
at the origin or at the boundary of the Brillouin zone (BZ),
depending on the algebra of the symmetry operators. The
same holds true for nonsymmorphic magnetic symmetries,
which are composed of a unitary nonsymmorphic symmetry
followed by an antiunitary time-reversal symmetry. We present
generalizations of these results to higher dimensions, for which
nonsymmorphic symmetries may enforce the existence of
zero- or higher-dimensional band crossings. In all of the above
cases we find that the nonsymmorphic symmetries restrict the
momentum space structure in the BZ both locally and globally.
To characterize the global topological features we introduce
a global topological charge, which as we show is always of
Z2 type. Hence, the global topological features exhibit a Z2

classification, which is in contrast to the local topological
characteristics, which possess a Z classification. Finally,
we illustrate these findings by considering two prototypical
examples: (i) the π -flux square lattice model and (ii) the
Su-Schrieffer-Heeger (SSH) model at its critical point. Within
our unified framework, we show that the former model can be
viewed as the higher-dimensional generalization of the latter.

II. UNITARY NONSYMMORPHIC SYMMETRY

We start by considering a general 1D two-band Hamiltonian
H(k) with the twofold unitary nonsymmorphic symmetry

G(k) =
(

0 e−ik

1 0

)
, (1)

which acts on H(k) as

G(k)H(k)G−1(k) = H(k). (2)

Since G2(k) = e−ikσ0, the eigenvalues of G(k) are ±e−ik/2.
Therefore, the nonsymmorphic symmetry G(k) can be viewed
as an operation on internal degrees of freedom (e.g.,
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FIG. 1. Illustration of nonsymmorphic symmetries in one-
dimensional lattices. (a) The nonsymmorphic symmetry is composed
of a π rotation followed by a half translation a/2, where a is the lattice
constant. (b) The nonsymmorphic magnetic symmetry is composed
of the two operations of (a) followed by the exchange of black and
white balls, which represents time-reversal symmetry.

pseudospin) followed by a half translation, as illustrated in
Fig. 1(a). Observing that G(k) anticommutes with σ3, the
Hamiltonian can be written as

H(k) =
(

0 q(k)
q∗(k) 0

)
. (3)

Without loss of generality, we have dropped the term pro-
portional to the identity, which only shifts the energy of
eigenstates. Inserting Eqs. (3) and (1) into Eq. (1), we find that
due to the nonsymmorphic symmetry G(k), q(k) must satisfy

q(k)eik = q∗(k). (4)

We claim that any periodic function q(k) satisfying Eq. (4) has
zeros, and thus any two-band model with the nonsymmorphic
symmetry (1) is required to be gapless. To see this, we
introduce f (z) = q(k) with z = eik , from which it follows
that zf (z) = f ∗(z). If q(k) or f (z) is nonzero on the unit
circle S1, then

z = f ∗(z)/f (z), (5)

which, however, is impossible. This is because for z ∈ S1 the
two sides of Eq. (5) both define functions from S1 to S1, but
the left-hand side has winding number 1, while the winding
of the right-hand side is even, since f ∗(z)/f (z) = e2iArc[f (z)].
Thus, q(k) must vanish at some momentum by contradiction.
For the topological argument to work for multiband theories,
we may replace q(k) in Eq. (3) by the determinant of the
off-diagonal entry, which is discussed in Sec. VIII.

III. NONSYMMORPHIC SYMMETRY COMBINED WITH
INVERSION SYMMETRY

We note that while a unitary nonsymmorphic symmetry
guarantees the existence of a band crossing point, it does
not fix the position of this degeneracy point in momentum
space. However, in the presence of an additional inversion
symmetry, the band crossings are pinned to either the origin or
the boundary of the BZ. To demonstrate this, let us consider the
inversion symmetry P̂ = σ2 î, where î inverses the momentum.
We find that

[H,P̂ ] = 0, P̂G(k)P̂ −1 = −GT (−k), P̂ 2 = −1. (6)

Since q(k) is a periodic function, we expand it as q(k) =∑
n qne

ink . It follows from Eq. (4) that q−(n+1) = q∗
n, which,

as a recursion relation, allows us to express q(k) as

q(k) =
∞∑

n=0

(qne
ink + q∗

ne−i(n+1)k). (7)

From Eq. (6) it follows that σ2H(−k)σ2 = H(k), which
implies q(k) = −q∗(−k) or equivalently qn = −q∗

n . Since qn

are all purely imaginary, we find that

q(k) =
∞∑

n=0

λn

i
(eink − e−i(n+1)k), (8)

with λn being real numbers. We observe that independent of
λn there always exists a band crossing point at k = 0. For
example, by keeping only the zeroth term in Eq. (8), one finds
as a simple concrete model

H0(k) = λ sin kσx + λ(1 − cos k)σy. (9)

We note that the nonsymmorphic symmetry G(k) relates
seemingly independent terms to each other in the Hamiltonian.
This is exemplified by Eq. (9), where all three terms (which are
usually independent) have the same coefficients. Obviously,
higher-order terms in Eq. (8), which constitute symmetry-
preserving perturbations, cannot split the band crossing point
ofH0 at k = 0. That is, the gapless mode at k = 0 described by
the low-energy effective Hamiltonian Heff(k) = λkσx is stable
against symmetry-preserving perturbations.

The fact that the Hamiltonian given by Eq. (8) exhibits a
band crossing at k = 0 can directly be seen by computing the
eigenstate of G(k) andH(k). Because G(k) andH(k) commute
[see Eq. (2)], they can be simultaneously diagonalized by the
same set of eigenstates

H(k)| ± ,k〉 = E±(k)| ± ,k〉, G(k)| ± ,k〉 = g±(k)| ± ,k〉,
(10)

where the eigenfunctions | ± ,k〉 are given by

| + ,k〉 = 1√
2

(
1

ei k
2

)
, | − ,k〉 = 1√

2

(
1

−ei k
2

)
(11)

and the eigenvalues are

E±(k) = ±2
∞∑

n=0

λn sin

(
nk + k

2

)
, g±(k) = ±e−i k

2 . (12)

We find that the energy and nonsymmorphic symmetry
eigenvalues of | + ,k〉 at k = ±π are continuously connected
to the corresponding eigenvalues of | − ,k〉 at k = ∓π (see
Fig. 2). That is, we have

E+(−π ) = E−(π ), E−(−π ) = E+(π ),

g+(−π ) = g−(π ), g−(−π ) = g+(π ). (13)

We note that the eigenfunctions | ± ,k〉 become degenerate in
energy at k = 0 [i.e., E+(0) = E−(0)], while their nonsymmor-
phic symmetry eigenvalue remains nondegenerate at k = 0
[i.e., g+(0) �= g−(0)]. Therefore the two bands | ± ,k〉 must
cross each other.

To see the topological features of the band structure, we
first note that the eigenvalues g±(k) of the nonsymmorphic
symmetries G form a manifold as a function of momentum k.
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FIG. 2. (a) Energy spectrum E±(k) of Hamiltonian (9). Blue and orange correspond to the eigenstates E+ and E−, respectively. The two
eigenstates are connected smoothly at the boundary of the BZ and cross each other at the center of the BZ. (b) E±(k) as a function of the
phases φ of the nonsymmorphic symmetry eigenvalue g±(k). In the space of the eigenvalues g±(k) of the nonsymmorphic symmetry, the
two bands are smoothly connected with each other, without any crossing point. (c) k as a function of the phase φ of the eigenvalues g±(k).
The two eigenvalue branches are connected at φ = π

2 and 3π

2 (= − π

2 ), leading to a winding number 2. (d) Trajectory of the two bands in the
(k,φ,E) space. As a problem of the essential three parameters, the two bands are connected as a circle in the (k,φ,E) space, corresponding to
(2,1) ∈ H1(S1 × S1 × R) ∼= Z ⊕ Z.

That is, the eigenvalues g±(k) are multivalued functions of k,
with different branches being smoothly connected. Inversely,
k is a single-valued continuous function of the eigenvalues of
the symmetry G. For the twofold nonsymmorphic symmetry
(1), the momentum k ∈ S1 has winding number 2 as a function
of the eigenvalue g±(k) ∈ U (1), which indicates a nontrivial
topology [see Fig. 2(c)]. To better understand this nontrivial
topology, it is instructive to draw the mutual dependence of
the energy eigenvalues E±, the nonsymmorphic eigenvalues
g±, and the momentum k in terms of a trajectory in the three-
dimensional space (k,φ,E). For the two-band model (9) this is
shown in Fig. 2(d). The projections of this trajectory onto the
three orthogonal planes (E , k), (E , φ), and (k, φ) are shown
in Figs. 2(a), 2(b), and 2(c), respectively. We can see that
the two bands E± are connected as a circle in (k,φ,E) space,
corresponding to the element (2,1) in the homology group
H1(S1 × S1 × R,Z) ∼= Z ⊕ Z.

Instead of P̂ = σ2 î, another possible choice for P̂ is P̂ =
σ1 î with the symmetry relations

[H,P̂ ] = 0, P̂G(k)P̂ −1 = GT (−k), P̂ 2 = 1. (14)

With this choice, we find the following relations for q(k) and
qn:

q(k) = q∗(−k), qn = q∗
n . (15)

Using Eq. (7), it follows that

q(k) =
∞∑

n=0

λn(eink + e−i(n+1)k). (16)

Hence, there always exists a band crossing point at k = π .
Let us now show that the algebra obeyed by the symmetry

operators determines whether the band crossing point is at
k = 0 or π . To that end, we recall that for the choice
P̂ = σ2 î the operators at the inversion invariant point k = π ,
P̂ = σ2 î, G(π ) = −iσ2, and H(π ) are mutually commuting
[see Eq. (6)]. At the other inversion invariant point k = 0,
however, P̂ = σ2 î and G(0) = σ1 are anticommuting, while
H(0) commutes with P̂ and G(0), i.e., [H(0),P̂ ] = 0 and
[H(0),G(0)] = 0. It follows that the two degenerate eigen-
states of H at k = 0 can be written as eigenstates of P with
different eigenvalues.

Explicitly, we find that 1+i
2 | + ,0〉 + 1−i

2 | − ,0〉 is an eigen-
state of P̂ with eigenvalue +1, while 1−i

2 | + ,0〉 + 1+i
2 | − ,0〉

is an eigenstate of P̂ with eigenvalue −1. Therefore, the band
crossing, which is protected by P̂ , occurs at k = 0.

A similar analysis can be performed for the choice P̂ = σ1 î,
i.e., the Hamiltonian given by Eq. (16). In that case, we find
that at k = 0 the operators H(0), G(0), and P̂ are mutually
commuting, while P̂ and G(k) anticommute at k = π , where
the band degeneracy is located. We conclude that the algebraic
relations obeyed by the symmetry operators determine
the location of the symmetry-enforced band crossing (see
Table I).

IV. NONSYMMORPHIC MAGNETIC SYMMETRY

From the discussion in the previous section it follows that
not all the symmetry constraints are necessary to enforce the
existence of the band crossing. As we shall see, a single
nonsymmorphic antiunitary symmetry, namely, a magnetic
nonsymmorphic symmetry, is sufficient to ensure the existence
of a band crossing at k = 0 or π . As illustrated in Fig. 1(b),
a magnetic nonsymmorphic symmetry can be viewed as the
combination of a nonsymmorphic symmetry G(k) with a
time-reversal symmetry T̂ . We only require that the combined
symmetry GT̂ is satisfied. That is, both G and T̂ may be
broken individually, but the combination must be preserved.
In what follows we assume that T̂ 2 = +1 and consider two
possible choices for T̂ , namely, (i) T̂ = K̂î and (ii) T̂ = σ3K̂î,
where K̂ denotes the complex conjugation operator. By use of
Eq. (1), we find that in case (i) [T̂ ,G(k)] = 0, while in case
(ii) {T̂ ,G(k)} = 0.

TABLE I. The positions of the band crossings in the BZ are
determined by the algebra of the symmetry operators.

Position G,P̂ GT̂

k = 0 P̂G = −G†P̂ {G,T̂ } = 0
k = π P̂G = G†P̂ [G,T̂ ] = 0
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Let us start with the discussion of case (i), where the
combined symmetry Ĝ = GT̂ = G(k)K̂î acts on H(k) as

[Ĝ(k),H(k)] = 0. (17)

Inserting Eq. (3) into Eq. (17), one obtains eikq(k) = q(−k),
and qn = q−(n+1) by use of q(k) = ∑

n qne
ink , which implies

q(k) =
∞∑

n=0

qn(eink + e−i(n+1)k). (18)

We observe that due to the symmetry constraint Eq. (17)
q(π ) = 0, i.e., there is a band crossing point at k = π . Note that
the term fz(k)σ3 is not forbidden by the combined symmetry
GT̂ . However, Eq. (17) requires that fz(k) is an odd function
of k. Hence fz(k)σ3 must vanish at the high-symmetry points
k = 0 and π , due to the periodicity of the BZ, i.e., fz(k) =
fz(k + 2π ). To summarize, the magnetic nonsymmorphic
symmetry GT̂ is sufficient to enforce the existence of a band
crossing at k = π .

Next, we discuss choice (ii) for T̂ , in which case the
combined symmetry Ĝ′ ≡ GT̂ = Gσ3K̂î acts on H(k) as

[Ĝ′(k),H(k)] = 0. (19)

Combining Eq. (3) with Eq. (19) we find that eikq(k) =
−q(−k). Hence, the Fourier components qn must satisfy
qn = −q−(n+1), which yields

q(k) =
∞∑

n=0

qn(eink − e−i(n+1)k). (20)

Since q(0) = 0 in Eq. (20), there is an unavoidable band
crossing at k = 0. As before, the term fz(k)σ3 is symmetry
allowed, with fz(k) an odd function. Hence, fz(k)σ3 vanishes
at the high-symmetry points k = 0 and π , and therefore cannot
gap out the band crossing point.

From the above discussion, one infers that the commutation
relation between T̂ and G(k) determines the position of the
band-degeneracy points. Namely, for [G,T̂ ] = 0 [case (i)]
and {G,T̂ } = 0 [case (ii)], we have (GT̂ )2 = +e−ikσ0 and
(GT̂ )2 = −e−ikσ0, respectively. Hence, we find that for case
(i) (GT̂ )2 = −1 at k = π , while for case (ii) (GT̂ )2 = −1 at
k = 0. Since GT̂ is an antiunitary operator, (GT̂ )2 = −1 leads
to a band degeneracy, in analogy to the Kramers theorem. Thus,
for [G,T̂ ] = 0 the band crossing point is at k = π , while for
{G,T̂ } = 0 it is at k = 0 (see Table I).

We note that a number of recent works [16,17,21,29]
have discussed edge band structures of two-dimensional (2D)
nonsymmorphic insulators that are similar to the 1D bulk band
structures studied here. In contrast to conventional topological
insulators, the edge bands of these 2D nonsymmorphic
insulators do not connect valence and conduction bands.
Hence, our results for the bulk band structures of 1D systems
can be applied directly to the edge spectrum of these 2D
nonsymmorphic insulators. This suggests, in particular, that
the crossing of the edge bands of these 2D systems is, at least
in some cases, enforced by the nonsymmorphic symmetry of
the edge theory.

In closing this section, we note that the existence of a band
crossing cannot be enforced by a nonsymmorphic particle-hole
symmetry, which is discussed in detail in the Appendix.

V. TOPOLOGICAL CLASSIFICATION OF BAND
CROSSING POINTS

Let us now derive the classification of the global topological
properties of the considered Hamiltonians. By global topology
we mean that a band structure is allowed to be deformed
smoothly in the whole momentum space with the symmetries
being preserved. This is in contrast to the ordinary local
topology, where deformations are restricted to only an open
neighborhood around the band crossing point. The group
structure of the global topology is given by the direct sum
of the Hamiltonians. To that end, we study whether the band
crossings of the doubled Hamiltonians H ⊗ τ0 and H ⊗ τ3

can be gapped out by symmetry-preserving terms. Here,
τμ’s represent an additional set of Pauli matrices and τ0 is
the 2 × 2 identity matrix. The symmetry operators for the
doubled Hamiltonians are G(k) ⊗ τ0, P̂ ⊗ τ0, and T̂ ⊗ τ0. We
observe that diag(H,λH) can be continuously deformed to
diag(H, − λH) without breaking the symmetries and without
opening a gap at k = 0 or π . In addition, we find that mσ0 ⊗ τ1

is a symmetry-preserving mass term that gaps out the spectrum
ofH ⊗ τ3 in the entire BZ. It follows that the global topological
features of H possess a Z2 classification, namely, an even
number of copies can be gapped with the symmetries being
preserved, while an odd number of copies cannot be gapped
out. It is noted that although in the above simple deformation
the gap is fully closed at λ = 0 a more carefully chosen
deformation can be made such that at any intermediate stage
band crossing happens only at a finite number of momenta.

To infer the classification of the local topological properties
of the band crossing points, we enclose the degeneracy point
by an S0 sphere (consisting of two points on the left and right
of the degeneracy point) and consider adiabatic deformations
that do not close the gap on the chosen S0. The only possible
gap opening term is fz(k)σ3, which, however, vanishes at the
high-symmetry points k = 0,π due to the nonsymmorphic
symmetry. This also holds for multiple copies of H. From
this we conclude that the local topological features of the band
crossing points exhibit a Z classification.

VI. HIGHER-DIMENSIONAL GENERALIZATIONS

Our results for symmetry-enforced band crossings in one
dimension can be readily generalized to higher dimensions. We
assume that the fractional translation is along the kx direction
for d-dimensional systems. The d-dimensional Hamiltonian
H(k) can then be decomposed into a family of 1D Hamil-
tonians hk⊥(kx) = H(kx,k⊥), which are parametrized by the
(d − 1) momenta k⊥a perpendicular to kx . Let us briefly
discuss how the three different types of nonsymmorphic sym-
metries that we considered above constrain this d-dimensional
Hamiltonian.

(i) If H(k) is invariant under a unitary nonsymmorphic
symmetry G(kx), then there are in general several branches
of Fermi surfaces (possibly of dimension d > 0) that are
parametrized by k⊥.

(ii) If there exists in addition a reflection symmetry
reversing kx , then the Fermi surfaces are pinned at kx = 0
or kx = π , depending on the algebraic relations obeyed by the
symmetry operators, as specified in Table I.
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FIG. 3. Illustration of the SSH model. (a) For α �= 0 the SSH
model breaks the nonsymmorphic symmetry G(k), Eq. (1). (b) At the
critical point α = 0 the translation symmetry is promoted from 2Z
to Z, such that the nonsymmorphic symmetry G(k) is satisfied. (c)
Energy spectrum at α = 0 in (I) the original BZ and (II) the unfolded
BZ.

(iii) If we consider symmetries that relate k to −k, such
as a nonsymmorphic magnetic symmetry (or an additional
inversion), then there exist 2d−1 1D inversion invariant
subsystems hka

⊥(kx) (a = 1, · · · ,2d−1) of hk⊥(kx), which are
labeled by the perpendicular momenta ka

⊥ that are invariant
under k⊥ → −k⊥. These subsystems have band degeneracies
at kx = 0 or kx = π , as determined by the algebraic relations
in Table I. The other 1D subsystems hk̃⊥ , where k̃⊥ is not
invariant under k⊥ → −k⊥, are generally gapped.

VII. EXAMPLES

We illustrate our theoretical results by two examples: (i) the
SSH model [30] and (ii) the π -flux square lattice model. The
Hamiltonian of the SSH model is given by

HSSH(k) =
(

0 �(k)
�†(k) 0

)
, (21)

where �(k) = (t + α) + (t − α)e−ik [see Fig. 3(a)]. At the
critical point α = 0 the system is invariant under a half
translation followed by an exchange of A and B sublattices,
which corresponds to the nonsymmorphic symmetry G(k),
Eq. (1) (see Fig. 3). Since the SSH model also has the
inversion symmetry P̂ = σ1 î, we find in accordance with
Table I that there is a gapless point at k = π . Observe that
at α = 0 the translation symmetry is promoted from 2Z (with
translator 2a) to Z (with the translator a) and the SSH model
becomes a 1D tight-binding model of free fermions with the
dispersion E(k) = 2t cos(k) [see Fig. 3(c)]. It is noted that in
order to create a band crossing point protected by nonsymmor-
phic symmetry in a tight-binding model through dimerization,
one must ensure that the original nondimerized model has two
chiral gapless modes. A nonvanishing α, on the other hand,
reduces the translation symmetry from Z to 2Z and breaks
the nonsymmorphic symmetry G(k), leading to a topological
(α < 0) or trivial (α > 0) insulator, depending on the sign
of α.

The Hamiltonian of the π -flux square lattice model reads
in momentum space

H(k) =
(

2t sin kx t + te−iky

t + teiky −2t sin kx

)
, (22)

FIG. 4. (a) Illustration of the π -flux square lattice model. This
model is invariant under the nonsymmorphic magnetic symmetry
G(ky)K̂î, namely, a time-reversal symmetry followed by the non-
symmorphic symmetry G(ky). (b) Energy spectrum of the π -flux
square lattice model.

where t denotes the nearest-neighbor hopping amplitude [see
Fig. 4(a)]. The model is invariant under the nonsymmorphic
magnetic symmetry G(ky)K̂î, which corresponds to a time-
reversal symmetry T̂ = K̂î followed by a half translation along
y and an exchange of A and B sublattices. The high-symmetry
1D subsystems kx = 0 and π have gapless Dirac points at
ky = π , as shown in Fig. 4(b). This is in agreement with
Table I, since [G(ky),K̂î] = 0. Similar to the SSH model, the
π -flux state is driven into a topological or trivial insulating
phase by a dimerization α along y, that breaks the nonsymmor-
phic symmetry G(ky). In closing, we observe that the π -flux
model can be viewed as a higher-dimensional generalization
of the SSH model.

VIII. DISCUSSIONS ABOUT MULTIBAND THEORIES

It is noted that the topological arguments in this work are not
limited to two-band models, which is exemplified by two cases
as follows. First, if a multiband theory has a chiral symmetry,
then the Hamiltonian can be antidiagonalized with the upper-
right entry being a matrix �(k), and Eq. (4) still holds for
q(k) = Det[�(k)]. The topological argument around Eq. (5)
implies that Det[�(k)] has to vanish somewhere in momentum
space, namely, there exist band crossing points enforced by the
chiral and nonsymmorphic symmetry.

Secondly, let us extend the spinless time-reversal symmetry
discussed in Sec. IV to the spinful one T̂ = −iσ2K̂î, which
acts in spinful four-band theories. If both T̂ and G are
preserved (G acts on the space of τ ), Eqs. (4) and (18) hold
for q(k) = Det[�(k)], which implies Det[�(k)] vanishes at
k = π . But diagonal terms have to vanish at k = 0 and π as
required by the symmetries (except for the chemical potential
term). Thus bands are enforced to cross at k = π . Note that
the vanishing of Det[�(k)] at k = π needs only the combined
symmetry GT̂ , but both T̂ and G are required for the vanishing
of the diagonal terms.
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APPENDIX: NONSYMMORPHIC PARTICLE-HOLE
SYMMETRY

In this Appendix, we discuss whether the existence of a band
crossing can also be enforced by a nonsymmorphic particle-
hole symmetry. As it turns out this is not possible. To see
this, we consider for instance an antiunitary nonsymmorphic
particle-hole symmetry Ĝ′′ = G(k)K̂, which acts on H as

G(k)H(k)G−1(k) = −H∗(−k). (A1)

Hence, the off-diagonal component of H(k) must sat-
isfy eikq(k) = −q(−k), and its Fourier components obey

qn = −q−(n+1). Therefore, q(k) can be written as

q(k) =
∞∑

n=0

qn(eink − e−i(n+1)k), (A2)

which vanishes at k = 0. However, there does not exist a
symmetry protected band crossing at k = 0, since the gap
opening term z(k)σ3, with z(k) = z(−k) an even function,
preserves the nonsymmorphic particle-hole symmetry Ĝ′′.
To protect the band crossing point at k = 0, an additional
symmetry is needed which forbids the z(k)σ3 term. For
example, the chiral symmetry {H,Ŝ} = 0, with Ŝ = σ3 and
{Ŝ,Ĝ′′} = 0, prevents the z(k)σ3 term.
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