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High-temperature expansion method for calculating paramagnetic exchange interactions
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The method for calculating the isotropic exchange interactions in the paramagnetic phase is proposed. It is
based on the mapping of the high-temperature expansion of the spin-spin correlation function calculated for the
Heisenberg model onto the Hubbard Hamiltonian one. The resulting expression for the exchange interaction
has a compact and transparent formulation. The quality of the calculated exchange interactions is estimated by
comparing the eigenvalue spectra of the Heisenberg model and low-energy magnetic part of the Hubbard model.
By the example of quantum rings at half-filling with different hopping setups, we analyze contributions from
different parts of the Hubbard model spectrum to the resulting exchange interaction. The developed method can
be applied for simulating magnetic couplings in correlated materials and surface nanostructures.
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I. INTRODUCTION

The magnetic properties of a correlated system can be
fully described by its magnetic susceptibility characterizing
the response of the system to an external magnetic field
[1]. Modern numerical methods of the dynamical mean-field
theory for solving realistic electronic models provide the most
reliable information concerning the electronic and magnetic
excitation spectra of the strongly correlated materials. Impor-
tantly, by using the dynamical mean-field theory [2] (DMFT),
the frequency- and momentum-dependent susceptibilities of
a correlated material can be directly calculated at different
external parameters (temperatures and magnetic fields) and
compared with those measured in the experiment. However,
the solution and reproduction of the experimentally observed
susceptibilities do not mean a truly microscopic understanding
of the magnetic properties formation. In this respect, the
determination of the individual magnetic interactions Jij of the
Heisenberg model is of crucial importance. The corresponding
Hamiltonian is given by

ĤHeis =
∑
ij

Jij
�̂Si

�̂Sj . (1)

The development of the methods for calculating the ex-
change interactions Jij between magnetic moments in modern
materials is an active research field [3–6]. Some important
examples of such methods are listed in Table I. They are
generally applicable to periodic complex multiband systems
with various magnetic and nonmagnetic species. In contrast,
being formulated for finite clusters the method we present in
this paper can be applied to the investigation of the magnetic
couplings in magnetic molecules or nanostructures deposited
on the insulating and metallic surfaces. Below we shortly
describe and compare different approaches.

The density-functional exchange formula proposed in
Ref. [6] is based on the idea about infinitesimal rotation of
the magnetic moments from the collinear ground state. The
resulting exchange interaction is the response of the system
on this perturbation. Being formulated in terms of the Green’s
function of the system, such an approach has a number of
important options, for instance, it is possible to calculate the
orbital contributions to the total exchange interaction. The

latter opened a way for a truly microscopic analysis of the
magnetic couplings.

Then, in Ref. [3] the method for calculating magnetic
couplings within the LDA+DMFT scheme was reported.
Such an approach facilitates the analysis of the exchange
interactions taking the dynamical Coulomb correlations into
account [7–11]. Recently, a general technique to extract the
complete set of the magnetic couplings by taking into account
the vertices of two-particle Green’s functions and nonlocal
self-energies was developed in Ref. [5].

By construction, the methods reviewed above assume
some type of the magnetic ordering in the system. Thus,
another important methodological problem in this research
field concerns the determination of the magnetic couplings in
a system being in a disordered magnetic phase. For that, a
formulation in terms of generalized perturbation method of
the disordered local moment approach was proposed [15,16].
This approach works quite well for the exchange parameters,
the Curie temperature, and energetics for the planar spin
spirals in the 3d magnets (Fe, Co, and Ni). One of the
advantages of the generalized perturbation method is the
possibility to calculate the high-order terms of the Heisenberg
model.

Numerous magnetic experiments [17–19] revealed quan-
tum spin systems, which, due to the low-dimensional crystal
structure, do not exhibit any sign of the magnetic ordering,
even at very low temperatures. Since the electron hopping
integral tij in these materials is much smaller than the onsite
Coulomb interaction U , then the magnetic coupling can be
associated with the Anderson’s superexchange interaction [13]

Jij = 4t2
ij

U
. For intermediate values of t/U (∼0.1), one can

still use the pure spin model with parameters defined from
the high-order strong coupling expansion within perturbative
continuous unitary transformations [20,21].

In turn, the simulation of the exchange interactions in
high-temperature paramagnetic phases can be performed by
means of the dynamical mean-field theory and its extension.
For instance, in case of the γ iron, the authors of Ref. [22]
compared the magnetic susceptibilities obtained for Heisen-
berg model within 1/z expansion and that calculated in DMFT
approach. To describe the formation of the local magnetic
moment and exchange interaction in the α iron, a spin-fermion
model was proposed in Ref. [23].
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TABLE I. List of methods for calculation of the isotropic
exchange interaction. φi(x) is a wave function centered at the
lattice site i. tij and U are the hopping integral and the onsite
Coulomb interaction, respectively. z is the number of the nearest
neighbors. EFM and EAFM are the energies of the ferromagnetic and
antiferromagnetic solutions obtained by using a mean-field electronic
structure approach. �(1)

ij is the first-order term in the high-temperature
expansion of the spin-spin correlation function.

Method Expression

Heitler-London’s exchange [12] Jij = ∫ φ∗
i

(x)φj (x)φ∗
j

(x′)φi (x′)
|x−x′ | dx dx ′

Anderson’s superexchange J kin
ij = 4t2

ij

U

theory [13]

Total energies method [14] J = EFM−EAFM
4zS2

Local force theorem [6] Jij = ∂2E

∂ �Si ∂ �Sj

HTE method (this work) Jij = − �
(1)
ij

[ 1
3 S(S+1)]2

Here, we report on a distinct method, high-temperature ex-
pansion (HTE) method for calculating the isotropic exchange
interactions in the paramagnetic phase. It is based on the
mutual mapping of the high-temperature spin-spin correlation
functions calculated in Hubbard and Heisenberg models. It can
be also expanded on the calculation of the high-order couplings
such as four-spin exchange. We have used the developed
approach to study the magnetic interactions in quantum spin
rings at half-filling (one doubly degenerate state per site) with
different hopping configurations.

II. METHOD

The focus in our approach is concentrated on the spin-spin
correlation function

�ij = Tr
(
Ŝz

i Ŝ
z
j e

−βĤ
)

Tr(e−βĤ )
, (2)

where β is the inverse temperature and Ĥ is the Hamiltonian
describing the system in question. Since the paramagnetic
regime is of our interest, then we can consider the z component
of the spin operator. Following Ref. [24], we consider �ij in
the high-temperature limit in which the exponent is expanded
as e−βĤ = 1 − βĤ . Thus, one obtains

�ij ≈ �
(0)
ij + β�

(1)
ij = Tr

(
Ŝz

i Ŝ
z
j

) − βTr
(
Ŝz

i Ŝ
z
j Ĥ

)
Tr(1) − βTr(Ĥ )

, (3)

where Tr(Â) is the trace that corresponds to the summation
over all eigenstates of the Hamiltonian of the system Ĥ :

Tr(Â) =
∑

n

〈�n|Â|�n〉. (4)

If the system in question can be described by the Heisenberg
Hamiltonian with localized magnetic moments, then in zero
order on β one obtains

Tr
(
Ŝz

i Ŝ
z
j

) = 1
3S(S + 1)Nδij , (5)

which simply means that the spins are independent at high
temperatures. Here, N = (2S + 1)L is the number of the
eigenstates of the Heisenberg Hamiltonian (L denotes the
number of sites in the model).

The same idea is used when analyzing the contribution of
the first order on β to the spin-spin correlation function that
carries the information concerning the exchange interaction
between the spins:

Tr
(
Ŝz

i Ŝ
z
j ĤHeis

) = Tr

⎛
⎝Ŝz

i Ŝ
z
j

∑
m	=n

Jmn
�̂Sm

�̂Sn

⎞
⎠

= Jij Tr
(
Ŝz

i Ŝ
z
j Ŝ

z
i Ŝ

z
j

) = JijN

(
1

3
S(S + 1)

)2

.

(6)

The detail derivation of Eqs. (5) and (6) is presented in
Appendix A. This high-temperature decomposition of the spin-
spin correlation function was used by the authors of Ref. [24]
to obtain the expression for the Curie-Weiss temperature. As
we will show below, it can be also used for calculating Jij .

In the seminal work by Anderson [13], the Heisenberg
exchange interaction is defined in terms of the Hubbard model
parameters tij and U . For that, the author considered the limit
tij 
 U , in which one can obtain the famous superexchange

expression Jij = 4t2
ij

U
. Our method for calculating Jij is also

based on the using of the Hubbard model that in the simplest
one-band form can be written as [25]

ĤHubb =
∑
ijσ

tij ĉ
+
iσ ĉjσ + U

2

∑
iσ

n̂iσ n̂i−σ − μ
∑
iσ

n̂iσ , (7)

where σ is the spin index, tij is the hopping integral between
ith and j th sites, U is the onsite Coulomb interaction, and μ

is the chemical potential.
Since our aim is to define the parameters of the Heisenberg

model with localized spins, on the level of the Hubbard
model it is natural to start with the atomic limit in which the
hopping integral is much smaller than the Coulomb interaction
U � t . In this case, the spectrum of the eigenvalues can be
divided onto low- and high-energy parts that are related to
the magnetic excitations of the Heisenberg type and charge
excitations of the order of U , respectively. Our method is
based on the comparison of the magnetic observables such as
spin-spin correlation functions calculated in Hubbard model
and Heisenberg model approaches in the high-temperature
limit β → 0.

In general, the trace over spin operators [Eq. (4)] differs in
the case of the Heisenberg and Hubbard models. For instance,
one should perform the summation over all eigenstates for the
Heisenberg model. At the same time, in the case of the Hubbard
model one should exclude the high-energy eigenstates with
doubly occupied sites from the consideration. The energies of
these states are of order of U .

In the limit of the localized spins t 
 U that we consider,
the traces Tr(Ŝz

i Ŝ
z
j ) [in the numerator of Eq. (3)] and Tr(Ĥ ) [in

the denominator of Eq. (3)] are similar to that defined for the
Heisenberg model. We are interested in the first-order term on
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the inverse temperature for which one obtains

Tr
(
Ŝz

i Ŝ
z
j ĤHubb

) =
N−1∑
n=0

〈�n|Ŝz
i Ŝ

z
j ĤHubb|�n〉

=
N−1∑
n=0

En〈�n|Ŝz
i Ŝ

z
j |�n〉, (8)

where En is the eigenvalue of the Hubbard model, �n is
the corresponding eigenvector, and N is the number of the
eigenstates of the Heisenberg Hamiltonian.

Comparing Eqs. (6) and (8) one can derive the following
expression for the Heisenberg’s exchange interaction:

Jij =
∑N−1

n=0 En 〈�n|Ŝz
i Ŝ

z
j |�n〉

N
[

1
3S(S + 1)

]2 . (9)

Let us analyze the obtained expression for the paramagnetic
exchange interaction. First of all, it contains the summation
over all eigenstates belonging to the magnetic part of the
full Hubbard spectrum. The high-energy part of the Hubbard
spectrum describing the charge excitations is excluded from
the consideration. For each eigenstate, we measure the corre-
lation between two spins. Such a correlation can be positive
or negative depending on the spin configuration encoded in
the eigenstate and is multiplied by the excitation energy with
respect to the ground state with E0 = 0.

Limitations of the method. The expression for the exchange
interaction (9) was obtained by comparing the spin-spin
correlation functions of the Heisenberg and Hubbard models
in the limit t 
 U . In this regime, the low-energy magnetic
part of the Hubbard model eigenspectrum is separated from
the high-energy one describing the charge excitations. Such
separation plays a crucial role and defines the playground for
our method. Practically, it means that all the simulations of the
magnetic couplings and excitation spectra presented in this
paper were performed for the ratio t

U
at which the magnetic

part is not mixed with the charge one. It ensures the mapping
of the spin-spin correlation functions described above and
truncation of the Hubbard spectrum in Eq. (9). In Appendix C,
we consider a five-site spin ring beyond the critical ratio of t

U

where intersection between magnetic and electronic parts of
spectrum occurs.

Importantly, there are some cases, as we will show below,
when such a separation exists even at t

U
∼ 1, which leads to

agreement of the Heisenberg and Hubbard eigenvalue spectra.
It means that we can analyze the magnetic interactions in the
strongly correlated regime.

For transition-metal oxides, the typical ratio between
hopping integral and onsite Coulomb interaction is of order
of 0.03. It was shown that in case of 5d iridium oxides
[26], this value can be about two times larger, 0.07, and
the implementation of the ordinary superexchange theory is
questionable. The simulation of the magnetic interaction in
metallic systems is another complicated problem, one deals
with the situation when the hopping integrals are of the same
order of magnitude as the Coulomb interaction.

One important problem when calculating the exchange
interaction is how to estimate and control the quality of the
obtained exchange interactions. It can be done by solving the

corresponding Heisenberg model and by calculating the exper-
imentally observed quantities (such as magnetic susceptibility,
magnetization, and other). The comparison of the calculated
theoretical dependencies with the available experimental data
is a standard way to define the reliability of the constructed
Heisenberg model. In our study, the exchange interactions for
the spin model estimated on the basis of the electronic Hubbard
Hamiltonian. Thus, it is natural to estimate the quality of the
constructed Heisenberg model by comparing the eigenvalue
spectra of the spin model and parent electronic Hamiltonian at
different degree of the localization.

Extension to many-orbital systems. In the case of the many-
band Hubbard model, the spin operator of the ith site in Eq. (9)
can be written as the sum of the orbital contributions [27]
Ŝz

i = ∑
m Ŝz

i,m. Thus, for the S > 1
2 we obtain the following

expression for the paramagnetic exchange interaction

Jij =
∑

mm′
∑N−1

n=0 En 〈�n|Ŝz
i,mŜz

j,m′ |�n〉
N

[
1
3S(S + 1)

]2 . (10)

Other types of the reference Hamiltonians. Importantly, the
realization of our method is not limited by the Hubbard model
for finite clusters. One can use other types of the strongly
correlated Hamiltonians to define the spin-spin correlation
functions. For instance, it can be the Anderson model [13] that
is widely used for simulation of the correlated nanostructures
on a surface [28–30]. In this case, the En and �n in Eq. (9)
are the eigenvalues and eigenfunctions of Anderson model
Hamiltonian. In Sec. IV, we discuss the dependence of the
exchange interaction in the dimer on hybridization strength
with a surface. The combination of the developed approach
with Anderson impurity solver facilitates the realization of
our method within the LDA+DMFT scheme, which opens a
way for simulating exchange interaction in periodic systems.

III. EXACT SOLUTION FOR DIMER

The electronic and magnetic excitation spectra of the dimer
that can be obtained analytically is the classical test in the
field of the strongly correlated materials. Importantly, there
are a lot of examples of the real low-dimensional materials
that have the dimer motif. For instance, they are vanadium
and copper oxides with d1 and d9 atomic configurations
[31–33]. The superexchange interaction in the dimer can be
also simulated within the experiments with ultracold atoms in
optical lattice [34]. In such experiments, the hopping integral
and onsite Coulomb interaction can be varied in a wide
range. For instance, the authors of Ref. [35] explored the
ratios ranging from the metallic (t/U ∼ 0.1) to insulating
(t/U 
 1) regimes when performing the quantum simulations
on the two-dimensional optical lattice.

Within the proposed method we are interested in N = 4
lowest magnetic eigenstates of the Hubbard model; they are
presented in Table II, where the following notations are used:

C2
0 = 1

2(1+ε2−)
, ε− = U (1−γ )

4t
, γ =

√
1 + 16t2

U 2 . The eigenvalues

are the following: E0 = U
2 (1 − γ ) − 2μ, E1 = E2 = E3 =

−2μ. The solution of the dimer model can be found in the
literature [36].

195107-3



O. M. SOTNIKOV AND V. V. MAZURENKO PHYSICAL REVIEW B 94, 195107 (2016)

TABLE II. Four lowest eigenstates of the Hubbard model for the
dimer.

n �n

0 [(|—↓ —↑ 〉 − |—↑ —↓ 〉) + U (1−γ )
4t

(| —-↓↑ — 〉 + |— —-↓↑ 〉)]C0

1 |—↑ —↑ 〉
2 |—↓ —↓ 〉
3 1√

2
(|—↑ —↓ 〉 + |—↓ —↑ 〉)

By using the developed method (9), we obtain the following
exchange interaction in the dimer:

J = −U

2
(1 − γ ). (11)

This value is exactly the excitation energy from the singlet
to triplet state of the dimer E1 − E0. Thus, in case of isolated
dimer, our method can be used to construct a Heisenberg model
reproducing the Hubbard model spectrum for any reasonable
ratio of kinetic and Coulomb interaction parameters t

U
(Fig. 1).

On the other hand, the Heisenberg model constructed by means
of the Anderson’s superexchange theory J = 4t2

U
results in the

spectrum deviating from that of the original Hubbard model at
t
U

> 0.2.

A. Comparison with the Hartree-Fock solution

One of the important results of modern magnetism theory
was the development of the local force theorem [6] for
calculating the exchange interactions. Such an approach gives
reliable results and is widely used for simulation magnetic
properties of the transition-metal compounds [7–10,26]. Thus,
the next step of our investigation was to compare the results
of the high-temperature expansion method we developed
and those obtained by using the density-functional exchange
formula. For these purposes, we have chosen the dimer system.

FIG. 1. Comparison of the excitation spectra of the Hubbard
model (solid and dashed lines) and Heisenberg models with exchange
interaction calculated by using the developed method (green triangles)
and superexchange Anderson approach (blue rhombus) for isolated
(a) dimer and (b) triangle.

FIG. 2. (a) Comparison of the eigenvalue spectra obtained from
the solution the Hubbard model (black solid line) and the Heisenberg
models with parameters calculated by the developed approach (9)
(green triangles), local force theorem method (13) (red circles), and
Anderson’s superexchange theory (blue rhombus). (b) Magnetization
as a function of the localization.

Since the method based on the local force theorem requires
a nonzero magnetization of the system, we used the Hartree-
Fock approximation to solve the Hubbard model (7):

ĤHF =
∑
ijσ

tij ĉ
+
iσ ĉjσ + U

2

∑
iσ

〈n̂i−σ 〉n̂iσ . (12)

According to the local force theorem, the exchange interaction
is given by

Jij = 1

2πS2

∫ EF

−∞
Im(ṼiG

↓
ij ṼjG

↑
ji) dε, (13)

here EF is the Fermi level, Ṽi = V
↑
i − V

↓
i denotes the spin-

dependent Hartree-Fock potential calculated self-consistently,
and G↑,↓(ε) = (ε − H

↑,↓
HF )−1 is the Green’s function of the

Hartree-Fock Hamiltonian. Unlike our approach (9), this
formula requires presence of a magnetic order in the system.

In the case of the dimer, the exchange interactions obtained
by using local force approach give excellent agreement with
the spectrum of the Hubbard model for t

U
< 0.2 (Fig. 2). For

larger values of the hopping integrals, the averaged magnetic
moment is strongly suppressed and becomes almost zero at
t/U ∼ 0.5. These results indicate the limits of the applicability
of the mean-field Green’s function approach for calculating the
exchange interaction in strongly correlated systems.

IV. DIMER ON A SURFACE

The determination of the magnetic couplings in surface
nanostructures is in the focus of the scanning tunneling
microscopy experiments on these systems [37,38]. From the
theoretical side, the experimental data can be simulated with
Anderson impurity model approach [39]. In such simulations,
the impurity-surface hybridization plays a principal role in
formation of the electronic and magnetic properties of the
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FIG. 3. Schematic representation of the dimer adsorbed on a
substrate. Here, t and U are impurity kinetic and Coulomb repulsion
terms whereas ε and V denote energy of bath states and hybridization
terms, respectively.

surface nanosystems. In the case of a metallic surface, the
hybridization can result in the valence fluctuations between
different atomic configurations of the impurity [30,40]. Thus,
the magnetic state of the impurity is a superposition of the
states with different spins.

The developed method allows one to define the magnetic in-
teraction in the regime of valence fluctuations. To demonstrate
this, we perform the simulations for the dimer on a surface.
Each correlated orbital of the dimer is connected to one empty
and one occupied effective orbital of the substrate (Fig. 3) with
energies εp = ±U

3 . The hopping between impurities is fixed
at the value of tij = U

100 :

ĤAnd =
∑

i

(εi − μ)n̂iσ +
∑
ijσ

tij d̂
†
iσ d̂jσ + U

2

∑
iσ

n̂iσ n̂i−σ

+
∑
pσ

εpâ†
pσ âpσ +

∑
ipσ

(Vipd̂
†
iσ âpσ + H.c.), (14)

where εi and εp are energies of the impurity and surface states,
d
†
iσ (diσ ) and a

†
pσ (apσ ) are the creation (annihilation) operators

for impurity and surface electrons, Vip is the hopping integral
between impurity and surface states, tij is the hopping integral
between impurities, μ is the chemical potential, and U is the
Coulomb repulsion.

Figure 4 shows, that at weak hybridization V
U

< 0.1, the
magnetic properties of the system are almost the same as for
isolated S = 1

2 dimer analyzed in the previous section. By
increasing the hybridization of the impurity states, we amplify
the valence fluctuations in the system and increase weights of
the d0 and d2 configurations for each impurity. As a result, the
local magnetic moment of the impurity is partially reduced. At
the same time, there is a hybridization-induced magnetization
of the bath states. Due to such a delocalization of the magnetic
moment in the system, the dimer exchange interaction is
strongly suppressed. It becomes almost zero at V

U
= 0.7.

In the case of the multiorbital impurities on a metallic
surface, the situation is more complicated. The valence
fluctuations can lead to a superposition of different nonzero
spin states for each impurity. For instance, in the case of the
iron impurity on Pt(111) surface [30], there is a superposition
of the S = 5

2 (d5 atomic configuration), S = 2 (d6), and S = 3
2

(d7) spin states. Thus, the interimpurity magnetic interaction
can be decomposed into partial contributions corresponding to
couplings between different spin states of the impurities.

The results obtained for the dimer on a surface show that our
method can be, in principle, combined with nano-DMFT [41]
to probe magnetic excitations in correlated nanoscale devices
such as molecules connected to electronic bath. On the other

FIG. 4. (a) Contributions of d0, d1, and d2 atomic states of the
impurity to the ground state, the average value of square of the spin
operator for impurity and bath orbitals. (b) Corresponding exchange
constant derived with (9) for Anderson model (14) with two bath
states at each impurity level (see Fig. 3).

hand, the developed approach can be implemented in a cluster-
DMFT [33] in which one solves a finite-size cluster embedded
in a bath simulating the effect of the remaining part of an
infinite lattice.

V. SOLUTIONS FOR TRIANGLE AND TRIMER

Triangle is another example of the model for which
we obtain excellent agreement of the electronic and spin
eigenvalue spectra. The Heisenberg model spectrum for the
triangle consists of fourfold degenerate ground and fourfold
degenerate excited states (Fig. 5). As in the case of the dimer,
the exchange interaction between spins in the triangle is
defined by the corresponding splitting between excited- and
ground-state levels. From Fig. 1 the Heisenberg model, which
we constructed by using the HTE method, precisely reproduces
the magnetic part of the Hubbard model.

Trimer. The situation becomes more complicated if we con-
sider the trimer with the nearest-neighbor hopping presented in
Fig. 6. In contrast to the triangle, the ground state of the trimer

FIG. 5. Low-energy magnetic part of the Hubbard model eigen-
spectrum for trimer as a function of ratio tnnn

tnn
. Numbers around the

lines denote degeneracy of the corresponding energy levels. The
spectra were calculated with tnn = 0.03 eV and μ = U

2 = 1.5 eV.
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FIG. 6. (a) The calculated exchange interactions between nearest
neighbors Jnn and next-nearest neighbors Jnnn in the trimer. (b)
Comparison of the eigenvalue spectra for the trimer. Solid and
dashed lines denote the Hubbard model spectrum. The symbols
correspond to the Heisenberg model solutions with different sets
of the exchange interactions and presented by blue rhombus (the
Anderson’s superexchange) and green triangles [the developed HTE
method (9)].

is twofold degenerate (Fig. 5). In turn, the highest excited
state in the magnetic part of the eigenspectrum is fourfold
degenerate. As we will show below, the twofold intermediate
excited level is related to the interaction between next-nearest
neighbors.

For such hopping setup, within Anderson’s superexchange

theory we obtain the antiferromagnetic coupling Jij = 4t2
ij

U

between nearest neighbors in the trimer. To define the
interaction between next-nearest neighbors, one should use
the fourth-order perturbation theory on the hopping. The
situation becomes more complicated if the condition tij 
 U

is not fulfilled. On the other hand, by using the developed
method (9) we obtain antiferromagnetic nearest- and second-
nearest-neighbor exchanges. The solution of the corresponding
Heisenberg model leads to perfect agreement between the spin
and Hubbard model spectra up to large values of the ratio tij

U
.

In the case of the trimer we can also explicitly relate
the exchange interactions with the eigenvalues spectrum
of the Hubbard model. For that, we used the condition
EHubb

n − EHubb
n′ = EHeis

n − EHeis
n′ . Here, EHeis

n is the eigenvalue
of the Heisenberg model that can be found analytically
(Appendix B). EHubb

n is the eigenvalue corresponding to the
eigenstate from the low-energy (magnetic) part of the Hubbard
Hamiltonian. The eigenvalue problem for Hubbard model was
solved numerically. The structure of the low-energy part of
the Hubbard model at different ratios between next-nearest
hopping and nearest-neighbor one is presented in Fig. 5.

We obtain the following expressions for the magnetic
couplings in the trimer:

Jnn = 2
3 (E4 − E0),

(15)
Jnnn = Jnn − (E2 − E0),

FIG. 7. Schematic representation of the hopping setups for the
Hubbard Hamiltonian simulations. (a) The ring model with the
nearest-neighbor hoppings. (b) All-to-all configuration in which all
the hoppings between sites are equal.

where Jnn and Jnnn are exchange interactions between nearest
neighbors and next-nearest neighbors in the trimer, respec-
tively. One can see that the leading exchange interaction Jnn

between the nearest neighbors is related to the energy splitting
between ground state and highest excited state belonging to the
magnetic part of the whole electronic spectrum. The situation
with the next-nearest-neighbor coupling is more complicated.
In addition to the E4 − E0 that is related to the leading
exchange interaction, it also has the ferromagnetic contribution
from the intermediate excited state E2 − E0. As we will show
below, the similar picture is observed in quantum spin rings.

VI. QUANTUM SPIN RINGS

In this section, we present the results of computer sim-
ulations concerning the magnetic interactions in the finite
quantum clusters with ring geometry. The theoretical interest
in these systems is due to the synthesis and study of the mag-
netic properties of the molecular magnets with ring geometry
[42–45]. Such systems demonstrate a number of interesting

FIG. 8. (a) The calculated exchange interactions between nearest
neighbors Jnn and next-nearest neighbors Jnnn in the five-site ring. (b)
Comparison of the eigenvalue spectra for the five-site ring. Solid and
dashed lines denote the Hubbard model spectrum. Blue rhombus and
green triangles correspond to the Heisenberg model solutions with
different sets of the exchange interactions: blue rhombus (Anderson’s
superexchange) and green triangles [developed method (9)].
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FIG. 9. Contributions from the different eigenstates of the Hub-
bard model to (a) the nearest-neighbor and (b) next-nearest-neighbor
exchange interactions calculated for four-site ring with t/U = 0.1.

and complex phenomena, quantum spin tunneling, long-time
spin relaxation, topological spin phases (Berry phases), and
others. In this respect, the microscopic understanding of
the intramolecular magnetic couplings plays a crucial role
[46]. On the other hand, the spin rings are also of great
practical interest since they can be used as building elements
for novel quantum communication technologies [47] and for
engineering quantum memory that is stable against noise and
imperfections [48].

In our study, we have simulated the magnetic interactions
in the quantum rings described by the Hubbard models with
different hopping setups presented in Fig. 7. They can be
realized in the quantum simulation experiments on ultracold
atoms in optical lattices [49].

A. Rings with nearest-neighbor hoppings

First, we analyze the results of the simulations for quantum
rings describing the Hubbard model with the only nearest-
neighbor hopping integral. Similar to the case of the dimer
and trimer, our method leads to better agreement between
Heisenberg and low-energy Hubbard model spectra than the

others. Figure 8 gives the comparison of the eigenvalues
spectra calculated by different methods in the case of the
five-site ring. One can see that the high-temperature expansion
method reproduces the electronic Hamiltonian spectrum up to
t/U = 0.28. At this value, the high- and low-energy parts of
the spectrum overlap, which prevents us from determining the
exchange interaction.

In the hopping setup we used [Fig. 7(a)], there are hopping
integrals between nearest neighbors only. Nevertheless, each
site has nonzero antiferromagnetic exchange interaction with
all the other sites in the ring (we denote them Jnnn). Figure
8(a) demonstrates the behavior of such diagonal couplings at
different t/U ratios in comparison with the leading exchange
interaction between nearest neighbors Jnn. Despite of the fact
that the coupling Jnnn grows much slower than the nearest-
neighbor one it cannot be neglected when constructing the
Heisenberg model at t/U > 0.15. It can be clearly seen from
Fig. 8(b), in which the Anderson’s superexchange theory with
zero Jnnn leads to the eigenvalue spectrum deviating from the
Hubbard model one.

The expression for the paramagnetic exchange interaction
[Eq. (9)] that we derived contains the summation of the
eigenstates belonging to the low-energy magnetic part of
the Hubbard model spectrum. It is important to analyze the
contribution of the individual eigenstates to the resulting
exchange interaction. From Fig. 9 one can see that there
are ferromagnetic contributions that partially compensate the
antiferromagnetic ones. Interestingly, the contributions from
the highest excited states are almost the same for the Jnn and
Jnnn couplings. As it was shown in the case of the trimer,
the intermediate excited eigenstates produce the ferromagnetic
contributions to Jnnn.

B. Rings with all-to-all hoppings

By the example of the results for the five-site ring presented
in Fig. 8(b) one can see that the quantum rings with nearest-
neighbor hopping demonstrate rather complicated spectra.
However, for practical purposes, for instance, to construct a
quantum logic device, we need a system with the excitation
spectrum as simple as possible. In the case of the quantum rings
that we consider, the excitation spectrum can be considerably
simplified by introducing the same hopping integral for all the
bonds in the quantum Hamiltonian. It is the so-called all-to-all
hopping configuration [Fig. 7(b)].

FIG. 10. Excitation spectra of all-to-all systems. Solid and dashed lines denote the Hubbard model spectrum. Green triangles correspond
to the Heisenberg model solutions with the exchange interactions calculated by the high-temperature expansion method (9).
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FIG. 11. The calculated ratio J
ring
nn

J all-to-all
nn

demonstrating the contribu-
tion of the indirect hopping processes to the two-spin interaction.

The simplest Heisenberg Hamiltonian with two-spin ex-
change interactions constructed by the high-temperature ex-
pansion method gives the eigenvalue spectrum that is coinci-
dent with the Hubbard model one up to t/U = 0.07 (Fig. 10).
For larger values of t/U we observe the deviation of the
spin and electronic models that mainly concerns intermediate
excited levels. The problem may be resolved by introducing the
high-order multispin interactions (four-spin and six-spin) [21].

The pair exchange interaction between nearest neighbors
in a quantum ring has the direct contributions, proportional
to tij tj i and high-order nondirect ones,

∑
k tiktkj , where the

site index k 	= i,j . In case of the configurations with all-to-all
hoppings, the nondirect processes become very efficient and
strongly contribute to the exchange interaction between two
spins. It can be seen from Fig. 11. For each pair in the N -site
ring there are N − 2 nondirect exchange path including one
intermediate site.

VII. CONCLUSION

We propose the method for calculation of the magnetic
interactions in the paramagnetic phase. Being formulated in
the high-temperature and localized spin limits, our approach
can be used for constructing the spin Hamiltonian in a wide
range of the t/U ratios. It was shown by the classical examples
such as the dimer and triangle finite clusters. By using the
proposed method we investigated the magnetic couplings in
quantum spin rings with different hopping configurations.
Our methodological and calculation results will be useful for
analysis of the data obtained in experiments with ultracold
fermions that provide unique possibility to measure and
control the spin-spin correlation function between two sites in
optical lattice [49]. The proposed scheme can be also applied
for simulating the magnetic couplings between impurities in
metallic host. For that instead of the Hubbard model one should
solve the two-impurity Anderson model.
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APPENDIX A: SPIN TRACES

The expansion of the spin-spin correlation function in the
high-temperature limit [Eq. (3)] contains traces over spin op-
erators. Here, we derive the exact expressions for these traces.

The expression Tr(Ŝz
i Ŝ

z
j ) is equal to zero, if i 	= j . To

demonstrate this, we consider a spin- 1
2 system

Tr
(
Ŝz

i Ŝ
z
j

) =
N−1∑
m=0

〈φm|Ŝz
i Ŝ

z
j |φm〉

= 〈. . . ↑i . . . ↑j . . . |Ŝz
i Ŝ

z
j | . . . ↑i . . . ↑j . . .〉

+ 〈. . . ↑i . . . ↓j . . . |Ŝz
i Ŝ

z
j | . . . ↑i . . . ↓j . . .〉

+ 〈. . . ↓i . . . ↑j . . . |Ŝz
i Ŝ

z
j | . . . ↓i . . . ↑j . . .〉

+ 〈. . . ↓i . . . ↓j . . . |Ŝz
i Ŝ

z
j | . . . ↓i . . . ↓j . . .〉

=
(

1

4
− 1

4
− 1

4
+ 1

4

)
(2S + 1)L−2 = 0, (A1)

where |φm〉 are basis functions of Heisenberg model, L is the
number of sites on the corresponding Heisenberg model, and
S is the total value of spin on each site. In this way, it is
possible to derive Tr(Ŝz

i Ŝ
z
j ) = 0 for i 	= j in the general case

for arbitrary spin S.
Further, for i = j one can represent the trace equation (5)

as

Tr
(
Ŝz

i Ŝ
z
i

) = (2S + 1)L−1
2S∑

n=0

(S − n)2. (A2)

The summation in Eq. (A2) could be easily expanded with
arithmetic progression rules and known expression for

∑
n n2

(see Ref. [50]). It yields expression (5) in the main text.
Similarly to the above equation, the statement

Tr

⎛
⎝Ŝz

i Ŝ
z
j

∑
p 	=q

Jpq
�̂Sp

�̂Sq

⎞
⎠ = Jij Tr

(
Ŝz

i Ŝ
z
j Ŝ

z
i Ŝ

z
j

)
(A3)

arises from the fact that p 	= q in Heisenberg Hamiltonian.
Indeed, p = i and q = j is the only case when the corre-
sponding trace does not vanish.

Then, the trace equation (A3) can be rewritten similar to
Eq. (A2):

Tr
(
Ŝz

i Ŝ
z
j Ŝ

z
i Ŝ

z
j

)

= (2S + 1)L−2
2S∑

n,m=1

(S − n)2(S − m)2, (A4)

which can be converted to the resulting expression (6) by using
the same consideration as in the case of Eq. (A2).
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TABLE III. Eigenvalues and eigenvectors of the Heisenberg
model for triangle and trimer.

E
triangle
i Etrimer

i �i

E7
3J

4
1
2 Jnn + 1

4 Jnnn | ↑↑↑〉
E6

3J

4
1
2 Jnn + 1

4 Jnnn
1√
3
(| ↑↑↓〉 + | ↑↓↑〉 + | ↓↑↑〉)

E5
3J

4
1
2 Jnn + 1

4 Jnnn
1√
3
(| ↓↓↑〉 + | ↓↑↓〉 + | ↑↓↓〉)

E4
3J

4
1
2 Jnn + 1

4 Jnnn | ↓↓↓〉
E3 − 3J

4 − 3
4 Jnnn

1√
2
(| ↑↑↓〉 − | ↓↑↑〉)

E2 − 3J

4 − 3
4 Jnnn

1√
2
(| ↓↓↑〉 − | ↑↓↓〉)

E1 − 3J

4 −Jnn + 1
4 Jnnn

1√
6
(| ↑↑↓〉 + | ↓↑↑〉 − 2| ↑↓↑〉)

E0 − 3J

4 −Jnn + 1
4 Jnnn

1√
6
(| ↓↓↑〉 + | ↑↓↓〉 − 2| ↓↑↓ 〉)

APPENDIX B: SOLUTIONS OF HEISENBERG MODEL
FOR TRIANGLE AND TRIMER

Here, we retrieve solutions of the Heisenberg model in
the case of the timer and triangle. Jnn and Jnnn denote the
exchange interactions between nearest neighbors and next-
nearest neighbors in the trimer. If Jnn = Jnnn, this is the case
of the triangle. The obtained eigenvalues and eigenvectors
presented in Table III are used for analysis of the low-energy
magnetic part of the corresponding Hubbard model (Sec. V).

FIG. 12. Comparison of the eigenvalue spectra for the five-site
ring. Solid and dashed lines denote the Hubbard model spectrum.
Green triangles and red pluses denote Heisenberg model solutions
obtained by using the developed method as described in Appendix C.

APPENDIX C: BEYOND THE CRITICAL RATIO t
U

Here, we analyze the situation when the magnetic and
charge parts of the Hubbard eigenspectrum overlap. For this
purpose, we use five-site ring system. From Fig. 12 the critical
ratio t

U
for our method can be estimated as 0.27.

One can see that the exchange interaction calculated with
Eq. (9) gives a spectrum (green triangles) that strongly deviates
from that obtained for Hubbard model for t

U
> 0.27. The

agreement between spin and electronic spectra can be partially
restored, if one artificially excludes the states coming from the
charge part of the whole spectrum (red pluses) in Eq. (9).
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