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Discovering phase transitions with unsupervised learning

Lei Wang
Beijing National Lab for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 6 June 2016; revised manuscript received 14 October 2016; published 2 November 2016)

Unsupervised learning is a discipline of machine learning which aims at discovering patterns in large data sets
or classifying the data into several categories without being trained explicitly. We show that unsupervised learning
techniques can be readily used to identify phases and phases transitions of many-body systems. Starting with
raw spin configurations of a prototypical Ising model, we use principal component analysis to extract relevant
low-dimensional representations of the original data and use clustering analysis to identify distinct phases in the
feature space. This approach successfully finds physical concepts such as the order parameter and structure factor
to be indicators of a phase transition. We discuss the future prospects of discovering more complex phases and
phase transitions using unsupervised learning techniques.
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Classifying phases of matter and identifying phase transi-
tions between them is one of the central topics of condensed
matter physics research. Despite an astronomical number of
constituting particles, it often suffices to represent states of a
many-body system with only a few variables. For example,
a conventional approach in condensed matter physics is to
identify order parameters via symmetry consideration or
analyze low-energy collective degree of freedoms and use them
to label phases of matter [1].

However, it is harder to identify phases and phase transitions
in this way in an increasing number of new states of matter,
where the order parameter may only be defined in an elusive,
nonlocal way [2]. These developments call for different ways
of identifying appropriate indicators of phase transitions.

To meet this challenge, we use machine learning techniques
to extract information of phases and phase transitions directly
from many-body configurations. In fact, the application of
machine learning techniques to condensed matter physics is a
burgeoning field [3–13].1 For example, regression approaches
are used to predict crystal structures [3], to approximate density
functionals [6], and to solve quantum impurity problems [10];
artificial neural networks are trained to classify phases of
classical statistical models [13]; neural network inspired
variational wave functions are used to solve quantum many-
body problems in and out of equilibrium [14]. Most of those
applications use supervised learning techniques (regression
and classification), where a learner needs to be trained with
the previously solved data set (input/output pairs) before it can
be used to make predictions.

On the other hand, in unsupervised learning, there is no
such explicit training phase. The learner should by itself find
out interesting patterns in the input data. Typical unsupervised
learning tasks include cluster analysis and feature extraction.
Cluster analysis divides the input data into several groups
based on certain measures of similarities. Feature extraction
finds a low-dimensional representation of the data set while
still preserving the essential characteristics of the original
data. Unsupervised learning methods have broad applica-

1We also note the application of physics ideas such as phase
transition [30], renormalization group [31], tensor networks [32],
and quantum computation [33] to machine learning.

tions in data compression, visualization, online advertising,
recommender systems, etc. They are often being used as a
preprocessor of supervised learning to simplify the training
procedure. In many cases, unsupervised learning also leads to
better human interpretations of complex data sets.

In this paper, we explore the application of unsuper-
vised learning in many-body physics with a focus on phase
transitions. The advantage of unsupervised learning is that
one assumes neither the presence of the phase transition
nor the precise location of the critical point. Dimension
reduction techniques can extract salient features such as order
parameters and structure factors from the raw configuration
data. Clustering analysis can then divide the data into several
groups in the low-dimensional feature space, representing
different phases. Our studies show that unsupervised learning
techniques have great potentials for addressing the big data
challenge in the many-body physics and making scientific
discoveries.

As an example, we consider the prototypical classical Ising
model

H = −J
∑
〈i,j 〉

σiσj , (1)

where the spins take two values σi = {−1, + 1}. We consider
the model (1) on a square lattice with periodic boundary condi-
tions and set J = 1 as the energy unit. The system undergoes
a phase transition at a temperature T/J = 2/ln(1 + √

2) ≈
2.269 [15]. A discrete Z2 spin inversion symmetry is broken
in the ferromagnetic phase below Tc and is restored in the
disordered phase at temperatures above Tc.

We generate 100 uncorrelated spin configuration samples
using the Monte Carlo simulation with the Wolff cluster
update [16] at temperatures T/J = 1.6,1.7, . . . ,2.9 each and
collect them into an M × N matrix,

X =

⎛
⎜⎝

↑ ↓ ↑ . . . ↑ ↑ ↑
...

↓ ↑ ↓ . . . ↑ ↓ ↑

⎞
⎟⎠

M×N

, (2)

where M = 1400 is the total number of samples, and N is the
number of lattice sites. The up and down arrows in the matrix
denote σi = ±1. Such a matrix is the only data we feed to the
unsupervised learning algorithm.
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Our goal is to discover a possible phase transition of the
model (1) without assuming its existence. This is different
from supervised learning tasks, where exact knowledge of
Tc was used to train a learner [13]. Moreover, the following
analysis does not assume any prior knowledge about the
lattice geometry and the Hamiltonian. We are going to use
the unsupervised learning approach to extract salient features
of the data and then use this information to divide the samples
into distinct phases. Knowledge about the temperature of each
sample and the critical temperature Tc of the Ising model is
used to verify the clustering.

Interpreting each row of X as a coordinate of an N -
dimensional space, the M data points form a cloud centered
around the origin of a hypercube.2 Discovering a phase
transition amounts to finding a hypersurface which divides the
data points into several groups, each representing a phase. The
task is akin to the standard unsupervised learning technique,
cluster analysis [17], where numerous algorithms are available,
and they classify the data based on different criteria.

However, directly applying clustering algorithms to the
Ising configurations may not be very enlightening. The reasons
are twofold. First, even if one manages to separate the data into
several groups, clusters in high-dimensional space may not
directly offer useful physical insights. Second, many clustering
algorithms rely on a good measure of similarity between the
data points. Its definition is, however, ambiguous without
supplying domain knowledge, such as the distance between
two spin configurations.

In fact, the raw spin configuration is a highly redundant
description of the system’s state because there are correlations
among the spins. Moreover, as the temperature varies, there
is an overall tendency in the raw spin configurations, such as
lowering the total magnetization. In the following, we will first
identify these crucial features as effective low-dimensional
representations of the original data. The meaning of the
distance between configurations will become more transparent
in terms of these features. The separation of phases is also
often clearly visible and comprehensible by the human in the
reduced space spanned by these features. Therefore, feature ex-
traction not only simplifies the subsequent clustering analysis
but also provides an effective means of visualizing and offering
physical insights. We denote the crucial features extracted by
unsupervised learning as indicators of the phase transition. In
general, they do not necessarily need to be the same as the
conventional order parameters defined in condensed matter
physics. This unsupervised learning approach nevertheless
provides an alternative view of phases and phase transitions.

Principal component analysis (PCA) [18] is a widely used
feature extraction technique. The principal components are
mutually orthogonal directions along which the variances
of the data decrease monotonically. PCA finds the principal
components through a linear transformation of the original co-
ordinates Y = XW . When applied to the Ising configurations
in Eq. (2), PCA finds the most significant variations of the data
changing with the temperature. We interpret them as relevant

2Each column of X sums up to zero since on average each site has
zero magnetization.

FIG. 1. The first few explained variance ratios obtained from the
raw Ising configurations. The inset shows the weights of the first
principal component on an N = 402 square lattice.

features in the data and use them as indicators of the phase
transition, if there is any.

We write the orthogonal transformation into column vectors
W = (w1,w2, . . . ,wN ) and denote w� as weights of the
principal components in the configuration space. They are
determined by an eigenproblem [19]3

XT Xw� = λ�w�. (3)

The eigenvalues are non-negative real numbers sorted in
descending order, λ1 � λ2 · · · � λN � 0. Using the terminol-
ogy of PCA, we denote the normalized eigenvalues λ̃� =
λ�/

∑N
�=1 λ� as the explained variance ratio. When keeping

only the first few principal components, PCA is an efficient
dimension reduction approach which captures most variations
of the original data. Moreover, PCA also yields an optimal
approximation of the data in the sense of minimizing the
squared reconstruction error [19].

Figure 1 shows the first few explained variance ratios for
various system sizes. Notably, there is only one dominant prin-
cipal component. The error bars are estimated by dividing the
data into four groups and repeating the calculation (3) for each
group. As the temperature changes, the Ising configurations
vary most significantly along the first principal component,
whose weight is shown in the inset of Fig. 1. The flat
distribution over all the lattice sites means the transformation
actually gives the uniform magnetization 1

N

∑
i σi . In this

sense, PCA has identified the order parameter of the Ising
model (1) upon a phase transition.

Next, we project the samples in the space spanned by
the first two principal components, shown in Fig. 2. The

3In practice, this eigenproblem is often solved by a singular value
decomposition of X. In fact, replacing the input data X (raw spin
configurations collected at various temperature) by the wave function
of a one-dimensional quantum system, the math here is identical to the
truncation of Schmidt coefficients in density-matrix renormalization
group calculations [34].
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FIG. 2. Projection of the samples onto the plane of the two
leading principal components. The color bar on the right indicates
the temperature T/J of the samples. (a)–(c) are for N = 202, 402,
and 802 sites, respectively. In (c) we perform k-means clustering to
split the data into several phases. The white crosses denote the cluster
centroids. Background colors indicate different predicted phases.

color of each sample indicates its temperature. The projected
coordinates are given by the matrix-vector product

y� = Xw�. (4)

The variation of the data along the first principal axis y1 is
indeed much stronger than that along the second principal axis
y2. Most importantly, one clearly observes that as the system
size enlarges, the samples tend to split into three clusters.
The high-temperature samples lie around the origin while
the low-temperature samples lie symmetrically at finite y1.
The samples at the critical temperature (light yellow dots)
have a broad spread because of large critical fluctuations.
We note that Ref. [13] presents a different low-dimensional
visualization of the Ising configurations using the stochastic
neighbor embedding technique.

When folding the horizontal axis of Fig. 2 into
∑

i |σi | or
(
∑

i σi)
2, the two clusters associated with the low-temperature

phase merge together. With such a linearly separable low-
dimensional representation of the original data, a cluster
analysis algorithm such as k-means4 can easily identify clus-
ters corresponding to different phases. The vertical decision
boundaries in Fig. 2(c) show that only y1 affects the division.
The clustering analysis also provides an estimate of the
critical temperature Tc/J ≈ 2.3. Notice that the unsupervised
learning analysis not only discovers the phase transition and
estimates the critical temperature but also offers insight into
the difference between phases.

Having established the baseline of applying unsupervised
learning techniques in a prototypical Ising model, we now
turn to a more challenging case where the learner can make
nontrivial findings. For this, we consider the same Ising model
Eq. (1) with a conserved order parameter (COP)

∑
i σi ≡ 0.

This model describes classical lattice gases [20], where the

4http://scikit-learn.org/stable/modules/clustering.html#k-means

FIG. 3. Typical configurations of the COP Ising model (a), (b)
below and (c) above the critical temperature. Red and blue pixels
indicate up and down spins. Exactly half of the pixels are red/blue
due to the constraint

∑
i σi ≡ 0.

occupation of each lattice site can be either one or zero and the
particles interact via a short-range attraction. The conserved
total magnetization corresponds to the constraint of a half-
filled lattice.

On a square lattice with periodic boundary conditions, the
spins tend to form two domains at low temperatures, shown
in Figs. 3(a) and 3(b). The two domain walls wrap around the
lattice either horizontally or vertically to minimize the domain
wall energy [20]. Besides, the domains can also shift in space
due to translational invariance. As the temperature increases,
these domain walls melt and the system restores both the trans-
lational and rotational symmetries in the high-temperature
phase shown in Fig. 3(c). At zero total magnetization, the
critical temperature of such a solid-gas phase transition is the
same as the Ising transition Tc/J ≈ 2.269 [21]. However, since
the total magnetization is conserved, simply summing up the
spins as the ordinary Ising model cannot be used as an indicator
to distinguish the two phases.

We perform the same PCA to the COP Ising configurations
sampled with Kawasaki spin exchange Monte Carlo up-
dates [20,22]. Figure 4 shows the first few explained variance
ratios. Notably, there are four leading principal components
instead of one. Their weights, plotted in the insets of Fig. 4,
show a notable nonuniformity over the lattice sites. This

FIG. 4. Explained variance ratios of the COP Ising model. The
insets show the weights corresponding to the four leading principal
components.
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FIG. 5. Projections of the COP Ising samples to the four leading
principal components.

indicates that in the COP Ising model the spatial distribution of
the spins varies drastically as the temperature changes. Denote
the Euclidean coordinate of site i as (μi,νi), where μi,νi =
1,2, . . . ,

√
N . The weights of the four leading principal

components can be written as cos(θi), cos(φi), sin(θi), sin(φi),
where (θi,φi) = (μi,νi) × 2π/

√
N .5 Note these four mutually

orthogonal weights correspond to the two orientations of the
domain walls shown in Figs. 3(a) and 3(b). Therefore, the PCA
correctly finds out the rotational symmetry breaking caused by
the domain wall formation.

To visualize the samples in the four-dimensional feature
space spanned by the first few principal components, we
plot two-dimensional projections in Fig. 5. In all cases, the
high-temperature samples are around the origin while the
low-temperature samples form a surrounding cloud. Motivated
by the circular shapes of all these projections, we further
reduce the data to a two-dimensional space via a nonlinear
transformation (y1,y2,y3,y4) 	→ (y2

1 + y2
2 ,y

2
3 + y2

4 ). As shown
in Fig. 6(a), the line

∑4
�=1 y2

� ≈ const (a four-dimensional
sphere of a constant radius) separates the low- and high-
temperature samples. This motivates a further dimensional
reduction to a single variable

∑4
�=1 y2

� as an indicator of the
phase transition in the COP Ising model.

Substituting weights of the four principal components
cos(θi), cos(φi), sin(θi), sin(φi), the sum

∑4
�=1 y2

� is propor-
tional to

S = 1

N2

∑
i,j

σiσj [cos(θi − θj ) + cos(φi − φj )]. (5)

Such an expression is equivalent to the sum of spin
structure factors at momenta (2π/

√
N,0) and (0,2π/

√
N ).

Figure 6(b) shows the structure factor (5) versus temperature
for various system sizes. It decreases as the temperature
increases and clearly serves as a good indicator of the
phase transition. We emphasis that the input spin config-
urations contain no information about the lattice geometry

5The weights shown in the inset of Fig. 4 are linear mixtures of
them.

FIG. 6. (a) Further projection of the COP Ising samples to a two-
dimensional space. The line between the red and blue background
colors is the decision boundary found by the k-means algorithm. The
white crosses denote the cluster centroids. (b) The structure factor
Eq. (5) of the COP Ising model vs temperature for various system
sizes.

or the Hamiltonian. However, the unsupervised learner has
by itself found out meaningful information related to the
breaking of the orientational order. Therefore, even without
the knowledge of the lattice and an analytical understanding
of the structure factor Eq. (5),

∑4
�=1 y2

� plays the same role
as Eq. (5) to separate the phases in the projected feature
space.

It is interesting to compare our analysis of phase transitions
to standard image recognition applications. In the Ising model
example, the learner essentially finds out the brightness of the
imagine

∑
i σi as an indicator of a phase transition, while in the

COP Ising model example, instead of detecting the sharpness
of the edges (melting of domain walls) following the ordinary
image recognition routine, the PCA learner finds out the
structure factor Eq. (5) related to symmetry breaking, which
is a fundamental concept in phase transition and condensed
matter physics.

Considering that PCA is arguably one of the simplest
unsupervised learning techniques, the obtained results are
rather encouraging. In essence, our analysis finds the dominant
collective modes of the system related to the phase transition.
The approach can be readily generalized to more complex
cases such as models with emergent symmetry and order
by disorder [23]. The unsupervised learning approach is
particularly profitable in the case of hidden or multiple
intertwined orders, where it can help to single out various
phases.

Although nonlinear transformation of the raw configuration
Eq. (5) was discovered via visualization in Fig. 5, PCA
is, however, limited to linear transformations. Therefore, it
remains challenging to identify more subtle phase transi-
tions related to the topological order, where the indicators
of the phase transition are nontrivial nonlinear functions
of the original configurations. For this purpose, it would
be interesting to see if a machine learning approach can
comprehend concepts such as duality transformation [24],
Wilson loops [25], and string order parameters [26]. A
judicial application of kernel techniques [27] or neural network
based deep autoencoders [28] may achieve some of these
goals.

Furthermore, although our discussions focus on thermal
phase transitions of the classical Ising model, unsupervised

195105-4



DISCOVERING PHASE TRANSITIONS WITH . . . PHYSICAL REVIEW B 94, 195105 (2016)

learning approaches can also be used to analyze quantum
many-body systems and quantum phase transitions [29].
In these applications, diagnosing quantum states of matter
without knowledge of the Hamiltonian is a useful paradigm
for cases with access only to wave functions or experimental
data.
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