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Multichiral ground states in mesoscopic p-wave superconductors
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Using Ginzburg-Landau formalism, we investigate the effect of confinement on the ground state of mesoscopic
chiral p -wave superconductors in the absence of magnetic field. We reveal stable multichiral states with domain
walls separating the regions with different chiralities, as well as monochiral states with spontaneous currents
flowing along the edges. We show that multichiral states can exhibit identifying signatures in the spatial profile
of the magnetic field if those are not screened by edge currents in the case of strong confinement. Such
magnetic detection of domain walls in topological superconductors can serve as long-sought evidence of broken
time-reversal symmetry. Furthermore, when applying electric current to mesoscopic p -wave samples, we found
a hysteretic behavior in the current-voltage characteristic that distinguishes states with and without domain walls,
thereby providing another useful hallmark for indirect confirmation of chiral p -wave superconductivity.
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I. INTRODUCTION

In a topological superconductor besides the bulk gap that
separates the normal and superconducting phases, there exist
gapless edge states carrying spontaneous currents along the
boundaries of the sample [1]. Theoretical works have classified
the topological superconductors as two types according to
whether or not they break the time-reversal symmetry (TRS),
namely, (i) chiral and (ii) helical [2,3], respectively. In a
chiral superconductor the Cooper pairs are spin polarized,
i.e., spinless, owing to the broken TRS, and its edge states
resemble those of the quantum Hall state [2]. On the other
hand, in a helical superconductor the Cooper pairs are in a
spin-triplet state, i.e., spinful owing to the TRS, and its edge
states resemble those of the quantum spin Hall state [2].

The archetypal example of a topological superconductor
breaking (satisfying) the TRS in two dimensions is the chiral
(helical) p -wave model of superconductivity. In a p -wave
superconductor the orbital part of the superconducting gap
� has odd parity; that is, the Cooper pairs have angular
momentum l = 1 since the parity P is defined by P = −1l .
Moreover, the spin part of the gap is either spin polarized
for the chiral case or spinful with a triplet state for the
helical case. Microscopic and phenomenological models of
chiral p -wave superconductivity in two dimensions (2D)
have reported intriguing states comprising (i) the edge states
arising from the topological nature of the model [4], (ii) chiral
domain walls separating regions with different chiralities
[5], and (iii) coreless vortices (skyrmions) with topology
and electronic properties distinctly different from that of
conventional Abrikosov vortices [6–8]. However, despite the
numerous works revealing the vast novel physics behind
chiral p -wave superconductivity, none of the three previously
mentioned hallmarks have been confirmed experimentally in
strontium ruthenate (SRO) [9–12], the leading candidate to
display chiral p -wave superconductivity [13].

Strontium ruthenate, Sr2RuO4, is a layered perovskite with
a Fermi surface containing three sheets [14,15]. Among them
two are one-dimensional (α and β) sheets arising from the
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dxz and dyz orbitals of Ru, whereas the remaining one is two-
dimensional (γ ) and arises from the dxy orbitals of Ru. Chiral
p -wave superconducting order was suggested to emerge in
the γ band of SRO as a consequence of strong Hund’s rule
coupling [16]. The evidence of p -wave order in SRO to date
comprises (i) the detection of spontaneous fields in muon spin
resonance (μSR) experiments [17], (ii) the enhancement and
suppression of the Josephson critical current depending on the
direction of the junction plane [18,19], and (iii) the observation
of a state breaking the TRS in the polar Kerr effect (PKE)
[20]. However, measurements of the spin susceptibility below
the critical temperature Tc for magnetic fields applied either
parallel or perpendicular to the c axis could not demonstrate
that the spins remained in the basal plane independent of the
direction of the field [21,22], as one expects in chiral p -wave
superconductivity. Thus, the debate about whether or not SRO
is a chiral superconductor remains open, with an increasing
number of works suggesting that superconducting order also
develops in α and β bands and that they play an essential role
in the physical properties of this material [23–26].

In this work we employ the phenomenological Ginzburg-
Landau (GL) model to describe chiral p -wave supercon-
ductors [27]. The set of coupled and nonlinear differential
equations that we solve numerically for the two-component
superconducting order parameter, �� = (ψ+,ψ−)T , and the
vector potential �A depends on four phenomenological pa-
rameters, defined by the shape of the Fermi surface of
the material under consideration [4,28]. We then use the
microscopic information available for SRO to calculate the
four phenomenological parameters and present striking results
useful to explain the elusive detection of chiral domain walls
(DWs). From our simulations we present the ground-state
phase diagram as a function of the size and aspect ratio of
the mesoscopic p -wave superconducting samples in the
absence of any applied magnetic field. Among the stable
phases, we reveal the multichiral states with domain walls
separating the regions with different chiralities, as well as
monochiral ones with spontaneous currents flowing along the
edges. Finally, we report the characteristic features of the chiral
domain walls that can be directly detected in magnetic and
transport measurements.
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This paper is organized as follows. Section II presents
the theoretical formalism and the discussion of the gauge
invariance in the GL equations. From there we derive the equa-
tions that describe the considered system, namely, mesoscopic
rectangular samples with and without an external magnetic
field and nanobridges with normal leads where an external
current is applied. Section III then discusses our findings
in a phase diagram of ground states, showing the stability
and relationship between the superconducting configurations
composed of multiple chiral domains as well as the monochiral
states. For the nanobridges the current-voltage characteristics
are analyzed in Sec. IV as a function of sample size and external
magnetic field, with reported features that distinguish states
with and without domain walls. Our findings and conclusions
are summarized in Sec. V.

II. THEORETICAL FORMALISM

Based on the point symmetry of the crystal structure under
consideration, one can obtain the GL functional and, subse-
quently by its minimization, the time-dependent Ginzburg-
Landau (TDGL) equations, which describe the spatial distri-
bution of the magnetic induction �B and the superconducting
order parameter ��. Within an analysis for unconventional
superconductivity, a GL functional with a state breaking the
TRS of the p -wave type has already been reported for a
tetragonal lattice [27]. Thus, the dimensionless GL functional,
F = F ′/F0, where F0 = �

2�2
0/2mξ 2, for chiral p -wave

superconductors reads

F = K+k1

4
(| �D ψ+|2 + | �D ψ−|2)

+ (k2+k3)Re{	+ψ−(	−ψ+)∗}
− 1

2
| ��|2+ 1+τ

8
| ��|4− τ

8
( ��∗σ̂z

��)2 , (1)

where ξ =
√

�2

2mα
is the superconducting coherence length

and �0 =
√

α
2β1

is the magnitude of the degenerate zero-field

solution, �η0 = �0(1, ± i)/
√

2, in the fields ηx = (ψ−+ψ−)/2
and ηy = (ψ+−ψ−)/2i. In Eq. (1), ki , α, and τ = β2/β1, with
i = 1,2,3, are parameters microscopically derived depending
on the Fermi surface of the material. For SRO Refs. [4,28]
give a detailed calculation of these parameters assuming chiral
superconductivity develops in the cylindrical γ band. K =∑

ki , �D is the covariant derivative, and 	± = 1√
2
(Dx ± iDy)

are creation and annihilation operators of Landau levels,
respectively. In dimensionless units where time is scaled to
the GL time t0 = ξ 2/D, with D being a diffusion phenomeno-
logical coefficient, the distance to the coherence length ξ ,
the magnetic field to the upper critical field Hc2, and the
electrostatic potential to ϕ0 = Hc2ξ

2/ct0, where c is the speed
of light, the TDGL equations become [29,30]

(
∂

∂t
+ iϕ

)
�� = − δF

δ ��∗ , (2)

σ

(
∂ �A
∂t

+ �∇ϕ

)
= −δF

δ �A − κ2 �∇ × �B . (3)

In Eqs. (2) and (3) �B is the magnetic induction, ϕ is the
electrostatic potential, σ is the conductivity in units of D/αt0,

and κ = λ/ξ is the GL parameter, where λ =
√

mc2

8πe2�2
0

is the

London penetration depth.
The gauge invariance of the TDGL equations allows one to

simplify them owing to the freedom of the arbitrary function χ

in the transformation ( �� ′, �A ′,ϕ′) = ( ��eiχ , �A + ∇χ,ϕ − ∂χ

∂t
).

When χ is properly chosen (gauge fixed), it provides a sup-
plementary equation for the transformed fields that simplifies
the form of the TDGL equations. In what follows we present
the two gauge choices considered in this work.

A. Zero-electrostatic-potential gauge

The zero-electrostatic-potential gauge is the most conve-
nient choice for the TDGL equations when neither charges nor
external currents are considered in the superconducting sample
[7]. From the original fields ( ��, �A,ϕ) the arbitrary function
χ is required to satisfy the equation ∂χ

∂t
= ϕ. This choice

renders vanishing the transformed electrostatic potential,
ϕ′ = 0, reducing considerably the complexity of the TDGL
equations for the transformed fields,

∂ ��
∂t

=
(

K+k1

2
�D2 + (k2+k3)[	2

+σ̂++	2
−σ̂−]

)
��

+
(

1 − 1 + τ

2
| ��|2 ± τ

2
��∗σ̂z

��
)

��, (4)

σ
∂ �A
∂t

= �J − κ2 �∇ × �B, (5)

where for convenience we have dropped all the primes and
σ̂± = (σ̂x ± iσ̂y)/2 are pseudospin or chiral operators acting
on the space span by ψ±. It is straightforward to show in
Eq. (4) that by considering (i) the stationary regime, i.e.,
∂ ��
∂t

= 0, and (ii) the proximity of the superconducting to the
normal phase, i.e., discarding the nonlinear terms, the first GL
equation transforms to the eigenvalue problem: [ K+k1

2
�D2 +

(k2+k3)(	2
+σ̂++	2

−σ̂−)] �� = − ��. The analytical solutions
to the latter equation have been obtained from Landau level
states φn satisfying the equations 	±φn ∝ φn±1 [27,28,31].
Thus, in the linearized case for chiral p -wave superconductors
the order parameter is given by �� = (φn,φn−2)T , where n

becomes the vorticity.
Finally, with {ı̂,ĵ} being canonical base vectors in Carte-

sian coordinates, the dimensionless superconducting density
current �J , given in units of J0 = e�

mξ
�2

0, reads

�J = Im

{
K+k1

4
(ψ∗

+ �Dψ+ + ψ∗
− �Dψ−) + k2 + k3

2
√

2
( ��∗[	+σ̂+

+	−σ̂−] �� ı̂ + i ��∗[	+σ̂+ − 	−σ̂−] �� ĵ )

}
. (6)

B. Coulomb gauge

The Coulomb gauge, unlike the zero-electrostatic-potential
gauge, is the most convenient choice when an external current
is applied to the superconducting sample [32,33]. In this case
the arbitrary function is required to satisfy the equation �χ =
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−�∇ · �A, which makes the transformed vector potential �A ′
divergence free at all times. Then, after taking the divergence
of Eq. (3) and dropping all the primes, the TDGL equations
become(

∂

∂t
+iϕ

)
�� =

(
K+k1

2
�D2+(k2+k3)[	2

+σ̂++	2
−σ̂−]

)
��

+
(

1− 1 + τ

2
| ��|2 ± τ

2
��∗σ̂z

��
)

�� (7)

and

σ�ϕ = �∇· �J . (8)

It is noteworthy that the second TDGL equation is for the
electrostatic potential rather than the vector potential as in
Eq. (5). The vector potential in this case is obtained from the
gauge choice �∇· �A = 0.

C. Boundary conditions

Equations (4) and (5) are solved in this work for mesoscopic
rectangular samples with an external magnetic field H applied
perpendicularly to the sample plane. The required boundary
conditions that pose the problem well and that are compatible
with the existence of spontaneous edge currents are [4,7,27]

ψ+−ψ− = 0
Dyψ++Dyψ− = 0

}
at the north and south sides,

ψ++ψ− = 0
Dxψ+−Dxψ− = 0

}
at the east and west sides,

(∇ × �A ) · n̂ = H, (9)

where n̂ is the unitary vector normal to the sample surface.
On the other hand, Eqs. (7) and (8) are solved in this work
for nanobridges linking two normal leads, which are located
at the north and south sides and are used to apply current
to the superconducting sample. The corresponding boundary
conditions for the fields ( ��,ϕ) are therefore

ψ± = 0
∂yϕ + jn = 0

}
at the north and south sides,

ψ++ψ− = 0
Dxψ+−Dxψ− = 0

∂xϕ = 0

⎫⎬
⎭ at the east and west sides. (10)

The sets of equations (4) and (5) and (7) and (8) are
numerically solved using finite differences and the link
variables technique of Refs. [29,34] with the corresponding
boundary conditions (9) and (10), respectively.

Before concluding this section, we give the reduced (hence
more convenient) expression for the dimensionless free-energy
density, obtained by transformation of Eq. (1):

f

f0
= − 1

V

∫
dV

{
1 + τ

8
| ��|4 − τ

8
( ��∗σ̂z

��)2 − κ2 �B 2

}
.

(11)

The energetic considerations enable us to find not only the
lowest-energy (ground) states but also other stable states with
higher energies (metastable states).

III. GROUND-STATE PHASE DIAGRAM

In this section we solve the TDGL equations using the zero-
electrostatic-potential gauge for rectangular wx ×wy meso-
scopic samples with sizes in the range [3.5ξ,23ξ ]. We consider
no external magnetic field and obtain the superconducting
ground states according to the following procedure. (i) For
the chosen size of the sample we numerically solve Eqs. (4)
and (5) with different initial inputs, e.g., one domain wall (DW)
at the half width of the sample,

�� =
(

1
0

)
0 � x �0.5 wx, �� =

(
0
1

)
0.5wx < x �wx.

Other initial inputs in the set have two, three, and four DWs
distributed in the sample either horizontally or vertically.
Moreover, initial inputs without DWs are considered as well,
such as �� = (1,0)T and �� = (0,1)T throughout the sample.
(ii) After the numerical simulations using different initial
inputs, we compare the energies of all found solutions, using
Eq. (11), and identify the lowest-energy solution. (iii) The
process is repeated for all the samples with sizes in the range
wx,wy ∈ [3.5ξ, 23ξ ].

Figure 1 shows the phase diagram of the ground state at zero
external magnetic field for mesoscopic rectangular samples
of different sizes. For the phenomenological parameters,
microscopic calculations have demonstrated that k1 = k2 =
k3 = 1/3 and τ = 1/2 for chiral superconductivity developing
in a cylindrical Fermi surface [4,28]. The two remaining
parameters (κ and σ ) are taken as 1.25 and 1, respectively.
The value of κ was chosen to weakly deviate from the
in-plane bulk GL parameter κab of SRO [14,15] in order to
compare our results with previously reported works based
on the BCS model for chiral p -wave superconductivity [4].
The value of σ was set to 1 as typically used [29,30]. This

FIG. 1. The phase diagram of the ground state of rectangular p -
wave samples in the absence of external magnetic field. Five different
phases (one monochiral and four multichiral) are clearly distinguished
and exhibit distinct magnetic responses. The multichiral phases are
labeled I-IV according to the number of domain walls they contain.
The monochiral state is free of domain walls.
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FIG. 2. Contour plots of the superconducting density components
|ψ±|2, the phase difference cos (θx − θy), and the magnetic induction
Bz of a ground state with one domain wall. θx,y are the angular phases
of ηx,y , where ηx = (ψ++ψ−)/2 and ηy = (ψ+−ψ−)/2i. The spatial
distribution of the superconducting current density �J is superimposed
on the contour plot of cos (θx − θy).

choice has weak implications for the stationary solution of
Eqs. (4) and (5), as it predominantly influences the dynamical
regime by determining the distribution of the electrostatic
potential in the presence of applied current. The diagram
shows five different phases, distinguished according to their
magnetization. Multichiral phases are denoted by Roman
numerals according to the number of domains walls they
contain. Monochiral phase is free of DWs.

Figure 2 shows a superconducting state belonging to phase
I of the diagram in Fig. 1, i.e., a state with one domain
wall, as seen in the contour plots of |ψ±|2. Note that the
two-component order parameter �� can also be expressed in
terms of its Cartesian components ηx and ηy (as ηx = ψ++ψ−

2

and ηy = ψ+−ψ−
2i

), whose phases θx and θy can be employed for
better identification of topological defects in p -wave super-
conductors (see Ref. [7]). The quantity cos (θx − θy), from now
on simply called the phase difference, conveniently indicates
the exact position of the DWs (the interface separating the
regions where the chirality is dominated by ψ+ on one side
and by ψ− on the other side). The spatial distribution of the
superconducting current density �J [see Eq. (6)] is also plotted
in Fig. 2. It is superimposed on the contour plot of the phase
difference, and it shows (i) the currents of the DW flowing from
the south to the north side and (ii) the spontaneous currents of
the edge states flowing clockwise and counterclockwise on the
west and east sides of the sample, respectively. Consequently,
the contour plot of the magnetic induction Bz shows (i) the
typical dipole profile expected from a DW at the sample center
and (ii) the magnetic induction arising from the spontaneous
currents on the left and right sides [4,5,7]. It is noteworthy that
by slightly increasing the ratio between the sample height wy

and width wx , one can shift the vertical position of the DW.
This fact leads us to the discussion of the following states.

FIG. 3. Same quantities as in Fig. 2 but for a ground state with
two domain walls. The two pairs of boxes with different colors are
displayed in order to highlight the regions where the shape of the
sample strongly affects the order parameter components and breaks
the mirror symmetry of the domain wall. Consequently, only one
quasicircular clockwise stream of current is preserved in the vicinity
of the domain walls, while the anticlockwise current on the other side
of the wall (see Fig. 2) is annihilated by the currents stemming from
the sample edges.

Changing the aspect ratio r = wy/wx from 1, phase II
becomes the ground state. We show in Fig. 3 one of the
ground states belonging to this phase. It exhibits in the contour
plots of |ψ±|2 and cos (θx − θy) two horizontal DWs located
close to the north and south sides of the sample. However,
the contour plot of the magnetic induction, which is expected
to show characteristic dipolelike profiles at each DW, does
not show any clear signature of DWs. This is caused by

FIG. 4. Same quantities as in Fig. 2 but for a state with three
domain walls. A pair of boxes is displayed in order to highlight the
local symmetry existing between the components, |ψ+|2 and |ψ−|2,
related to the current distribution in the vicinity of the domain walls.
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(i) the vorticity of this state (ν+ = 0 and ν− = −2) and
(ii) the shape of the superconducting sample (rectangular),
which causes the two DWs to reside close to the north and
south sides of the sample. As a consequence, the current on one
side of the DW interacts (annihilates) with the edge current,
which diminishes the magnetic response on that side and the
characteristic dipolar signature is lost.

When making the aspect ratio r of the sample more acute,
one obtains as the ground state three DWs, i.e., phase III. In
Fig. 4 we show a state belonging to this phase. Again, the
contour plot of the magnetic induction confirms that top and
bottom DWs do not show their characteristic dipole profiles,
whereas the central DW does. The dipole profile on the central
DW is maintained because of its weak interaction with the
edge currents, so that the local symmetry between the two
components |ψ+|2 and |ψ−|2 is maintained (see the regions
enclosed by boxes in Fig. 4).

In the ground-state phase diagram of Fig. 1, the phase
containing four DWs is obtained only for extreme aspect ratios
of the sample (r > 5). One state belonging to this phase is
shown in Fig. 5 for a narrow sample with wx = 4ξ . According
to the contour plot of the phase difference, the four DWs appear
almost equidistantly distributed along the sample. However,
the typical magnetic responses for the DWs expected in the
contour plot of the magnetic induction are absent. The reason
for this behavior is the imbalance between the superconducting

FIG. 5. (a) The same quantities as in Fig. 2 but for a state with
four domain walls. (b) The line profiles of the superconducting density
components |ψ±|2 along the line defined by x = 2ξ .

components |ψ+|2 and |ψ−|2, which one can clearly see in the
line profiles along x = 2ξ , shown in Fig. 5(b). Namely, the
strong confinement in the x direction has a stronger influence
on ψ+ than on ψ−, which affects the balance between the two
components required for the formation of the DW currents and
consequently diminishes the dipolar profile of the DW in the
magnetic induction.

Finally, in what follows we discuss the phase that is free
of DWs, i.e., the monochiral phase. It is the most present
phase in the diagram of Fig. 1, as it spans samples ranging
from size (wx × wy) = (7ξ × 7ξ ) up to (23ξ × 23ξ ). Based
on the transformation of dimensionless units to real units
[using the temperature dependence of the coherence length
ξ = ξ (0)/

√
1 − T/Tc, choosing ξ (0) to fit SRO and T =

0.95Tc], the ground state of a p -wave superconducting sample
with size 20ξ × 20ξ (approximately 6 × 6 μm) will be free
of DWs in the ground state. However, this does not mean that
the magnetic response of the ground states belonging to the
monochiral phase is negligible. On the contrary, the contour
plot of the magnetic induction in Fig. 6(a) shows a significant
magnetic response of this monochiral state, with spontaneous
currents flowing along the edges. The characteristic scale
for the magnetic response of the spontaneous currents is
ζ = 1.6875ξ , slightly different from the natural scale for
the magnetic induction λ = 1.25ξ , presumably due to weak
confinement effects. Then, in order to describe further the
effects of confinement on the ground state in the monochiral
phase, Fig. 6(b) shows line profiles of the magnetic induction
of square samples with sizes 10ξ , 13ξ , 16ξ , 19ξ , and 22ξ .
Here one can notice that owing to the confinement, the left
and right edge currents interact strongly in the square samples

FIG. 6. (a) Magnetic induction of a square sample with dimen-
sions (22ξ × 22ξ ) at zero external magnetic field. The spontaneous
currents flowing clockwise give rise to the negative values of Bz. (b)
Line profiles of the magnetic induction of different square samples
along the central cut through the sample.

184517-5
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FIG. 7. Diagram of ground states for different values of the phenomenological parameters κ and τ . The color scales indicate the
corresponding magnetization of the ground states. The panels show the part of the phase diagram containing the monochiral phase and
the multichiral phases I, II, and demonstrate the influence that the parameters have on these phases.

smaller than 19ξ × 19ξ ; that is, in the central region of the
sample the value of the magnetic induction becomes notably
nonzero below a certain sample size due to the overlap and
interaction of spontaneous currents stemming from opposite
edges of the sample.

A. Influence of the parameters on the ground-state
phase diagram

The phase diagram shown in Fig. 1 was obtained for
the phenomenological parameters adjusted to represent a
chiral p-wave superconductor with a cylindrical Fermi surface
(presumably SRO falls in this category). However, the fact
that the spontaneous currents in SRO have remained elusive
so far questions the emergence of chiral order in this material.
Large efforts have been made to reconcile the experiments
with theory, including works analyzing the effect of disorder
on the spontaneous currents [35,36], as well as the possibility
of chiral non-p-wave order in SRO [37].

Recent works have also considered that superconductivity
can develop in the other two bands of SRO (α and β) [23–26].
Surprisingly, in this scenario of multiband superconductivity
one of the predictions is that the spontaneous currents are
strongly suppressed owing to the existence of the α and β

bands. Quantitatively, the suppression is due to a considerable
reduction of the k2 and k3 parameters [26] [see in Eq. (6) that
the term that supports the chiral currents is multiplied by the
sum of k2 and k3]. The effect of such changed values of ki ,
i.e., ki 	= 1/3, on the superconducting states of mesoscopic
samples has already been discussed elsewhere [6,7]. However,
little is known about the robustness of multichiral states against
the variation of parameters κ and τ . In Fig. 7 we focus on one
part of the phase diagram to illustrate the influence that these
parameters have on the transitions between the monochiral and
the multichiral (I,II) states and then draw generic conclusions.
As a first important finding, one can see in the sequence of
Fig. 7(a) that the phase with the multichiral state of Fig. 2
expands as κ is increased; that is, the magnetic response of the

sample is disfavored. The expansion of phase I occurs at the
expense of the phase II and the monochiral phase since they
become less favorable owing to their nonzero magnetization.

To understand the influence of the parameter τ on the
phases of Fig. 7 before looking at the actual results, one can
analyze the condensation energy of Eq. (1) (the last three
terms) to gain insight into the expected behavior. The minima
of Fcond =− 1

2 | ��|2+ 1+τ
8 | ��|4− τ

8 ( ��∗σ̂z
��)2 are the degenerate

states: (|ψ+| = √
2, ψ− = 0) and (ψ+ = 0, |ψ−| = √

2).
These states are separated by a barrier which is proportional
to τ . One can obtain the shape of this barrier by replacing
|ψ+| = √

2 cos θ and |ψ−| = √
2 sin θ , so the condensation

energy expression becomes [Fcond = τ−1
2 − τ

4 cos2 (2θ )]. One
should notice that the barrier disappears when τ = 0, leading to
the removal of the degeneracy of the ground state. That means
that one should not expect the formation of domain walls if
τ is close to zero. However, in the sequence of Fig. 7(b) one
sees that phase I is the most dominant one at τ = 0.1. The
reason for this seemingly counterintuitive result is that the last
term of Fcond is not the only one that breaks TRS. In fact, the
second term in the kinetic energy of Eq. (1) also breaks TRS,
and in this case is the term that favors the multichiral over the
monochiral states.

From Fig. 7(b) one can also deduce that the effect on phase
I of increasing τ is the opposite of increasing κ . As τ is
increased, phases I and II give way to the expansion of phase
V. This effect can be attributed to the increase of the barrier
separating the degenerate ground states. When the barrier is
high such that the spatial fluctuations (real or, in our case,
numerical) cannot overcome it, the combination of degenerate
states becomes energetically unfavorable, leading the system
to prefer the monochiral state.

IV. TRANSPORT SIGNATURES OF DOMAIN WALLS IN
MULTICHIRAL STATES

In this section we solve the TDGL equations using the
Coulomb gauge for nanobridges with normal leads at the
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FIG. 8. The voltage as a function of the applied current density
for two nanobridges of the same length (wy = 20ξ ) with different
widths: (a) wx = 6ξ and (b) wx = 10ξ (b). The bottom inset in (a)
shows the nanobridge, along with the normal leads used to apply
the current, and the points where the voltage is measured, namely,
yf = 17.5ξ and yi = 2.5ξ . The top inset in (a) and the inset in (b)
show the opening and the absence, respectively, of the hysteretic loop
of the voltage vs current density in the superconducting phase, i.e.,
the phase with nearly zero voltage drop.

north and south sides [see the bottom inset of Fig. 8(a)].
These leads are used to apply an external current density
jn to the superconducting sample in order to measure the
voltage drop between two voltage contacts, namely, yi and
yf . In dimensionless units and at zero external magnetic field,
the voltage versus the current density (jn-V characteristic)
is plotted in Fig. 8 for two nanobridges of length 20ξ and
widths 6ξ [Fig. 8(a)] and 10ξ [Fig. 8(b)]. The obtained
jn-V characteristics are apparently similar, with two different
critical currents for jn > 0 (jc↓ < jc↑) depending on whether
jn is decreased (ramped down) or increased (ramped up).
However, a close-up of the superconducting phase, i.e., the
phase with nearly zero measured voltage, shows a distinctly
different behavior, as seen in the top inset in Fig. 8(a) and the
inset in Fig. 8(b). The hysteretic loop in the superconducting
phase opens in Fig. 8(a) but is absent in Fig. 8(b). In
order to understand the origin of the hysteresis within the

FIG. 9. Four representative states during (a)–(f) the ramp down
and (g)–(l) ramp up of the current in the V vs j plot of Fig. 8(a). The
quantities shown are the contour plots of the superconducting order
parameters |ψ±|2 and the vectorial flow of the current density �J .

superconducting phase, in what follows we describe the order
parameters that correspond to these cases.

Figure 9 directly shows the superconducting states re-
sponsible for the opening of the hysteretic loop in the jn-V
characteristic of Fig. 8(a). The top row in Fig. 9 shows
two representative states corresponding to the ramp down of
jn, whereas the bottom row shows two representative states
corresponding to the ramp up of jn. From the top (bottom)
row one can easily see that by ramping down (ramping up) the
current from the normal phase, one vertical DW with chiral
currents flowing downward (upward) is formed. Subsequently,
as the external current is further decreased (increased), the
vertical DW transforms to a horizontal DW with leftward
(rightward) currents. Furthermore, one can also notice that
the states with vertical DWs, as well as the states with
horizontal DWs, form the pair of degenerate states owing to
the broken TRS. That means that under the transformation
|ψ+|d → |ψ−|h and |ψ−|e → |ψ+|g , the reduced expression of
the free energy [Eq. (11)] remains unchanged. Thus, we claim
that the combination of degenerate superconducting states with
opposite currents (vertical DWs) and the fact that the voltage
in the nanobridge is measured transversally to them lead to the
hysteretic behavior seen in the inset of Fig. 8(a).

However, when the width of the nanobridge is changed,
e.g., to w = 10ξ , the degenerate states become monochiral,
allowing the formation of spontaneous currents flowing along
the edges of the sample for each case but with opposite
directions [clockwise as in Fig. 10(c) and counterclockwise
as in Fig. 10(f)]. The corresponding voltage drop, reported in

184517-7
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FIG. 10. Same quantities as in Fig. 9 but for the states in the
superconducting phase for (a)–(c) the ramp down and (d)–(f) ramp
up paths of the V vs. j plot of Fig. 8(b).

Fig. 8(b) for the latter case, does not reveal any hysteretic
opening of the jn-V characteristic in the superconducting
phase. Thus, it is noteworthy that at zero external magnetic
field hysteretic behavior can be used to distinguish monochiral
states with spontaneous currents along the edges from multi-
chiral states containing DWs.

Finally, we apply an external magnetic field perpendicular
to the nanobridge of width 6ξ and report the differential
resistivity dV/djn as a function of the applied current density
jn/j0 for several values of applied field. In Fig. 11 the
differential resistivities for different external magnetic fields
H have been linearly shifted for clarity. In all curves, at the
critical current densities ±jc↓, two discontinuities are clearly
seen, indicating the transition point from the normal to the
superconducting phase.

It is known that degenerate states such as those of Figs. 9
and 10 split up when an external magnetic field is turned
on [7]. Thus, one expects that as a consequence of the lifted
degeneracy, a nonzero field H can close the hysteretic loop of
the inset of Fig. 8(a). We confirm this prediction in Fig. 11(a),
although we notice that the hysteretic opening survives up
to some threshold field, labeled Hch. Below Hch one can
see pronounced dips in the differential resistivity, a direct
consequence of the discontinuities seen in the voltage plot
of Fig. 8(a) (top inset), arising due to applied current pushing
the vertical DWs of Figs. 9(f) and 9(i) out of the sample and
allowing the formation of the horizontal DWs of Figs. 9(c)
and 9(l). Since the sample is narrow (wx = 6ξ ), a weak applied
magnetic field is sufficient to push out the vertical DWs and
favor horizontal DWs as the ground state of the system, so that
the hysteretic behavior in applied current is lost.

FIG. 11. (a) Differential resistivity dV/dj as a function of the
applied current density j/j0 for several values of the applied magnetic
field H for the nanobridge with size 6ξ × 20ξ . For clarity the
differential resistivities have been linearly shifted as a function of
the external field H . The visible dips in the curves arise due to the
discontinuities in the voltage vs current density characteristic [see
top inset in Fig. 8(a)]. (b) One representative state above Hch at zero
applied current density. The displayed quantities are the same as in
Fig. 9.

Above Hch in Fig. 11(a) the applied current density jn

can only stabilize one ground state, i.e., one of the two
nondegenerate states, independently of the polarity of applied
current. As a consequence, the hysteretic loop in the voltage
vs current density characteristic is closed. In order to show the
lifted degeneracy of the ground state, in Fig. 11(b) we show one
representative nondegenerate state above Hch at zero applied
current. There one can see that the edge currents on one side
of the DW are annihilated by the screening currents of the
external magnetic field and enhanced on the other side, so that
it becomes energetically favorable to displace the horizontal
DW off the center (downwards in this case).

V. CONCLUSIONS

In summary, we have employed the time-dependent
Ginzburg-Landau equations to study in detail chiral p -wave
superconductivity in mesoscopic rectangular samples, with
the goal to stabilize mono- and multichiral states in the
absence of any magnetic field, as well as reveal the signatures
of those states in applied electric current and magnetic
field. We have reported the ground-state phase diagram of
rectangular mesoscopic samples with sizes ranging from 3.5ξ
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to 23ξ , where ξ is the superconducting coherence length, and
classified the states according to the number of chiral domain
walls they contain. The monochiral state has no domain walls
but contains spontaneous currents flowing along the edges.
We also noticed that the multichiral phases are made stable
owing to the strong confinement, but that same confinement
can overshadow the typical dipolelike magnetic field profile
of the domain walls. Nevertheless, the imaging of the reported
spatial profile of stray magnetic field of the multichiral states
can serve as clear evidence of the time-reversal symmetry
breaking in topological superconductors. Furthermore, for the
same samples we reported novel features in the voltage versus
current characteristics which show a hysteretic behavior in the

superconducting phase when domain walls are formed due
to confinement. This behavior persisted even when a weak
out-of-plane magnetic field was applied, providing a useful
new hallmark for indirect confirmation of the presence of
domain walls in the superconducting state and thereby offering
a proof of chiral p -wave superconductivity in the material of
interest.
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