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We consider a three-terminal Cooper-pair splitting device with a superconducting electrode tunnel coupled to
two normal metal electrodes. We employ the Nambu-Gor’kov and Schwinger-Keldysh formalisms to describe
the nonequilibrium transport properties of the device for arbitrary transmissions of the barriers and for a general
electromagnetic environment. We derive the analytic expressions for the current and the nonlocal differential
conductance, and analyze the limits of clean and dirty superconductivity.
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I. INTRODUCTION

The controlled production and detection of entangled
pairs is essential for quantum information processing. Con-
ventional Bardeen-Cooper-Schrieffer (BCS) superconductors
have been identified as a potential source of entangled particles
since Cooper pairs in these materials form the spin singlet
states. Various mechanisms were considered that would favor
splitting of a pair of electrons while it is extracted from
a superconductor. For instance, studies have been reported
that utilize Coulomb repulsion of electrons in quantum
dots [1], spin-charge separation in Tomonaga-Luttinger liquids
in one-dimensional quantum wires [2], or the relativistic
band structure with proximity induced superconductivity in
graphene nanoribbons [3]. Recent proposals were based on
helicity conservation of the edge states in quantum spin
Hall insulators [4], or the antiferromagnetic magnetization
in silicene forming a spin-valley topological insulator [5].
Controlling and maximizing the splitting process is required
for efficient entanglement detection. This latter step could be
achieved by testing the violation of Bell’s inequalities [6],
determining concurrence [7], or entanglement witnessing [8].
Other detection mechanisms that were put forward employed
the entanglement of formation [9], microwave spectroscopy
[10], or a toolkit developed for spin qubits [11].

In this paper we consider a device, schematically repre-
sented in Fig. 1, consisting of a grounded superconductor,
coupled to two voltage-biased normal metal leads [12–15]. The
dynamical Coulomb blockade effect caused by the impedance
of the normal metal leads facilitates the splitting of the Cooper
pairs tunneling out of the superconducting electrode and
creating mobile and nonlocal spin-entangled electrons in the
normal metal leads. We develop the theory that describes the
nonequilibrium electron transport in the system to infinite or-
der in the tunnel Hamiltonian, and obtain results for the current
and the nonlocal differential conductance. Measurements of
nonlocal resistance as well as cross correlations in such a setup
showed evidence of nonlocal entanglement [16]. Our theory
highlights features of the nonlocal transport that are possible
to further test experimentally.

Within noninteracting theory, the contributions of crossed
Andreev reflection (CAR) and elastic cotunneling (EC)
processes to the nonlocal differential conductance cancel
each other in the lowest order of perturbation in the tunnel
Hamiltonian [12]. A difference in contributions between
these two processes emerges with increasing transmissions
of the barriers, that is, by taking into account the higher
order perturbation terms [17–19]. This difference can also
result in the lowest order in the tunnel Hamiltonian when
electron-electron interactions are taken into account. Either
CAR or EC can be suppressed, depending on the symmetry of
the electromagnetic modes propagating in the superconductor,
which in turn results from the device geometry [20]. To
make the problem mathematically tractable, in studies that
include both the perturbation in the tunnel Hamiltonian to
infinite order and the electron-electron interactions, it is
typically assumed that this interaction is weak [21–24]. In
our approach, we include the tunnel Hamiltonian to infinite
order and allow an arbitrary strength of the electron-electron
interactions by performing the partial resummation of the
associated diagrams.

In addition to applications in quantum information science,
hybrid superconductor–normal metal devices have recently
attracted attention also in studies involving metrology appli-
cations such as the quantum standard of the electric current
[25]. These devices are based on the transfer of one electron
through the circuit per period of the driving gate voltage source.
However, aside from the desired single electron tunneling,
higher order processes involving simultaneous tunneling of
several electrons, which we study in this paper, have to be taken
into account in considerations regarding the ultimate accuracy
achievable by such devices [26]. Our results illuminate the
properties of electron dynamics also in these hybrid systems.

The paper is organized as follows. In Sec. II, we introduce
the formalism and obtain the analytic result for the current
in our device to all orders in the tunnel Hamiltonian. This
is used to derive the expressions for the nonlocal differential
conductance in the limits of clean and dirty superconductors.
We present the conclusions in Sec. III. The expressions
for the local and nonlocal bare Green’s functions in the
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FIG. 1. Schematic geometry of the device under consideration:
a bulk BCS superconductor is coupled to two normal metal leads.
Voltages between the leads (with impedances Za and Zb) and the
superconductor are Va and Vb. We consider the clean and dirty
limits of the superconductor. In the dirty limit, we average over
disorder the products of retarded and advanced Green’s functions
corresponding to crossed-Andreev reflection (pair splitting) and
elastic cotunneling processes (between the normal metal electrodes);
these Green’s functions are represented by the red and blue lines
inside the superconductor.

superconducting and normal metal electrodes are presented
in the Appendices.

II. FORMALISM AND RESULTS

In order to develop a description of our system that will
enable quantitative analysis, our approach starts with the
following Hamiltonian:

H = H0 + HT , (1)

where the unperturbed part H0, describing the uncoupled
normal metal (a and b) and superconducting (c) electrodes,
as well as the electromagnetic environment (Za,Zb), is given
by

H0 = 1

2

∑
k,σ

f ∈ {a,b,c}

�
†
f (k,σ )

× [
ξ

(f )
k τ 3 − sgn(σ )(�τ+ + �∗τ−)δf,c

]
�f (k,σ )

+
∑

q,α∈{a,b}
�ω(α)

q b(α)†
q b(α)

q , (2)

where sgn(↑ / ↓) = +1/ − 1, and � is the superconducting
order parameter. The Pauli matrices τ i are given by

τ 1 =
(

0 1
1 0

)
, τ 2 =

(
0 −i

i 0

)
,

τ 3 =
(

1 0
0 −1

)
, τ± = 1

2 (τ 1 ± iτ 2). (3)

The Nambu-Gor’kov spinor �f (k,σ ), appearing in Eq. (2), is
given by

�f (k,σ ) =
(

fk,σ

f
†
−k,−σ

)
. (4)

The tunnel Hamiltonian in Eq. (1) is treated as a perturbation
and is given by

HT =
∑

k,k′,σ
α = a,b

�†
c(k,σ )T(α)(k,k′)�α(k′,σ ),

T(α)(k,k′) =
(

T
(α)

k,k′e
iφα 0

0 −T
(α)∗

k,k′ e−iφα

)
. (5)

The phase φα , appearing in (5), corresponds to the electro-
magnetic environment in the normal metal electrode α, and
consists of the classical part due to the ideal voltage source,
and the quantum part due to the circuit impedance, φα(t) =
e
�
Vα(t) + φ̃α(t) [27]. The latter part can be expressed as a linear

combination of Bose operators {b(α)
q ,b

(α)†
q } corresponding to

the normal modes of the environment.
In order to consider the current through the system to all

orders in the tunnel Hamiltonian, we introduce the following
Green’s functions in the Keldysh (ˇ)⊗Nambu (ˆ) space,

Ǧfg(k,σ,t ; k′,σ ′,t ′) = −i〈Tc�f ((k,σ,t)�†
g((k′,σ ′,t ′)〉

=
(

Ĝ−−
fg Ĝ<

fg

Ĝ>
fg Ĝ++

fg

)
, (6)

where f,g ∈ {a,b,c}, and Tc is the time ordering operator
along the Schwinger-Keldysh contour. Each of the blocks on
the right-hand side of Eq. (6) is a 2 × 2 matrix in the Nambu
space. The above Green’s functions satisfy the Dyson equation,

Ǧ = ǧ + ǧ � �̌ � Ǧ, (7)

where � stands for the matrix multiplication over electrode
labels and convolution over the spacial and contour time
variables. After performing the unitary transformations, Ǧ →
Ḡ = Rτ 3ǦR−1, �̌ → �̄ = R�̌τ 3R−1, where R = 1√

2
(τ 0 −

iτ 2), with τ 0 being the identity matrix, the Green’s functions
and the self-energy matrices obtain the triangular form:

Ḡ =
(

ĜR ĜK

0 ĜA

)
, �̄ =

(
�̂

R
�̂

K

0 �̂
A

)
. (8)

The current through the electrode α = (a,b), which is the
average of the current operator I (α)

σ (t) = ie
�

[N (α)
σ ,HT (t)],

where N (α)
σ = ∑

k α
†
k,σ αk,σ , can be expressed in terms of the

above Green’s functions as

I (α)
σ (t) = −2e

�
Re

{∑
k,k′

T
(α)∗

k,k′ G<
cα̃11(k,σ,t ; k′,σ,t)

}
, (9)

where we introduce the operator α̃k,σ (t) ≡ eiφα (t)αk,σ (t). The
mixed (cα̃) Green’s function, appearing in the above equa-
tion, is obtained from Eq. (6), by considering the “11”
component in the Nambu space of Ĝcα̃(k,σ,t ; k′,σ ′,t ′). In
the interaction picture this Green’s function takes the form
Ǧcα̃11(k,σ,t ; k′,σ ′,t ′) = 〈Tcck,σ (t)α̃†

k′,σ ′(t ′)Sc〉, where Sc =
Tc exp[− i

�

∫
c
dtHT (t)] is the evolution operator along the

Schwinger-Keldysh contour. In the diagrammatic language,
the lesser component of this Green’s function can be rep-
resented by the sum of all topologically distinct diagrams,
an example of which is shown in Fig. 2. We take into
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FIG. 2. An example of a diagram obtained in the expansion of
Ǧcã11. The upper (lower) horizontal line corresponds to the “−”
(“+”) branch of the Schwinger-Keldysh contour. The empty (filled)
triangles represent the creation (annihilation) operators in the normal
metal electrode a; analogously squares represent the operators for
the electrode b. Light (dark) blue dots correspond to the creation
(annihilation) operators for the electrons in the supeconducting
electrode. Wick contractions are represented by solid lines connecting
the operators of the same normal metal electrode, and by dashed
lines connecting superconducting electrode operators. Wiggly lines
(red) represent phase-phase correlation functions corresponding to
the electromagnetic environment. While we show only a couple of
such lines, every pair of shapes (triangles or squares) corresponding
to the same normal metal electrode is joined by such lines.

account only the dominant boson interactions by dressing the
solid lines representing the contractions between creation and
annihilation operators of the same normal metal electrode.

By further employing the Langreth theorem for analytic
continuation one can transition to real time integrals, and after
performing the Fourier transform, one can obtain

I (α)
σ = e

�3
|t (α)|2

∫ ∞

−∞

dε

2π

[
G<

cc11(xα,xα; ε)g>
α̃α̃11(xα,xα; ε)

−G>
cc11(xα,xα; ε)g<

α̃α̃11(xα,xα; ε)
]
, (10)

where we introduce the Green’s functions in the coordinate
representation,

Ǧfg11(xα,xβ ; ε) = 1

�c

∑
k,k′

eikrα Ǧfg11(k,σ,k′,σ ′; ε)e−ik′rβ ,

(11)

where xα = (rα,σ ), xβ = (rβ,σ ′), and �c is the volume of the
superconducting electrode. Coordinate representation of the
Green’s functions in the rotated Keldysh space (Ḡfg11) are
defined analogously. In deriving (10), we assumed the point
contact geometry of the junctions, that is, in the coordinate
representation the tunnel matrix elements take the form
T (α)(r1,r2) = t (α)δ(r1 − rα)δ(r2 − rα), for r1 and r2 belonging
to the electrodes on the left- and the right-hand sides of the
junction located at rα . The elements of the superconductor
lesser and greater Green’s functions, appearing in (10) are
obtained from the Keldysh equation,

Ĝ≷
cc(xa,xa; ε) =

∑
α,β=a,b

[
τ 0δα,a + ĜR

cα̃(xa,xα; ε)�̂
R

αc

]
ĝ≷

cc(xα,xβ ; ε)
[
τ 0δβ,a + �̂

A

cβĜA
β̃c

(xβ,xa; ε)
]

+
∑

β=a,b

ĜR
cc(xa,xβ ; ε)�̂

R

cβ ĝ≷
β̃β̃

(xβ,xβ ; ε)�̂
A

βcĜA
cc(xβ,xa; ε), (12)

and analogously for the junction located at rb. The above retarded and advanced Green’s functions are obtained from the Dyson
equation (7), and the self-energy matrices are given by

�̂
R

αc = �̂
A

αc =
(

t̃ (α) 0
0 −t̃ (α)∗

)
= �̂

R∗
cα = �̂

A∗
cα , (13)

where t̃ (α) = t (α)/�. By substituting the expressions for G
≷
cc11(xα,xα; ε), obtained from (12), into Eq. (10), we get

I (a)
σ = e

�3
|t (a)|2

∫ ∞

−∞

dε

2π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
μ,ν=a,b

({[
1 + t̃ (a)∗GR

cã11(xa,xa; ε)
]
δμ,a + t̃ (b)∗GR

cb̃11(xa,xb; ε)δμ,b

}

×{[1 + t̃ (a)GA
ãc11(xa,xa; ε)

]
δν,a + t̃ (b)GA

b̃c11(xb,xa; ε)δν,b

}
×[g<

cc11(xμ,xν ; ε)g>
ãã11(xa,xa; ε) − g>

cc11(xμ,xν ; ε)g<
ãã11(xa,xa; ε)

]
− 2Re

{[
δμ,a + t̃ (μ)∗GR

cμ̃11(xa,xμ; ε)
]
t̃ (ν)∗GA

ν̃c21(xν,xa; ε)
}

×[g<
cc12(xμ,xν ; ε)g>

ãã11(xa,xa; ε) − g>
cc12(xμ,xν ; ε)g<

ãã11(xa,xa; ε)
]

+ t̃ (μ) t̃ (ν)∗GR
cμ̃12(xa,xμ; ε)GA

ν̃c21(xν,xa; ε)

× [
g<

cc22(xμ,xν ; ε)g>
ãã11(xa,xa; ε) − g>

cc22(xμ,xν ; ε)g<
ãã11(xa,xa; ε)

])

+
∑

μ = a,b

i = 1,2

∣∣t̃ (μ)GR
cc1i(xa,xμ; ε)

∣∣2[g<
μ̃μ̃ii(xμ,xμ; ε)g>

ãã11(xa,xa; ε) − g>
μ̃μ̃ii(xμ,xμ; ε)g<

ãã11(xa,xa; ε)
]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (14)
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The above expression enables calculations of the current
to all orders in the tunnel Hamiltonian and for arbitrary
temperature and voltage, as well as the circuit impedance.
The approximation of electron-electron interactions dressing
the normal metal bare Green’s functions is exact only in
the lowest order in the tunnel Hamiltonian. Since the results
of the nonlocal transport depend on the nature of electron
propagation in the electrodes, we consider below the limits of
clean and dirty superconductors.

A. Clean superconductor

In a clean superconductor, the electron mean free path
is much longer than the BCS coherence length (le � ξ0 =
�vF /π�), and the motion is described as being ballistic.
The first three terms in (14) are nonzero for voltages above
the superconducting gap. They can be calculated by using
the expressions for the bare Green’s functions provided
in Appendices A and B. These three terms stand for the
electron transfer between the electrodes with the quasiparticle
creation in the superconductor, electron transfer with creation
or annihilation of pairs in the intermediate state, and the
branch crossing processes in the Blonder-Tinkham-Klapwijk
formalism [28], respectively. For the single junction case
between two normal metal electrodes (t (b),� → 0), and
for vanishing circuit impedance (z = Re[ZT (ω = 0)]/RK →
0; RK = h/e2), the first term gives the Landauer result, I (a)

NN =
2e2

h
T

(a)
eff Va , where T

(a)
eff = 4π�(a)

(1+π�(a))2 is the effective transmission

coefficient; �(a) = πνaνc|t (a)|2, and νa and νc are the densities
of states per spin and per unit volume at the Fermi level in the
electrodes a and c, respectively.

The last term in (14) is nonzero for voltages below, as well
as above the superconducting gap, and is of main interest with
regard to operation of the device as a generator of mobile pairs
of spin-entangled electrons. For μ = a and i = 2, this term
represents the direct Andreev reflection current. In the single
junction case [29], for vanishing circuit impedance and at zero
temperature, we have for eVa � �:

I
(a)
DA = 4π�(a)2

1 − (π�(a))4
ln

(
1 + v

1 − v

)
e�

�
,

v = 1 − (π�(a))2

1 + (π�(a))2

eVa

�
. (15)

In contrast to the calculations involving perturbative expan-
sions to finite order in the tunnel Hamiltonian and producing
diverging results for voltages at the superconducting energy
gap [15,30], originating from the singularity of the bare
local BCS Green’s functions, the present approach provides
nondiverging results.

The other contributions of the last term in (14) result
from processes involving both normal metal electrodes: elastic
cotunneling for μ = b and i = 1, and crossed Andreev
reflection for μ = b and i = 2. They are represented diagram-
matically in Fig. 3. In the lowest order in the tunnel matrix
elements [15,31,32], that is, by substituting the bare Green’s
functions gR

cc1i(xa,xμ; ε) for the dressed Green’s functions
GR

cc1i(xa,xμ; ε) (i = 1,2), in the superconducting electrode and
after summation over spin, we get in the zero temperature limit

FIG. 3. Diagrammatic representation of the coordinate-energy
space contribution of the last term in (14) for μ = b. The diagram
on the left depicts elastic cotunneling (i = 1), while the one on the
right depicts crossed Andreev reflection (i = 2). The solid lines stand
for the bare lesser and greater Green’s functions for electrons in the
normal metal electrodes, wiggly lines represent phase correlators, and
dotted (dash-dotted) lines represent full retarded (advanced) Green’s
functions in the superconducting electrode. These are normal and
anomalous Green’s functions in the case of elastic cotunneling and
crossed Andreev reflection, respectively. In the case of the diffusive
superconducting electrode (Sec. II B), we consider impurity scattering
(indicated on the diagrams by dashed lines with crosses). The
probability of quantum diffusion is obtained by iterating to infinity a
series of these scattering processes.

and for low voltages (eVα � �):

I
(a)
EC

CAR

= 4
eπ

�
�(a)�(b)r2

[
cos2(kF δr)
sin2(kF δr)

]

× e−4γ z

�(2 + 4z)
sgn(eVa ∓ eVb)

|eVa ∓ eVb|1+4z

(�ωR)4z
, (16)

where r = e−δr/πξ0/(kF δr), with δr being the distance between
the junctions, and kF the Fermi wave vector; γ denotes
the Euler constant and ωR = 1/(RC) is the inverse classical
charge relaxation time. In deriving (16), we assumed that both
junctions have the same capacitance, C1 = C2 = C, and that
impedances in both normal metal branches are purely ohmic,
Z1 = Z2 = R. Figure 4 shows the numerical results obtained
from Eq. (14) for the elastic cotunneling current, crossed
Andreev reflection current, and the low voltage analytic result
for these currents, Eq. (16), averaged over Fermi oscillations.

FIG. 4. The numerical results from formula (14) for the elastic
cotunneling current, I

(a)
EC (top curve) and the crossed Andreev

current, I
(a)
CAR (middle curve) as functions of the voltage across

the junction a; the analytic result for these currents given by the
formula (16), valid in the low voltage limit, is shown as a dashed
curve. Parameter values are eVb = 0, kF δr = 10, z = 0.6, �(a) =
�(b) = 0.1, �/Ec = 1.25, �/EF = 2 × 10−5.
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By differentiating the total current through the junction a with
respect to voltage Vb, we obtain the expression for the nonlocal
differential conductance in the tunneling limit,

Gab ≡ ∂I (a)

∂Vb

= 4π2(1 + 4z)�(a)�(b)r2 e−4γ z

�(2 + 4z)

×
[( |eVa + eVb|

�ωR

)4z

−
( |eVa − eVb|

�ωR

)4z
]

e2

h
. (17)

The analytic result can also be obtained when taking into
account tunnel Hamiltonian contributions to infinite order but
for vanishing circuit impedance. In the region of low voltages
(eVα � �) and for zero temperature it is given by

I
(a)
EC

CAR

= 4e2

�
π�(a)�(b)r2F EC

CAR

(kF δr)(Va ∓ Vb),

Fi(kF δr) = ai cos2(kF δr) + bi sin2(kF δr)

[c cos(2kF δr) + 1]2d2
(i = EC,CAR),

[
aEC

bCAR

]
= [1 + (r2 ± 1)π2�(a)�(b)]2,

[
bEC

aCAR

]
= π2(�(a) ± �(b))2, c = 2r2π4�(a)2�(b)2

d
,

d = 1 + 2π2r2�(a)�(b) + π2(�(a)2 + �(b)2)

+π4(1 + r4)�(a)2�(b)2. (18)

From the above expression, we obtain the nonlocal differential
conductance,

Gab = 4e2

�
π�(a)�(b)r2(F̄CAR − F̄EC), (19)

where on the right-hand side we introduce the averages
over the Fermi oscillations F̄i = 1

2π

∫ 2π

0 dφ Fi(φ) = 1
2d2

√
1−c2

( ai

1+c
+ bi

1−c
), where φ = kF δr . In the lowest order of the series

expansion in r2, we have

Gab = −32
e2r2

h

(π2�(a)�(b))2

[1 + π2(�(a)2 + �(b)2) + π4�(a)2�(b)2]2
. (20)

For low transparency barriers, T
(a)

eff ,T
(b)

eff � 1, the nonlocal
differential conductance behaves as Gab ∝ T

(a)2
eff T

(b)2
eff ; for

highly asymmetric barriers, e.g., T
(a)

eff ∼ 1, T
(b)

eff � 1, it scales
as Gab ∝ T

(b)2
eff .

B. Dirty superconductor

When disorder is present in the superconducting elec-
trode, it gives rise to a random impurity potential which
scatters electrons. A superconductor is said to be in the
dirty limit [30,33–37] when the concentration of defects
is high enough that the elastic mean free path becomes
much shorter than the BCS coherence length (le � ξ0). We
will assume the presence of nonmagnetic impurities that
give rise to a white noise potential, and will consider the
weak disorder limit, kF le � 1. In this regime, after each
collision one may asymptotically reconstruct a free wave,

and obtain the self-energy of the Schrödinger equation by
summing over a series of scattering events assuming that
they are independent. The superconductor bare Green’s func-
tions become dressed by impurity scattering and are short
ranged, e.g., 〈〈gR,A

cc11(x,x′; ε)〉〉 = g
R,A
cc11(x,x′; ε)e−|r−r′ |/2le , where

〈〈· · · 〉〉 indicates impurity averaging. The relevant long-range
physical properties of the system in this case are therefore
not determined by the average Green’s functions, but by
the impurity averaged products of (retarded and advanced)
Green’s functions. To obtain these averaged products, we
expand the r-representation Green’s functions into a complete
set of functions, χk(r), satisfying the Schrödinger equation
with the random potential; for example, gR

cc11(rσ,r′σ ′; ε) =∑
k,k′ χk(r)gR

cc11(kσ,k′σ ′; ε)χ∗
k′(r′). The impurity averaged

products (listed in Appendix C) are then obtained with the aid
of the spectral function Kε(r,r′) = ∑

k χk(r)χ∗
k (r′)δ(ε − εk),

related to the diffuson P(r,r′,ε0) as 〈〈Kε(r,r′)Kε+ε0 (r,r′)〉〉 =
[P(r,r′,ε0) + P(r,r′, − ε0)]νc/2π ; P(r,r′,ε0) is the Fourier
transform of the average probability P(r,r′,t) that a particle
leaving a point r will propagate to r′ during the time interval t .

In the tunneling limit, by substituting the expressions from
Appendix C into the Eq. (14), for ballistic transport [in which
case, P(ra,rb,t) = δ(δr − vF t)/4πδr2] we recover the result
(16) averaged over Fermi wavelength scale. For diffusive trans-
port, in Eq. (16), r2 cos2(kF δr) for EC and r2 sin2(kF δr) for
CAR are replaced by P̄(δr, 2�

�
)/π�νc. Here, P̄(r,r′,s) denotes

the Laplace transform of P(r,r′,t) satisfying the equation

(s − D�)P̄(r,r′,s) = δ(r − r′), (21)

where D = vF le/d is the diffusion constant in d dimensions.
The function P̄ provides the time integrated probability
for a particle of lifetime τs = 1/s, leaving r to arrive at r′.
Solution of the above equation (21) depends on the boundary
conditions provided by the shape of the superconducting
electrode. In the absence of disorder, free propagation for
d = 3 is described by P̄ (3)(δr,s) = e−δr/vF τs /4πδr2vF . With
disorder present, we have P̄ (3)(δr,s) = e−δr/ ls /4πDδr , where
ls = √

Dτs stands for the diffusion length.
For vanishing circuit impedance (z = 0), by following the

procedure indicated in Appendix D, one can arrive at the
expression for the nonlocal differential conductance to all
orders in the tunnel Hamiltonian,

Gab = −64
e2

h

�2 − (eVb)2

�2

P̄
[
ra,rb,

2
�

√
�2 − (eVb)2

]
π�νc

×
∏

α=a,b

(π�(α)�)2

[1 + (π�(α))2]2�2 − [1 − (π�(α))2]2(eVb)2
.

(22)

Without disorder, the above formula gives the result for the
case of ballistic motion considered in Sec. II A, averaged over
the directions of the Fermi wave vector. If the distance between
the junctions is small compared to the coherence length δr �
ξd = √

�D/�, so that the exponential terms in P̄ (3)(δr,s)
can be neglected, the ratio between the nonlocal differential
conductances in the diffusive and ballistic cases is equal to
3δr/ le. Therefore, for junction distances of the order and
greater than the elastic mean free path the nonlocal differential
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FIG. 5. Nonlocal differential conductance Gab, in units G0, as
a function of voltage eVb, for δr � ξd . In three dimensions G0 =
e2/2h(kF δr)2 in the ballistic case and G0 = 3e2/2hk2

F δrle in the
diffusive case. By decreasing the barrier transmission the curves get
closer to the horizontal axis, T

(a)
eff = T

(b)
eff = 1,0.9,0.75,0.55 (main

plot), and 0.35,0.25,0.15 (inset).

conductance in the diffusive limit dominates over the ballistic
limit. Figure 5 shows Gab as a function of the voltage Vb for a
set of values of the tunnel junction transparencies.

In lower dimensions, the boundaries of a thin film of a
thickness t , or a narrow wire of a diameter t , provide the limits
on the elastic mean free path. For t � ξ0 the corresponding
electron propagation becomes quasi-two-dimensional and
quasi-one-dimensional diffusion in the case of a film and
a wire, respectively. The corresponding probability in two
dimensions is P̄ (2)(δr,s) = K0(δr/ ls)/2πD, where K0 is the
modified Bessel function of the second kind. In one dimension
we have P̄ (1)(δr,s) = lse

−δr/ ls /2D. The associated densities
of states in (22) are given by ν(2)

c = me/2π�
2 and ν(1)

c =
me/πkF �

2.
For nonvanishing circuit impedance, by using Eqs. (D1)

and (D2) from Appendix D, one can obtain the variation of
the nonlocal differential conductance as a function of junction
transparencies, as shown in Fig. 6. In Ref. [24], the effects
of electron-electron interactions were treated perturbatively
(z � 1), by expansion to the lowest order of the relevant
term in the action within the path integral formalism. We
show a comparison of the result of that study, given by the
formulas (46) and (47) in Ref. [24] (blue line in the top
diagram in Fig. 6), to our result (red line in the top diagram
in Fig. 6). While in the case of vanishing circuit impedance
(z = 0), the nonlocal conductance is always nonpositive,
with increasing circuit impedance the sign of the nonlocal
conductance depends on the voltages applied to the normal
metal electrodes and the transparencies of the barriers. For
sufficiently high circuit impedance, the dynamic Coulomb
blockade makes the crossed Andreev reflection contribution
dominant over the elastic cotunneling and the nonlocal
conductance becomes non-negative.

III. CONCLUSIONS

In this paper, we developed the theory of nonlocal elec-
tron transport, based on Nambu-Gor’kov and Schwinger-
Keldysh formalisms, for the three-terminal Cooper-pair split-
ting device. The theory accounts for the effects of the gen-

FIG. 6. Nonlocal differential conductance Gab, in units G0 =
2e2P̄(δr,2�/�)/h2νc, as a function of the effective transmission
coefficient T

(a)
eff = T

(b)
eff = Teff , for z = 0.001 (top plot), z = 0.06

(middle plot), and z = 0.6 (bottom plot); eVa = 0.2�, eVb = 0.1�.
In the top plot, the blue line is the result from Ref. [24]. Dotted
lines represent contributions from the crossed-Andreev reflection,
dash-dotted lines those of the elastic cotunneling, and solid (red) lines
the total nonlocal differential conductance. The inset in the middle
plot shows a zoom-in in the region where Gab changes sign, and
the inset in the bottom plot shows the crossed-Andreev reflection and
elastic cotunneling contributions; in both insets the dashed lines show
the corresponding analytic results valid in the limit of low interface
transmissions.

eral electromagnetic environment and the arbitrary interface
transmissions between the superconducting and the normal
metal leads. We considered the interplay between the elastic
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cotunneling and the crossed-Andreev reflection processes,
and showed the influence of the circuit impedance on the
nonlocal differential conductance, Gab. In the tunneling limit,
Eq. (17), we obtain nonzero nonlocal differential conductance
for finite circuit impedance and nonzero voltages applied
to the normal metal leads. It was shown in Ref. [20] that
nonzero nonlocal differential conductance can result from
the electromagnetic modes coupling the charge fluctuations
on different junctions. Here, we show that even without this
coupling the dissipative impedance causes nonzero Gab. With
increasing junction transmittances, for low circuit impedance
the EC contribution dominates and Gab < 0; for higher values
of the circuit impedance the dynamic Coulomb blockade
makes the CAR contribution dominant and as a consequence
Gab > 0.

In the weak disorder limit considered here, the self-energy
corresponding to the single electron Schrödinger equation is
represented by irreducible diagrams corresponding to inde-
pendent collisions. Using the Matthiessen rule, contributions
of other scattering processes can be included by defining the
imaginary part of the self-energy via the total scattering time
that includes in addition to scattering from static impurities
also other mechanisms. In this way, spin-orbit and charge
imbalance can be included in our formalism [38].

We performed expansion in the lowest order of dif-
fuson in solving Eq. (D3). Higher order terms resulting
from averages of diagonal Green’s functions (of the form
〈〈gR

ccij (xa,xa; ε)gA
ccij (xb,xb; ε − ω)〉〉) can be expressed in terms

of the squares of diffusons. Including higher order correlation
functions due to electromagnetic environment modes would
also increase the accuracy of our approximation for voltages
approaching the superconducting gap.

We neglected the inverse proximity effect in the supercon-
ductor near the interfaces with the normal metal electrodes.
Such assumption is justified as long as the linear dimension
of the contacts is small compared to the superconducting
coherence length. It would be of interest to consider ex-
tended contacts and incorporate the results of the strong

nonequilibrium effects on the superconducting order parame-
ter, as obtained in the self-consistent model calculations [18].

Finally, we point out that our approach is applicable to a
variety of materials used for the Cooper-pair splitter, such as
those listed in the Introduction. For each particular setup, one
needs to use the appropriate Green’s functions. For example,
for the Tomonaga-Luttinger liquid electrodes connected to a
superconductor, the Green’s functions were considered in [39].

APPENDIX A: COORDINATE REPRESENTATION
OF THE BARE GREEN’S FUNCTIONS IN

THE NORMAL METAL ELECTRODES

The greater and lesser Green’s functions in the normal metal
electrodes are given by

g>
α̃α̃11(xα,xα; ω)

= −2iπ�να

∫ ∞

−∞
dεkPα(�ω + eVα − εk)[1 − f (εk)],

g<
α̃α̃11(xα,xα; ω)

= 2iπ�να

∫ ∞

−∞
dεkPα(εk − eVα − �ω)f (εk),

g>
α̃α̃22(xα,xα; ω)

= −2iπ�να

∫ ∞

−∞
dεkPα(�ω + εk − eVα)f (εk),

g<
α̃α̃22(xα,xα; ω)

= 2iπ�να

∫ ∞

−∞
dεkPα(eVα − εk − �ω)[1 − f (εk)], (A1)

where the probability of the tunneling electron exchang-
ing the energy ε with the environment [27] is given
by Pα(ε) = 1

2π�

∫∞
−∞ dt eJα (t)+iεt/�, with the phase corre-

lation function given by Jα(t) = 〈[φ̃α(t) − φ̃α(0)]φ̃α(0)〉 =
2
∫∞

0
dω
ω

ReZα(ω)
RK

{coth ( 1
2β�ω)[cos(ωt) − 1] − i sin(ωt)}. The

retarded and advanced Green’s functions are given by

gR
α̃α̃11(xα,xα; ω) = gA∗

α̃α̃11(xα,xα; ω) = −iπ�να

{
1 +

∫ ∞

−∞

dω′

2π
iF

(α)R
+− (ω′) tanh

[
�ω − �ω′ + eVα

2kBT

]}
,

gR
α̃α̃22(xα,xα; ω) = gA∗

α̃α̃22(xα,xα; ω) = −iπ�να

{
1 +

∫ ∞

−∞

dω′

2π
iF

(α)R
−+ (ω′) tanh

[
�ω − �ω′ − eVα

2kBT

]}
, (A2)

where F
(α)
ηη̄ (ω′) is the Fourier transform of F

(α)
ηη̄ (t,t ′) = −i〈Tce

iηφ̃α (t)eiη̄φ̃α (t ′)〉, (η,η̄) = (±,∓). The off-diagonal Green’s functions
in the normal metal electrodes vanish, e.g., gR

α̃α̃12(xα,xα; ω) = gR
α̃α̃21(xα,xα; ω) = 0.

APPENDIX B: BARE GREEN’S FUNCTIONS IN THE SUPERCONDUCTING ELECTRODE (CLEAN LIMIT)

The nonlocal lesser Green’s functions are given by

[
g<

cc11(xα,xβ ; ω)

g<
cc22(xα,xβ ; ω)

]
= 2iπ�νc

|�ω|√
(�ω)2 − �2

f (�ω)�(|�ω| − �)δσ,σ ′

[
sin(kF δr)

kF δr
cos

(√
(�ω)2 − �2

δr

πξ0�

)

±cos(kF δr)

kF δr
sin

(√
(�ω)2 − �2

δr

πξ0�

)√
(�ω)2 − �2

�ω

]
,
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g<
cc12(xα,xβ ; ω) = g<

cc21(xα,xβ ; ω)

= −2iπ�νc sgn(σ ) sgn(ω)
�√

(�ω)2 −�2
f (�ω)�(|�ω| −�)δσ,σ ′

sin(kF δr)

kF δr
cos

(√
(�ω)2 − �2

δr

πξ0�

)
. (B1)

The expressions for the greater Green’s functions are obtained from the corresponding expressions above by substituting
−f (−�ω) in place of f (�ω). The retarded and advanced Green’s functions are given by[
gR

cc11(xα,xβ ; ω)
gR

cc22(xα,xβ ; ω)

]
=
[
gA∗

cc11(xα,xβ ; ω)
gA∗

cc22(xα,xβ ; ω)

]
= −δσ,σ ′π�νc

exp
[− δr

πξ0�

√
�2 − (�ω)2

]
kF δr

×
[

sin(kF δr)
�ω√

�2 − (�ω)2
± cos(kF δr)

]
(� > |�ω|),

[
gR

cc11(xα,xβ ; ω)
gR

cc22(xα,xβ ; ω)

]
=
[
gA∗

cc11(xα,xβ ; ω)
gA∗

cc22(xα,xβ ; ω)

]
= −δσ,σ ′π�νc

exp
[
i δr

πξ0�

√
(�ω)2 − �2 sgn(ω)

]
kF δr

×
[
i sin(kF δr)

|�ω|√
(�ω)2 − �2

± cos(kF δr)

]
(� < |�ω|),

gR
cc12(xα,xβ ; ω) = gR

cc21(xα,xβ ; ω) = gA∗
cc12(xα,xβ ; ω) = gA∗

cc21(xα,xβ ; ω)

=

⎧⎪⎨
⎪⎩

δσ,σ ′ sgn(σ )π�νce
−(δr/πξ0�)

√
�2−(�ω)2 sin(kF δr)

kF δr
�√

�2−(�ω)2
(� > |�ω|),

iδσ,σ ′ sgn(σ ) sgn(ω)π�νce
i(δr/πξ0�) sgn(ω)

√
(�ω)2−�2 sin(kF δr)

kF δr
�√

(�ω)2−�2
(� < |�ω|).

(B2)

The expressions for the local Green’s functions, corresponding to rα = rβ , are obtained from the corresponding functions above
by taking the limit δr → 0 in the terms proportional to sin(kF δr), and neglecting the terms proportional to cos(kF δr).

APPENDIX C: IMPURITY AVERAGED PRODUCTS OF BARE GREEN’S FUNCTIONS IN THE SUPERCONDUCTING
ELECTRODE (DIRTY LIMIT)

The impurity averaged products of Green’s functions are given by

〈〈|gR
ccij (xα,xβ ; ω)|2〉〉 = �πνcδσ,σ ′

�2

�2 − (�ω)2
P̄
(

δr,
2

�

√
�2 − (�ω)2

)
(i,j = 1,2),

〈〈gR
ccii(xα,xβ ; ω)gA

ccij (xβ,xα; ω)〉〉 = −�πνcδσ,σ ′
�ω�σ

�2 − (�ω)2
P̄
(

δr,
2

�

√
�2 − (�ω)2

)
(i �= j ),

〈〈gR
ccii(xα,xβ ; ω)gA

ccjj (xβ,xα; ω)〉〉 = −�πνcδσ,σ ′
�2 − 2(�ω)2

�2 − (�ω)2
P̄
(

δr,
2

�

√
�2 − (�ω)2

)
(i �= j ). (C1)

In the weak disorder regime, kF le � 1, one can show that the average probability P(r1,r2,ε) can be expressed via the integral

P(r1,r2,ε) = 2πνc

∫
dr dr′P0(r1,r,ε)�(r,r′,ε)P0(r′,r2,ε), (C2)

where P0(r1,r2,ε) is the probability for a particle of energy ε to propagate between the points r1 and r2 without any collision.
The structure factor satisfies the Bethe-Salpeter equation:

�(r,r′,ε) = δ(r − r′)
2πνcτe

+ 1

τe

∫
dr′′�(r,r′′,ε)P0(r′′,r′,ε). (C3)

Variations of �(r,r′,ε) are small on the scale of le allowing the expansion around r′′, which simplifies the above integrals. In this
way one can show that the probability P(r1,r2,ε) satisfies a diffusion equation.

APPENDIX D: NONLOCAL DIFFERENTIAL CONDUCTANCE

Taking a derivative of the expression for the current (14), we get for |Va| > |Vb| in the zero temperature limit:

GCAR
ab = 8π2�(a)�(b) e

2

h

1

(π�νc)2

∫ eVb

−eVa

dξ

∫ eVa+ξ

0
dξ ′Pa(ξ ′)

×
[

∂
∣∣GR

cc12(ra,rb; ξ )
∣∣2

∂(eVb)

∫ eVb−ξ

0
dξ ′′Pb(ξ ′′) + ∣∣GR

cc12(ra,rb; ξ )
∣∣2Pb(eVb − ξ )

]
. (D1)
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The expression for GEC
ab is obtained from the above formula by substitutions eVb → −eVb, GR

cc12 → GR
cc11. The total nonlocal

differential conductance is then given by

Gab = GCAR
ab + GEC

ab . (D2)

The expressions for the full retarded and advanced Green’s functions in the superconducting electrode are obtained from the
system (7) and are given by

ĜR,A
cc (xa,xb; ε) = {

τ 0 − ĝR,A
cc (xa,xa; ε)�̂

R,A

ca ĝR,A
ãã (xa,xa; ε)�̂

R,A

ac

−ĝR,A
cc (xa,xb; ε)�̂

R,A

cb

[
τ 0 − ĝR,A

b̃b̃
(xb,xb; ε)�̂

R,A

bc ĝR,A
cc (xb,xb; ε)�̂

R,A

cb

]−1

× ĝR,A

b̃b̃
(xb,xb; ε)�̂

R,A

bc ĝR,A
cc (xb,xa; ε)�̂

R,A

ca ĝR,A
ãã (xa,xa; ε)�̂

R,A

ac

}−1

×{ĝR,A
cc (xa,xb; ε) + ĝR,A

cc (xa,xb; ε)�̂
R,A

cb

[
τ 0 − ĝR,A

b̃b̃
(xb,xb; ε)�̂

R,A

bc ĝR,A
cc (xb,xb; ε)�̂

R,A

cb

]−1

× ĝR,A

b̃b̃
(xb,xb; ε)�̂

R,A

bc ĝR,A
cc (xb,xb; ε)

}
. (D3)
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Schönenberger, Nature (London) 461, 960 (2009).

[2] P. Recher and D. Loss, Phys. Rev. B 65, 165327 (2002); A.
Schroer, B. Braunecker, A. L. Yeyati, and P. Recher, Phys. Rev.
Lett. 113, 266401 (2014).

[3] J. Cayssol, Phys. Rev. Lett. 100, 147001 (2008); F. Crépin, H.
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