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Vortex spectroscopy in the vortex glass: A real-space numerical approach
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A method is presented to solve the Bogoliubov–de Gennes equations with arbitrary distributions of vortices.
The real-space Green’s function approach based on Chebyshev polynomials is complemented by a gauge
transformation which allows one to treat finite as well as infinite, ordered as well as disordered vortex
configurations. This tool gives unprecedented access to vortex lattices at very low magnetic fields and glassy
phases. After describing in detail the method and its implementation, we use it to address a series of problems
related to d-wave superconductivity on the square lattice. We first study the continuity of the vortex-core energy
spectrum and its evolution from the quantum regime to the semiclassical limit; we investigate the effect of the
band structure on the vortex by following the self-consistent solution through a Lifshitz transition; we then
study the evolution from the vortex lattice to the isolated-vortex limit with decreasing field and show that a
new emerging length scale controls this transition; finally, we perform a statistical study of the vortex-core local
density of states in the presence of positional disorder in the vortex lattice. The calculations reveal a number of
qualitative differences between the properties of vortices in the quantum and semiclassical regimes.
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I. INTRODUCTION

The vortices in superconductors provide excellent op-
portunities in the exploration of disordered elastic systems
[1,2]. Understanding the collective response of the vortex
lattice to driving forces and to pinning remains a stimulating
challenge nowadays [3]. Vortices are also fascinating quantum
objects. As topological defects in the superconducting order,
they bind low-energy electronic states in their core, which
can be studied experimentally by local spectroscopic probes
[4–6]. The interplay between quantum and classical aspects
is one of the important questions at these mesoscopic length
scales: little is known about the role of the vortex-core bound
states in the collective behavior of the vortex lattice [7]
and, reciprocally, not much is understood about the influence
of the neighboring vortices on the energy spectrum in a
given vortex core. Although, in the clean limit, the energy
spectrum of the vortex core may contain key information
about the superconducting ground state, the interpretation of
experimental spectra turns out to be controversial in many
important cases, due to a lack of exact theoretical results.
At present, a reliable analytical solution for the vortex-core
energy spectrum only exists for a single isolated vortex in
an isotropic superconductor with s-wave pairing symmetry,
for energies much smaller than the superconducting gap [8].
Several approximate solutions have been developed for the
vortex lattice in d-wave superconductors [9–16], as well as for
random vortex configurations [17–20], but these approaches
target mainly the low-energy states in between vortices and
are not applicable in the cores. Our understanding of the
vortex-core states relies almost exclusively on numerical
solutions of the Bogoliubov–de Gennes equations, or their
semiclassical approximation, the Eilenberger equations [21],
which may be used away from the quantum regime kFξ ∼ 1.
Our focus here is on the microscopic Bogoliubov–de Gennes
equations, for which powerful and accurate methods are highly
valuable.

The published numerical methods apply either to the
isolated vortex or to ideal vortex lattices at rather high fields.

For the isolated vortex in a continuum model, a projection
on the basis of angular-momentum eigenstates reduces the
calculation to a set of one-dimensional eigenvalue problems.
This has been solved for three-dimensional s-wave [22] and
two-dimensional s- and d-wave [23,24] order parameters. The
accuracy and spectral resolution of these calculations are set by
the size of a normalization volume and by the largest angular
momentum retained. In a discrete tight-binding model, the
isolated vortex can be studied in finite systems by exact diago-
nalization [25,26], recursion methods [27,28], or by solving a
Dyson equation [29–31]. The accuracy is again limited by the
system size. Ideal vortex lattices have been studied in discrete
models by taking advantage of the Bloch theorem [32–37].
There, the limitations come from the size of a magnetic unit
cell accommodating two vortices: the achievable cell sizes
correspond to magnetic fields often larger than usual laboratory
fields. The purpose of this paper is to present a method giving
access to problems unreachable with the other approaches, in
particular low fields and disordered vortex lattices as occur
in the vortex-glass phases [38,39]. The method computes
the normal and anomalous Green’s functions directly in real
space by means of their expansion on Chebyshev polynomials
[40,41], and uses an asymmetric single-valued singular gauge
transformation to describe arbitrary vortex configurations in
terms of a short-ranged and continuous phase field. The method
has several advantages from a computational viewpoint: it
is straightforward to implement, memory inexpensive, and
trivially parallel. The main drawback is that all energy scales
are treated with the same accuracy, which may become a
problem if the superconducting gap to bandwidth ratio is
small. Regarding applications, the method’s main targets are
superconductors in the clean limit and in the quantum regime
showing disordered vortex arrangements. These involve small-
coherence length materials like the cuprates where vortices
are easily pinned, systems where vortices are displaced by a
long-wavelength disorder not affecting the mean-free path, or
other clean systems at weak fields below the vortex ordering
transition.
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The main obstacle when considering infinite (ordered or
disordered) vortex configurations in real space is to obtain
a good ansatz for the phase of the superconducting order
parameter. For a single vortex in two dimensions, the phase
at a given point is given by the angle formed by this point,
the vortex center, and some arbitrary reference axis going
through the vortex center [8]. The phase winds by 2π along
any trajectory encircling the vortex once and defines a branch
cut along the reference axis. As it carries a phase jump of
exactly 2π , this cut is irrelevant. Most importantly, the phase
is a number of order one irrespective of the distance to the core.
In a multivortex configuration, the angles associated with each
vortex add up to build the local phase. This sum obviously will
not converge for an infinite number of vortices. The difficulty
is usually circumvented by means of a gauge transformation
which removes the phase of the order parameter and introduces
half the gradient of this phase in the kinetic energy. The
phase gradient decreases as the inverse of the distance to the
vortex, such that the infinite-vortex sum, although still formally
divergent, can be regularized in a way similar to the Madelung
energy in crystals. More annoying is the halved phase gradient:
on a lattice, this quantity is replaced by the halved phase
difference between neighboring sites, which is a small number
everywhere except on the bonds crossing the reference axis,
where it takes a value close to π . With this choice of gauge, the
Hamiltonian has an inconvenient line of discontinuity attached
to each vortex. This order-one contribution again leads to
divergences for an infinite number of vortices. A solution is
to use a bipartite gauge transformation in which a full phase
gradient from half of the vortices is transferred to the kinetic
energy [13], rather than a half gradient from all vortices. We
propose here to use a variant that does not require one to
partition the vortices in two families, and is therefore more
convenient for disordered vortex configurations.

The method is ideally suited for two-dimensional lattice
models and gives access to system sizes of typically a million
sites, two orders of magnitude larger than with the usual Hamil-
tonian methods. The possibility to treat large systems will
be essential for investigating the transition from the quantum
regime to the semiclassical limit at mesoscopic scales. Here we
focus mainly on the quantum regime, but we use large systems
in order to achieve high energy resolution. We also study self-
consistently low magnetic fields with intervortex distances as
large as 100 lattice spacings. The paper is organized as follows.
Section II gives a pedagogical and self-contained account of
the method, going through the Chebyshev expansion (II A), the
order-parameter ansatz for multivortex configurations (II B),
the asymmetric singular gauge transformation for infinite
vortex configurations (II C and II D), the self-consistency
equations (II E), and finally discussing some issues regarding
accuracy and implementation (II F). In Sec. III, the method
is applied to four problems connected with two-dimensional
d-wave superconductivity on the lattice: the continuity and
symmetry of the vortex energy spectrum (III A), the evolution
of the vortex core and spectroscopy across a Lifshitz transition
(III B), the magnetic field scale above which the vortex-core
states feel the orientation of the vortex lattice (III C), and the
amount of disorder in the vortex lattice needed to wash out
this information (III D). The main results are summarized in
Sec. IV.

II. NUMERICAL METHOD

The mean-field theory of inhomogeneous superconduc-
tivity can take the form of a Schrödinger-like eigenvalue
problem (Bogoliubov–de Gennes equations) or the form of a
Dyson-like equation (Gorkov equations). Both formulations
are equivalent, the Green’s function G(z) solution of the
Gorkov equations at complex energy z being the resolvent
of the Bogoliubov–de Gennes Hamiltonian H : Gαβ(z) =
〈α|(z − H )−1|β〉. α and β are single-particle state indices
and z − H is to be understood as z1 − H . In practice, we
will only be interested in retarded Green’s functions evaluated
immediately above the real-energy axis, i.e., z = E + i0. The
solution boils down to an inversion of the operator z − H .

A. Expansion of Green’s function on Chebyshev polynomials

The method introduced in Ref. [40] performs the inversion
of z − H recursively, by means of Chebyshev polynomi-
als. The polynomials are defined as Tn(x) = cos(n arccos x)
for x in the interval [−1,1]. Any sufficiently smooth
complex-valued function F (x) has a representation F (x) =∑∞

n=0 cnTn(x) for x ∈ [−1,1] with the coefficients cn = (2 −
δn0)/π

∫ π

0 dϑ F (cos ϑ) cos(nϑ). The strength of this repre-
sentation is a better convergence than other expansions, e.g.,
Taylor or Fourier. The expansion needed for our purposes is

(E + i0 − H )−1 = 1

a

∞∑
n=0

i(δn0 − 2)e−in arccos(Ẽ)√
1 − Ẽ2

Tn(H̃ ). (1)

H̃ = (H − b)/a is a rescaled dimensionless Hamiltonian
whose spectrum falls entirely within the interval [−1,1]
where Tn(H̃ ) is meaningful. Thus a is an upper bound for
the width of the spectrum of H and b is the center of
this spectrum. Likewise, Ẽ = (E − b)/a. The Bogoliubov–de
Gennes Hamiltonian has a symmetric spectrum, so one can set
b = 0 (Appendix; see, however, Sec. II F). The requirement to
rescale the whole energy spectrum within the range [−1,1]
means that the spectral resolution is set by the largest
energy scale, which is the main weakness of the method.
Equation (1) reduces the calculation of the Green’s function
to the evaluation of the matrix elements 〈α|Tn(H̃ )|β〉. This
task is greatly simplified thanks to a recursion relation obeyed
by the Chebyshev polynomials: Tn(x) = 2xTn−1(x) − Tn−2(x)
with T0(x) = 1 and T1(x) = x. The evaluation of Tn(H̃ )
breaks down into a sequence of elementary operations of the
form H |ψ〉. Starting with |ψ0〉 = |β〉 and |ψ1〉 = H̃ |β〉, the
series of coefficients 〈α|Tn(H̃ )|β〉 ≡ 〈α|ψn〉 follows from the
recursion scheme |ψn〉 = 2H̃ |ψn−1〉 − |ψn−2〉. The method
applies to any problem with a bounded energy spectrum
and such that H |ψ〉 can be computed. In fact, H |ψ〉 is
the only time-consuming operation for this algorithm, whose
overall performance therefore depends on how efficiently this
operation can be implemented. A procedural implementation,
as opposed to a straight matrix-vector multiplication, is
preferable for sparse Hamiltonians [40]. The memory cost
is limited to the storage of three state vectors.

We specialize now to a superconductor on a discrete tight-
binding lattice. A state vector |α〉 is represented by complex
Bogoliubov–de Gennes amplitudes uα(r) and vα(r) at each
lattice site r . The Hamiltonian connects the amplitudes at two
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sites r and r ′ via the 2 × 2 block

Hr r ′ =
(

tr r ′ 	r r ′

	∗
r ′ r −t∗r r ′

)
. (2)

Up to a gauge transformation to be discussed later, the diagonal
matrix elements are given by tr r ′ = t0

r r ′eiAr r′ − μδr r ′ , where
t0
r r ′ is the bare hopping amplitude, μ is the chemical potential,

and

Ar r ′ = e

�

∫ r ′

r
d� · A(�) (3)

is the Peierls phase with A the vector potential and e =
|e| the magnitude of the electron charge [42]. 	r r ′ is the
superconducting order parameter, which must be solved self-
consistently as described below. The property tr r ′ = t∗r ′r is
sufficient to enforce the Hermiticity of H . In the usual (i.e.,
symmetric) gauges, the property 	r r ′ = 	r ′ r also holds; it
does not hold in the asymmetric gauge discussed below. We
denote |r〉 the state representing an electron localized at site
r , which has u(r) = 1, v(r) = 0, and u(r ′) = v(r ′) = 0 for
r ′ 
= r . A hole localized at r has v(r) = 1 and all other
components equal to zero and is denoted |r̄〉. The local density
of states (LDOS) at each site is related to the Green’s function
Gr r ′(z) = 〈r|(z − H )−1|r ′〉 by

N (r,E) = − 2

π
Im Gr r (E + i0). (4)

We see that the calculation of the LDOS mimics the evolution
of an electron injected at point r: starting with the state |r〉,
at each iteration the wave function is spread over neighboring
sites by the application of H and the resulting amplitude u(r)
at the starting point is measured to get the corresponding
coefficient of the Chebyshev expansion. The system size
needed in order to obtain the matrix element 〈r|Tn(H̃ )|r〉
without boundary errors is therefore proportional to n and
to the range of the hopping amplitudes.

The order parameter is given by 	r r ′ = −Vr r ′ 〈ψr↑ψr ′↓〉,
where Vr r ′ is the pairing interaction and ψrσ annihilates a
spin-σ electron at position r . It can be related to the anomalous
Green’s function Fr r ′(z) = 〈r|(z − H )−1|r̄ ′〉 and evaluated in
the same way as the LDOS. Unlike the expression (4) for the
LDOS, the expression relating 	r r ′ to Fr r ′ depends on the
gauge, and will be derived in Sec. II E.

B. Ansatz for the order parameter

For large systems or systems lacking symmetries, the self-
consistent calculation of 	r r ′ can be prohibitive. On the other
hand, the fine details of 	r r ′ are often irrelevant for the LDOS,
which is the quantity we are ultimately interested to compare
with experimental data. This underlines the need for a good
starting ansatz, either to lower the number of cycles necessary
in order to reach self-consistency, or to ignore self-consistency
altogether. We express the order parameter as

	r r ′ = 	A
r r ′

(
1 + 	msc

r r ′
)
ei	psc

r r′ , (5)

where 	A is our ansatz, 	msc and 	psc being the self-
consistent corrections to the modulus and phase, respectively.
A good ansatz should respect the symmetries of the problem

and be such that the differences between the LDOS calculated
using 	A and 	 are unimportant.

From here on, we specialize to a two-dimensional lattice
of sites r = (x,y). We consider a distribution of vortices at
positions R = (X,Y ). The vortices can sit on or in between
lattice sites. The order parameter is written as a superposition
of contributions from each vortex in the form

	A
r r ′ = 	0sr ′−r

∏
R

S(r − R,r ′ − R). (6)

	0 is the gap magnitude and sr ′−r describes the local order-
parameter symmetry. The most common symmetries are s and
nearest-neighbor dx2−y2 on a square lattice, for which we have

s symmetry : sr ′−r = δr r ′ ,

dx2−y2 symmetry : sr ′−r =

⎧⎪⎨
⎪⎩

1/4, r ′ − r = ±x̂,

−1/4, r ′ − r = ± ŷ,

0, otherwise.

The order parameter has no Peierls phase for symmetric
gauges, but a phase e−iAr r′ appears self-consistently in the
asymmetric gauge (Sec. II C). The function S(r,r ′) describes
the modulus and phase of the order parameter for a single
vortex at the origin:

S(r,r ′) = p

( |r + r ′|
2

)
e
i

{
ϕ(r)+ϕ(r′ )

2 +	ϕ(r,r ′)+	ϕc(r,r ′)
}
. (7)

p(r) gives the profile of the order-parameter modulus, which
vanishes for r = 0 and approaches unity at large r over a length
scale given by the coherence length ξ . The self-consistent
profile is not in general a radial function even for an isolated
vortex, such that 	msc in Eq. (5) contains, among other things,
the deviations from cylindrical symmetry. In the limit of large
intervortex distances |R − R′|  ξ , p(r) coincides with the
profile of an isolated vortex. At larger fields, the profiles
from several vortices overlap in the product in Eq. (6), such
that the function p(r) must be adjusted in order to match
the self-consistent solution at best. An isolated vortex in the
Ginzburg-Landau theory is characterized by p(r) = tanh(r/ξ ).
It was noticed in the pioneering calculations [22,24] that this
functional form fails to describe the self-consistent solution at
low temperature. Here we will use the empirical two-parameter
function [31]

p(r) = 1

1 + (ξ0/r)e−r/ξ1
, (8)

and adjust the parameters ξ0 and ξ1 to minimize 	msc.
The second factor in Eq. (7) gives the order-parameter phase

for a single vortex at the origin. It is expressed in terms of a
geometric angle defined in the interval ]−π,π ] with the cut
along the negative x axis [Fig. 1(a)]:

ϕ(r) = arg(x − iy). (9)

By convention, we set arg(0) = 0 and arg(−|x|) = π . This
choice of sign corresponds to a positive magnetic field along
the z axis with a supercurrent circulating counterclockwise
around the vortex. For an s-wave gap, r ′ = r in Eq. (7), the cor-
rections 	ϕ(r,r) = 	ϕc(r,r) = 0 drop, and the vortex phase
is simply ϕ(r). For a nonlocal gap the average 1

2 [ϕ(r) + ϕ(r ′)]
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FIG. 1. Local phase and nonlocal phase corrections for an isolated
vortex. The big and small dots indicate the vortex center and lattice
sites, respectively. (a) Local phase and branch cut. The phase is +π on
the cut and zero at the vortex center. (b) Core correction for a vortex
sitting on a lattice site in a square lattice. (c) and (d) Long-range
correction for bonds touching the branch cut.

returns a value close to zero for bonds crossing the cut, instead
of the desired value close to ±π . This is corrected by 	ϕ(r,r ′),
which adds a phase ±π on the appropriate bonds [Figs. 1(c)
and 1(d)]. 	ϕ(r,r ′) is a long-range correction extending from
the vortex core to infinity. On the contrary, 	ϕc(r,r ′) is a
short-range core correction adjusting the phase on the bonds
touching the vortex core [Fig. 1(b)]; it is zero for vortices
sitting in-between lattice sites. All in all, the phase is given
within 1% by the geometric angle measured from the middle
of the bonds. The complicated writing in Eq. (7) will prove
useful below.

The ansatz (6)–(9) works perfectly for any finite distribution
of vortices. For infinite distributions, the sum of phases does
not converge as discussed in the Introduction, and a change of
gauge is necessary.

C. Asymmetric singular gauge transformation

The unitary transformation U = (e
ig 0
0 e−ih), where g and h

are arbitrary functions of r , changes the Hamiltonian (2) into

(UHU−1)r r ′ =
(

tr r ′ei[g(r)−g(r ′)] 	r r ′ei[g(r)+h(r ′)]

	∗
r ′ re

−i[h(r)+g(r ′)] −t∗r r ′e−i[h(r)−h(r ′)]

)
.

For an s-wave order parameter, the symmetric choice g =
h = −φ/2, where φ(r) is the phase of 	r r , removes the phase
from the off-diagonal terms and puts a phase [φ(r ′) − φ(r)]/2
on the diagonal ones. This is analogous to a usual gauge
transformation A → A + �

2e
∇φ [see Eq. (3)], except that φ

is not a pure gauge, but carries a singularity attached to each
vortex: ∇ × ∇φ(r) = −2π ẑ

∑
R δ(r − R). The problem here

is that the halved phase difference appearing in the diagonal
terms is discontinuous at the branch cut of each vortex.
For a d-wave order parameter, there is also a discontinuity

remaining in the off-diagonal terms. Franz and Tešanović
[13] introduced the bipartite singular gauge g = −φA and
h = −φB , where φA,B are the phases associated with half
of the vortices and φA + φB = φ. This attaches half of the
vortices to the particles, the other half to the holes, and
solves the problem, leading to real off-diagonal terms (for
s-wave order) without discontinuity in the diagonal ones. For
ideal vortex lattices, the partition of vortices in two groups is
natural, by means of a magnetic unit cell containing two of
them. Each vortex sublattice builds into the hopping term the
analog of a Peierls phase with a gradient whose spatial average
cancels exactly the spatial average of Ar r ′ . The Bogoliubov
quasiparticles therefore feel an effective magnetic field that is
zero on average, and the phase of the diagonal terms is periodic
in space [13]. In the case of nonlocal pairing, a local gauge
transformation cannot remove the phase of 	r r ′ entirely, but
it is sufficient that it removes the 2π phase winding, leaving a
nontopological phase in the off-diagonal terms.

For arbitrary vortex configurations, we have found it more
convenient to use the asymmetric singular gauge

g(r) = −
∑

R

ϕ(r − R), h(r) = 0. (10)

This attaches all vortices to the particles and none to the holes.
The spatial average of the Peierls-like phase built in this way
into the hopping term is equal to the spatial average of −2Ar r ′ .
As a result, the particles and holes now feel effective magnetic
fields that are opposite on average. Performing the unitary
transformation, one finds that the phase of the hopping term for
particles is the sum of a Peierls phase −Ar r ′ and the function

δ(r) =
∑

R

[ϕ(r + δ − R) − ϕ(r − R)] + 2Ar,r+δ, (11)

where we have introduced the notation δ = r ′ − r . This
function is periodic for vortex lattices. The phase difference
in the square brackets decreases as the inverse of the distance
to the vortex, such that the expression must be regularized for
infinite sums. The phase of the off-diagonal term is∑

R

{
1
2 [ϕ(r ′ − R) − ϕ(r − R)] + 	ϕ(r − R,r ′ − R)

+	ϕc(r − R,r ′ − R)
}
.

The discontinuity of the halved phase difference is exactly
compensated by the correction 	ϕ, such that the first two
terms in the curly braces form together a continuous function
whose sum is just half the sum in Eq. (11). Hence, in the
asymmetric singular gauge, our ansatz for the order parameter
can also be expressed in terms of the function δ(r),

	A
r,r+δ = 	0sδ

∏
R

p
(∣∣r + 1

2δ − R
∣∣)e−iAr,r+δ

× exp

{
i

[
δ(r)

2
+

∑
R

	ϕc(r − R,r + δ − R)

]}
,

(12)

and the transformed Hamiltonian is simply

H r r ′ =
(

t0
r r ′ei[r′−r (r)−Ar r′ ] 	 r r ′

	∗
r ′ r −t0

r r ′e−iAr r′

)
. (13)
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We underline the non-gauge-invariant quantities expressed in
the asymmetric gauge. The phase field (11) together with the
ansatz (12) and the Hamiltonian (13) provide a convenient
framework to treat finite as well as infinite, ordered as
well as disordered vortex configurations [43]. In this real-
space formulation, it is also straightforward to add various
ingredients like pinning potentials, charge density waves,
antiferromagnetic order, etc.

As the diagonal matrix elements 〈r|Tn(H̃ )|r〉 are invariant
under the unitary transformation (10), the expression (4) for the
LDOS holds in the asymmetric gauge, that is, if G is computed
using the Hamiltonian (13). For completeness and later
reference, we note that the function  in (11) relates simply
to the gauge-invariant superfluid velocity given by mvs =
(�/2)∇φ + eA, where m is the electron mass, φ is the order-
parameter phase, and A is the vector potential. To see this, write
∇φ(r) as [φ(r + x̂) − φ(r),φ(r + ŷ) − φ(r)]/a, a the lattice
parameter, A(r) as [

∫ r+x̂
r d r ′ Ax(r ′),

∫ r+ ŷ
r d r ′ Ay(r ′)]/a =

�/(ea)(Ar,r+x̂,Ar,r+ ŷ), and use Eq. (11) to get

vs(r) = �

2ma
(x̂(r), ŷ(r)). (14)

The superfluid current density follows as j = −2e|	|2vs .

D. Phase field for infinite vortex configurations

We proceed to the evaluation of the phase field (11)
for infinite vortex configurations, starting with ideal vortex
lattices. The phase field for disordered vortex configurations
will be constructed by displacing vortices in an ideal lattice.
The asymptotic behavior of the phase difference for a vortex
at a large distance R from the points r and r + δ is

ϕ(r + δ − R) − ϕ(r − R) = δyX − δxY

X2 + Y 2
+ O

(
1

R2

)
.

Due to this slow decay, the sum in (11) is formally divergent.
In practice, the divergent contributions from vortices at R and
−R cancel. Since all common vortex lattices have inversion
symmetry, we can group the vortices in pairs:

ϕ(r + δ − R) − ϕ(r − R) + ϕ(r + δ + R) − ϕ(r + R)

= �δ(r,R) + O

(
1

R4

)
.

The function � decays as 1/R2 and its sum is convergent:

�δ(r,R) = 2(δyx + δxy + δxδy)
X2 − Y 2

(X2 + Y 2)2

− 2
(
2δxx − 2δyy + δ2

x − δ2
y

) XY

(X2 + Y 2)2
. (15)

The actual convergence of the sum (11) is faster than 1/R2,
because the other spatial symmetries of the vortex lattice
will in general suppress these 1/R2 terms as well. In fact,
if R is written as R(cos ϑ, sin ϑ), the term of order 1/Rn

in the expansion of ϕ(r + δ − R) − ϕ(r − R) contains one
contribution proportional to cos(nϑ) and another proportional
to sin(nϑ). In a continuum limit, both contributions vanish
upon integrating on ϑ . This shows that short-range physics

TABLE I. Vortex-lattice sums entering ′
δ(r) = ∑′

R �δ(r,R).
d is the intervortex distance. The vortex positions in the four
lattices listed are (X,Y ) = (n,m)d , (n−m,n+m)d/

√
2, (n−m/2,

m
√

3/2)d , and ((n − m)
√

3,n + m)d/2, respectively.

Type of vortex lattice
∑′

R
X2−Y 2

(X2+Y 2)2

∑′
R

XY

(X2+Y 2)2

Square along (10) π

2d2 0

Square along (11) 0 π

4d2

Triangular along (10) π√
3d2 0

Triangular along (01) π

2
√

3d2
π

4d2

dominates the sum in (11), which therefore also converges for
disordered lattices or lattices lacking inversion symmetry.

For each lattice point r , we denote R0 the vortex closest to
r and we compute the phase field as

δ(r) =
⌈
ϕ(r + δ − R0) − ϕ(r − R0)

+
∑

R

′
[ϕ(r + δ − R) − ϕ(r − R)

+ ϕ(r + δ + R) − ϕ(r + R) − �δ(r,R)]

+ ′
δ(r) + 2Ar,r+δ

⌉
. (16)

The notation �· · · � means that the result must be recast
in the interval ] − π,π ]; this operation is needed—and was
implicit in Eq. (11)—because the phase halved enters in
Eq. (12). The symbol

∑′
R stands for a sum on half the

vortices grouped in pairs (R, − R), excluding the vortex
at R0. ′

δ(r) = ∑′
R �δ(r,R) can be evaluated exactly, as

summarized in Table I for the most common vortex lattices.
The magnetic field distribution has the periodicity of the

vortex lattice. It is the sum of its average value and a periodic
modulation which averages to zero: B(r) = [B̄ + δB(r)] ẑ.
Likewise, we can write the Peierls phase as A = Ā + δA.
Only Ā carries a nontrivial gradient, while δA is periodic. In
the present study, we will neglect the periodic modulation of
the field. This is justified at high fields when the intervortex
distance d is small compared with the penetration depth
λ. In the opposite limit λ � d, the correction δA must be
determined self-consistently. As the Peierls phase scales like
1/d2, however, it disappears in the low-field regime and
δA is a correction to a small effect. For a vector potential
A(r) = B(−y,0,0) corresponding to a uniform field B ẑ, the
Peierls phase is

Ar r ′ = π

2S
(x − x ′)(y + y ′), (17)

where B = 0/S with 0 = π�/e the flux quantum and
S the surface of the vortex unit cell, namely S = d2 and
S = (

√
3/2)d2 for square and triangular vortex lattices, re-

spectively. Our choice of gauge for the vector potential is
consistent with the definition (9) and ensures that the function
 in (11) is periodic. An example is shown in Fig. 2(a).

Disordered vortex configurations are generated from a
perfect vortex lattice by removing and adding individual
vortices. If the numbers of vortices removed and added are

184510-5



C. BERTHOD PHYSICAL REVIEW B 94, 184510 (2016)

δ = ŷ

(a)

−0.5

0

0.5

δ = x̂

(b)

FIG. 2. (a) Function  ŷ(r) for an ideal square vortex lattice
oriented along the (11) direction. The vortex centers are located on the
nodes of the underlying square lattice. An expanded view of a vortex
core is displayed in the inset. (b) Function x̂(r) for a disordered
vortex configuration embedded in a square vortex lattice oriented
along the (10) direction. The vortex centers are in the plaquettes of
the underlying square lattice.

equal, the average magnetic field is unchanged and the function
 has no long-range gradient. Figure 2(b) shows an example
with nine vortices displaced in a square vortex lattice. If the
two numbers differ,  acquires a linear term.

E. Self-consistency

The self-consistent order parameter and the anomalous
function Fr r ′(z) = 〈r|(z − H )−1|r̄ ′〉 are related by

	r r ′ = Vr r ′

∫ ∞

−∞
dE f (E)

i

2π
[Fr ′ r (E + i0)

−Fr r ′(−E + i0)],

where f (E) = (eE/kBT + 1)−1 is the Fermi function. Note
that in general Fr r ′ (z) 
= Fr ′ r (z); the equality holds only
for translation-invariant systems. Owing to the symmetry of
the Bogoliubov–de Gennes Hamiltonian, though, the rela-
tion Fr r ′ (z) = Fr ′ r (−z) always holds (Appendix). If H̃ is
defined with b = 0, this same symmetry of H also implies
〈r|Tn(H̃ )|r̄ ′〉 = (−1)n+1〈r ′|Tn(H̃ )|r̄〉. The latter, together with
the expansion (1), allows one to rewrite the order parameter as

	r r ′ = −Vr r ′

∞∑
n=1

Dn〈r ′|Tn(H̃ )|r̄〉. (18)

The first term of the sum in (1) drops because 〈r ′|T0(H̃ )|r̄〉 =
〈r ′|r̄〉 = 0. The coefficients Dn carry the explicit temperature
dependence according to

Dn = − 2

π

∫ 1

−1
dẼ f (E)

cos(n arccos Ẽ)√
1 − Ẽ2

= 2

πn

∫ ∞

−∞
dE [−f ′(E)] sin[n arccos(E/a)]. (19)

The energy integration must be cut to the spectral range of H ,
or to a lower cutoff given by the pairing interaction. The second
line follows after integrating by parts. The integral is now cut
by the temperature and can therefore be extended again to
±∞, unless kBT ∼ a. For even values of n, the sine function
is odd and consequently Dn = 0. One sees that the coefficients
become simply Dn = 2 sin(nπ/2)/(πn) at T = 0. It is shown
in Appendix that Eq. (18) entails the property 	r r ′ = 	r ′ r .

If the starting ansatz 	A
r r ′ is symmetric, the self-consistency

cycles will therefore preserve this symmetry.
The expressions (18) and (19) make an explicit use of the

fact that the spectrum of H̃ is symmetric. These expressions
are therefore not valid if the numerical calculation is performed
with b 
= 0. More complicated formulas apply (Appendix) to
the cases where setting b to a finite value is an advantage
(see Sec. II F). Equation (18) must still be corrected to
comply with the choice of gauge (10). Under this gauge
transformation, the anomalous matrix elements change accord-
ing to 〈r ′|Tn(H̃ )|r̄〉 → eig(r ′)〈r ′|Tn(H̃ )|r̄〉. At the same time,
the order parameter changes according to 	r r ′ → 	r r ′eig(r).
A factor exp{i[g(r) − g(r ′)]} must therefore appear in the
right-hand side of (18). Hence, in the asymmetric gauge the
self-consistency equation is

	 r r ′ = −Vr r ′ei[r′−r (r)−2Ar r′ ]
∞∑

n=1

Dn〈r ′|Tn( H̃ )|r̄〉. (20)

Again, this only applies if b = 0. The expression appropriate
in the case b 
= 0 is given in Appendix.

Two comments are in order. For an ideal vortex lattice
the function  is periodic, but the Peierls phase A is not.
The ansatz (12) is therefore nonperiodic: it becomes periodic
once multiplied by eiA. The self-consistent expression (20)
has the same property (Appendix) so that the periodicity of
	eiA is preserved during the cycles to self-consistency. The
nonperiodicity of 	 balances the nonperiodicity of H such
that all gauge-invariant quantities, in particular the LDOS,
display the periodicity of the vortex lattice. Second, while
	r r ′ is symmetric under the exchange of coordinates, in the
asymmetric gauge we have

	 r ′ r = 	 r r ′e
−i[r′−r (r)−2Ar r′ ]. (21)

This property is obvious in the ansatz (12) if one notices
that both  and A are antisymmetric under the exchange
of coordinates. The property is also guaranteed by Eq. (20)
as shown in Appendix. On the contrary, the property 	A

r ′r =
(	A

r r ′)∗, which is verified where 	ϕc = 0, is not obeyed by
the self-consistent solution.

F. Accuracy and some implementation notes

Four parameters determine the accuracy of the calculation.
Beside the energies a and b (Sec. II A), these are the order N of
the Chebyshev expansion and the size M of the system. Ideally,
the size of the system must be such that the last Chebyshev
coefficient 〈r|TN (H̃ )|r〉 is not perturbed by the system’s
boundaries. The optimal shape of the system depends on how
the Hamiltonian diffuses the wave function. On a square lattice,
for instance, the state |r〉 spreads with a diamond-like shape if
there are only nearest-neighbor hoppings. In such a case, it is
better to define the system with a diamond shape as in Fig. 3(a).
If r is the central site and N = M , the wave function reaches
the boundary at the last iteration; if N = 2M the reflection
from the boundary reaches the central site; if N = 4M the
interference of waves reflected from the boundaries are felt
at the central site. For N > 4M , these interferences develop
spurious oscillations in the LDOS.
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FIG. 3. (a) Diamond-like system of size M = 3 with 1 + 2M(1 +
M) sites on the square lattice. This shape is optimal if the range of
the Hamiltonian extends to the first, third, or fifth neighbors. We
typically use M = 500, corresponding to a system of 501 001 sites.
(b) Square-like system of size M = 2 with (2M + 1)2 sites. This
shape is optimal if the range of the Hamiltonian extends to the
second or fourth neighbors. We typically use M = 350 in this case,
corresponding to 491 401 sites. A possible sequential numbering of
the sites is indicated.

Figure 4 illustrates the roles of a, b, N , and M . The
upper panel presents a typical LDOS curve and two ways
of choosing a and b. The model considered is a square
tight-binding lattice with nearest-neighbor hopping t1, second-
neighbor hopping t2 = −0.3t1, and chemical potential μ = t1,
with a d-wave gap of magnitude 	 = 0.2|t1|. This is a
setup typically used to represent the electronic structure of
the cuprate high-Tc superconductors. For the calculation of
the self-consistent order parameter it is convenient to set

FIG. 4. (a) DOS calculated with a = 1.1aN , b = bN (black, blue
shade) and a = a	, b = 0 (red). The dashed curve is the image of the
DOS by particle-hole symmetry. The inset shows the loss of resolution
in the gap region for a = a	. The other parameters are M = 350 and
N = 4M . (b) DOS in the gap region for various system sizes and
expansion orders. (c) DOS at the lower band edge showing Gibbs
oscillations and their removal by various kernels (see Ref. [44]).

b = 0 (see Sec. II E). The electron-hole symmetry of the
Bogoliubov–de Gennes Hamiltonian then requires one to
take a � a	 = 2 max(|Emax|,|Emin|). Here Emin = −(ξ 2

min +
	2)1/2 and Emax = (ξ 2

max + 	2)1/2 mark the limits of the
electronic spectrum, with ξmin and ξmax the extrema of the
tight-binding band. While the use of a	 and b = 0 is in
principle also mandatory for the calculation of the LDOS,
in practice it is sufficient to choose values of a and b that
fit the electronic excitation spectrum, i.e., aN = Emax − Emin

and bN = (Emax + Emin)/2. The reason is that the Hamiltonian
does not mix appreciably electron and hole states for energies
larger than a few times 	. In the example of Fig. 4, the
repeated action of H on the state |r〉 (which spans the whole
band) does not visit the hole states with energies below Emin,
because the superconducting gap is sufficiently far from the
band bottom. For the LDOS, one can therefore choose aN

with a little security margin (a = 1.1aN was used for Fig. 4)
and b = bN . The use of aN rather than a	 does not change
qualitatively the LDOS but improves the resolution as seen in
the inset of Fig. 4(a).

Increasing M and/or N also improves the resolution. As
the calculation of H |ψ〉 scales like M2, the total computing
time scales like NM2: optimal performance requires taking N

as large as possible and M as small as possible. The choice
N = 4M ensures that the LDOS is not perturbed by boundary
effects, but higher values of N are sometimes acceptable.
Figure 4(b) shows that the substantial loss of resolution
observed at low energy when reducing M from 350 to 150
with N = 4M can be largely recovered by taking N = 8M .
This also leads, however, to oscillations of the LDOS at higher
energy (not shown in the figure).

If the Chebyshev expansion is stopped at order N , the
approximate LDOS displays so-called Gibbs oscillations close
to the LDOS singularities [44]. Figure 4(c) shows these
oscillations at the lower band edge. The oscillations are
removed by filtering the approximate LDOS with a kernel.
The choice of a Lorentzian kernel is most natural because it
enforces the positivity of the calculated LDOS; it is equivalent
to introducing a scattering rate � in the propagators, i.e.,
replacing i0 by i� in Eq. (1). The convolution with a
kernel amounts to multiplying the Chebyshev coefficients
〈r|Tn(H̃ )|r〉 by an n-dependent factor [44]. For a Lorentz
kernel, we thus obtain the explicit expression of the LDOS
as

N (r,E) = 2

πa

{
Re

[
1√

1 − Ẽ2

]
+ 2

N∑
n=1

〈r|Tn(H̃ )|r〉

× Re

[
e−in arccos(Ẽ)√

1 − Ẽ2

]
sinh[(N − n)�/a]

sinh(N�/a)

}
. (22)

Note that the correction factor (last in the curly braces) is not
unity for � = 0 but 1 − n/N , which is the Fejér kernel: a delta-
function-like Lorentz kernel has the good virtue of turning a
truncated Chebyshev expansion into a causal function. Unless
explicitly stated, all LDOS calculations reported in this paper
use the Fejér kernel.

While relatively large system sizes are required in order to
converge the LDOS [40], the calculation of the self-consistent
order parameter can usually be performed in smaller systems
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FIG. 5. Convergence of the self-consistent gap as a function of
(a) system size and (b) expansion order and truncation kernel. Inside
the gray shaded regions the convergence is better than 0.1%. The
calculations are done with a = 12|t1| and b = 0 for the same model
as in Fig. 4.

[41]. The matrix element in Eq. (18) implies the conversion
of a hole at r into an electron at r ′. This process has a spatial
cutoff of the order of the coherence length. As a result, this
matrix element saturates when the system size exceeds a few
times the coherence length. An expansion order N much larger
than 4M is needed, however, and the Jackson kernel turns out
to be preferable. To see this, let us denote 	M

N the left-hand
side of Eq. (18) when the right-hand side is converged and the
infinite sum is truncated to order N . Figure 5(a) shows 	M

∞
as a function of M , where “∞” means full convergence with
respect to N . The model is the same as in Fig. 4 with a pairing
strength set to −0.7975|t1| to reproduce the gap of 0.2|t1|.
The gap value is converged to better than 0.1% for M � 50.
Figure 5(b) shows the convergence as a function of increasing
N for M = 100 and the different behaviors obtained with
different kernels. Without correction of the truncation error, the
calculated gap converges with oscillations to the exact value.
With the Jackson kernel, which modifies the coefficients (19)
according to [44]

DJackson
n = Dn

(N−n+1) cos
(

πn
N+1

) + sin
(

πn
N+1

)
cot

(
π

N+1

)
N + 1

,

(23)

the exact value is approached from below without oscillations.
The Fejér kernel also leads to convergence from below, but at
a much slower rate. Finally, with the Lorentz kernel the gap
converges to a lower value because the scattering rate � is pair
breaking. In the present example, N = 2000 and the Jackson
kernel ensure a 0.1% convergence.

All calculations of the self-consistent order parameter
reported in this paper use the Jackson kernel and values of M

and N that ensure at least 0.1% convergence. When studying
systems with broken translational symmetry, we build the sys-
tem of size M such that the site/bond where the LDOS/gap is
being calculated sits at the center; i.e., we use a different system
for each site. In this way the systematic errors associated with
the system’s boundaries are comparable for all sites.

III. APPLICATIONS

In this section, we present four brief studies illustrating
the potential of the method. The first two studies deal with
isolated vortices and do not require the asymmetric gauge,

yet they reveal the sensitivity of the vortex core to the band
structure and allow us to validate the model (8). The last two
studies deal with infinite ordered and disordered vortex lattices
and make use of the asymmetric gauge.

We first address the dichotomy between discrete vortex-
core bound states as predicted for superconductors of s-wave
symmetry and the continuous energy spectrum expected for
d-wave symmetry, both in the quantum and semiclassical
regimes. Although this problem is not new, the improved
energy resolution of the method allows us to differentiate
discrete states from a continuum in parameter regimes where
other methods see no distinction. We then investigate the
self-consistent order parameter for an isolated d-wave vortex
as the chemical potential is tuned across a Lifshitz transition.
Variations of the order-parameter profile have been previously
studied as a function of temperature [45], magnetic field
[46–49], and more recently confinement [50], but the relation
between the shape of the vortex core and the Fermi-surface
topology in the quantum regime has not been considered so
far. Our calculations show that the order parameters for isolated
vortices have different shapes for open and closed Fermi
surfaces. The LDOS in and around the vortex does not show
signatures revealing unambiguously the d-wave symmetry of
the order parameter.

Next, still for a dx2−y2 pairing symmetry, we consider
the influence of nearby vortices on the LDOS in one vortex
core. In a perfect vortex lattice, it is known that the LDOS
not only depends on the field, but also on the vortex-lattice
orientation with respect to the microscopic lattice [33,35]. It
is not clear how these dependencies disappear as the field is
lowered and the vortex spectra converge to the isolated-vortex
limit. Another question is how the differences due to different
orientations at the same field disappear when disorder is
introduced in the vortex positions and the distinction between
orientations looses significance. We provide here an answer to
these questions.

A. Resonant states in the d-wave vortex from the quantum
regime to the semiclassical limit

The interlevel spacing of the bound states predicted by
Caroli et al. [8] is controlled by the parameter 	/EF ∼
1/kFξ , which is a small number for all known conventional
superconductors. A direct observation of the discrete levels
remains a challenge nowadays, which requires an extremely
clean limit and low temperature, �/τ,kBT � 	/kFξ , where
τ is the quasiparticle relaxation time. The core states are so
densely packed that they appear as a continuum in tunneling
experiments [4–6]. The two subgap levels observed first in
YBa2Cu3O7−δ [51] and later in Bi2Sr2CaCu2O8+δ [52,53]
vortex cores were initially regarded as discrete bound states
resolved due to the small value kFξ ∼ 1 in the cuprates. After
some debate [54,55], this interpretation has been progressively
abandoned as it became clear that the vortex-core spectrum in
a superconductor with dx2−y2 pairing symmetry has no discrete
levels [24]. The topic remains somewhat controversial on the
theory side, because an analytical solution comparable with
the one of Caroli et al. could not be achieved for the d-wave
vortex. On the experimental side, it was shown very recently
that the two subgap levels in YBa2Cu3O7−δ are actually not
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vortex-core states, because they are observed in zero field as
well [56].

Deciding whether a spectrum is discrete or continuous
based on numerics is not straightforward: in finite systems
the spectrum is intrinsically discrete and a careful finite-size
scaling is mandatory to prove the survival of discrete states
in the thermodynamic limit. Our method gives access to very
large systems and is well suited to settle the question. We
will compare lattice models that are identical in all respects
except the order-parameter size and symmetry, and show
that the vortex spectrum is discrete for s-wave symmetry
and continuous for d-wave symmetry, both in the quantum
and semiclassical regimes. Furthermore, we will study how
the signature of the Fermi surface in the vortex LDOS
progressively disappears as the system becomes more and
more classical.

Consider the square-lattice tight-binding model of Sec. II F,
ignoring the next-nearest neighbor hopping, and setting the
chemical potential to zero. This model is half-filled with a
bandwidth 8t1 and a Van Hove singularity at the Fermi level.
By varying the pairing strength, we tune the system from the
quantum regime where 	0/t1 ∼ 1 towards the semiclassical
limit where 	0/t1 � 1. Self-consistency is ignored here for
simplicity, as it will be considered at length in the following
subsection: a Ginzburg-Landau vortex core is assumed, with
profile p(r) = tanh(r/ξ ) and ξ/a = t1/	0 ≈ �vF/(π	0). For
a given system size, the energy resolution of the calculation
is set by the bandwidth as discussed in Sec. II A. With
decreasing 	0/t1, the system size necessary in order to reach
a sufficient subgap resolution therefore increases. We use
a lattice of two million sites with the diamond-like shape
shown in Fig. 3(a). This sets the resolution to ≈ 0.015t1
and allows one to distinguish discrete subgap features for
	0/t1 � 0.1. Figure 6(a) shows the LDOS at the vortex center
for the dx2−y2 symmetry. The spectrum is continuous [24,28],
showing a broad zero-bias peak which narrows on entering
the semiclassical regime and becomes resolution-limited for
	0/t1 � 0.1. This calculation would not miss discrete levels
if they were present. This is demonstrated by comparing with
the LDOS calculated for s-wave pairing [Fig. 6(b)], where
discrete states are easily resolved. In the continuum model [8],
the half-integer quantization of angular momentum forbids a
state at exactly zero energy. Here, due to broken rotational
symmetry and exact particle-hole symmetry, a state exists at
exactly zero energy. This state is mostly localized on the central
site, giving a strong resolution-limited peak at E = 0. Note that
the width of this peak is independent of 	0, although it appears
broader at small 	0 in the figure due to rescaled energy axis.
The other bound states are mostly localized on neighboring
sites with little or no weight at the vortex center, where they
appear (or not) as small peaks at finite energies. The vertical
lines in Fig. 6(b) show all bound states which can be identified
according to the following three criteria: (i) the peak width
scales as 1/N , (ii) the peak energy saturates with increasing
N , (iii) at the peak energy, the LDOS has a maximum at
some distance from the center, which increases with increasing
energy. Note that every second state has no weight on the
central site. It is seen that the low-lying states agree well
with the scaling En/	0 = (n/2)	0/t1 with integer n, while
the interlevel spacing decreases as one approaches the gap

Δ0/t1 = 1 d -wave

Δ0/t1 = 0.5

Δ0/t1 = 0.2

−2 −1 0 1 2

E/Δ0

Δ0/t1 = 0.1

(a)

Δ0/t1 = 1
s-wave

Δ0/t1 = 0.5

Δ0/t1 = 0.2

−2 −1 0 1 2

E/Δ0

Δ0/t1 = 0.1

(b)

FIG. 6. LDOS at the vortex center for the half-filled square lattice
with nearest-neighbor hopping t1, second-neighbor hopping t2 = 0,
and various values of 	0 for (a) d-wave pairing and (b) s-wave
pairing. The thick horizontal bars denote the energy resolution (which
is identical in all panels). The dashed vertical lines in (b) show
multiples of 	0/t1, indicating the typical interlevel spacing for bound
states; the long (short) solid vertical lines mark the actual bound-state
energies with (without) weight at the vortex center. All calculations
use the system geometry of Fig. 3(a) for M = 1000, N = 4M with
the Jackson kernel, a = 8t1, and b = 0.

edges, like in the continuum model [22]. For 	0/t1 = 0.1, the
resolution limit is reached and the spectrum looks continuous.
If 	0/t1 < 0.1, the calculation alone cannot decide whether
the zero-bias peak in the d-wave case is a continuum or
a superposition of discrete levels; its smooth evolution into
a continuum upon entering the quantum regime leaves no
doubt, however. In summary, while the core states have to be
exponentially localized in an s-wave superconductor because
no state can exist at subgap energies far from the vortex, for a
d-wave order parameter the existence of excitations degenerate
with the core states in the bulk of the superconductor prevents
the formation of truly localized states. We will study further
the spatial behavior of the resonant core states in Sec. III C.

We now turn to the spatial distribution of the zero-
energy LDOS for the d-wave vortex. In the semiclassical
approximation, this quantity has arms pointing along the nodal
directions of the gap [57,47]. In the quantum regime, one
expects the Fermi-surface anisotropy to become relevant. If
kFξ ∼ 1, the order parameter varies spatially over length scales
similar to 1/kF: the vortex therefore has Fourier components
close to kF, can induce extended transitions on the Fermi
surface, and thus feel its shape. To illustrate this, we compare
the model considered up to now, t1 ≡ t , t2 = μ = 0, with
the model t2 ≡ t , t1 = μ = 0. The latter appears somewhat
artificial but is quite interesting, because it has the same
normal-state DOS as the former with a Fermi surface rotated
by 45◦ (see Fig. 7). Figure 7 compares the vortex LDOS of the
zero-energy peak in both models [58]. In the quantum regime
(	0/t ∼ 1), the LDOS in the second model exhibits strong
arms pointing along the lattice (antinodal) directions. The rule
of thumb learned from impurity scattering in the quantum
limit is that LDOS structures develop along the directions
perpendicular to the Fermi surface. The same principle can
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FIG. 7. Fermi surface and low-energy LDOS [58] for a d-wave
vortex at three values of 	0/t on the square lattice with (a) t1 = t ,
t2 = μ = 0 and (b) t2 = t , t1 = μ = 0. The vortex-core size is t/	0

in units of the lattice parameter, corresponding to a single pixel in each
image. The color scale is logarithmic going from minimum LDOS
(black) to maximum LDOS (white).

explain the pattern seen in Fig. 7(b). The pattern is more
diffuse for the first model in Fig. 7(a), presumably due to
a competition between the principle just mentioned, which
produces weak arms running along the nodal directions, and
the singular DOS associated with the Van Hove singularity at
(π,0), which enhances scattering along the antinodal ones.
On approaching the semiclassical limit, the sensitivity to
Fermi-surface anisotropy is progressively reduced. In the first
model, the LDOS displays arms along the nodal directions
[28] like in the semiclassical approximation, suggesting a link
with the gap anisotropy. In the second model, a rotation from
antinodal to nodal star shape seems to take place as the LDOS
becomes more isotropic, but the transformation is not yet
completed at 	0/t = 0.1. The data shown in Fig. 7 emphasize
the difficulty of ascribing LDOS anisotropies to a single source
when all length scales are similar: some of the principles valid
in the semiclassical limit are not appropriate in the quantum
regime. Further illustrations will be given in Secs. III B and
III C.

B. Reshaping of the vortex core across a Lifshitz transition

The BCS expression ξ = �vF/(π	) suggests that the
vortex core may show anomalies at a Lifshitz transition,
where the Fermi velocity has a singularity. In order to
explore the dependence of the self-consistent vortex-core
order parameter on vF, we consider a tight-binding model
on the square lattice typical for the cuprates, with hopping
amplitudes t1 = −250 meV and t2 = 75 meV, and we vary the
chemical potential μ between −500 meV and 0. The Lifshitz
transition takes place at μ = −300 meV. Figures 8(a) and
8(b) show the corresponding evolution of the Fermi surface
and average Fermi velocity, respectively. We assume dx2−y2

pairing symmetry and adjust the nearest-neighbor attraction
V to keep the maximum gap along the Fermi surface fixed to
	 = 40 meV: in this way, we preclude changes of the vortex
core associated with variations of 	. The evolution of V is
also shown in Fig. 8(b). It is qualitatively consistent with
the relation 	 ∼ exp{−1/[|V |N (0)]}, since the Fermi-level

FIG. 8. (a) Evolution of the Fermi surface with varying chemical
potential μ for a square lattice with t1 = −250 meV and t2 = 75 meV.
(b) Evolution with μ of the average Fermi velocity (left scale)
and nearest-neighbor interaction needed to produce a d-wave gap
of 40 meV on the Fermi surface (right scale). The velocity is
calculated for a lattice parameter a = 3.8 Å. The vertical line
indicates the Lifshitz transition. (c) Evolution of the vortex parameters
ξ0, ξ1, and ξc = ξ1W (ξ0/ξ1) (left scale). The length �vF/(π	) is
also indicated for comparison. The squares (right scale) show the
maximum amplitude of the s∗-wave component. The surface plots
show, for three values of the chemical potential and for each node of
the microscopic square lattice (black lines), the self-consistent order
parameter modulus (blue), the difference between the model (8) and
the self-consistent data (orange), and the s∗-wave component in one
quarter of the field of view (green). The lattice grid also marks the
zero of the vertical scale, such that positive (negative) values of the
difference shown in orange appears above (below) the lattice.

DOS has a maximum at the Lifshitz point. The evolution
of the self-consistent order parameter for an isolated vortex
is displayed in Fig. 8(c). The calculations were performed
within the square system [Fig. 3(b)] of size M = 100 with
a Chebyshev expansion order N = 10 000, a = 2.6 eV − 2μ,
and b = 0.

For each value of the chemical potential, we fit the function
(8) to the self-consistent order parameter and extract the values
ξ0 and ξ1 plotted in the figure. The fit works pretty well for the
pure d-wave component, as illustrated by the three examples
for μ = −500 meV, −275, and 0. The upper blue surface
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shows the average of the gap modulus on the four bonds
surrounding each lattice site, while the lower orange surface
is the difference between the model and the self-consistent
solution. The order parameter does not reach zero at the vortex
center because the latter sits on a lattice site, while the order
parameter lives on nearest-neighbor bonds.

One observes a clear change, not only in the size, but also
in the shape of the vortex-core profile across the Lifshitz
transition. While the formula ξ = �vF/(π	) would predict
a monotonic increase of the core size on increasing μ, with a
weak anomaly at the Lifshitz point, the size actually increases
on both sides of this point where it has a minimum. To be
more quantitative, we define the size ξc of the core as the
“width at half height” given by the condition p(ξc) = 1/2.
The solution is ξc = ξ1W (ξ0/ξ1) where W is the Lambert
function. One sees in Fig. 8(c) that this quantity indeed has
a minimum close to the Lifshitz point. Because ξ1  ξ0 and
W (x) = x for x → 0, we have ξc ≈ ξ0. The shape of the core
also changes at the Lifshitz point: on the right, where the
Fermi surface is hole-like, the minimum at the vortex center is
sharp, on the left it is more rounded. The model (8) captures
this change by varying the ratio ξ0/ξ1: while the slope at the
origin is controlled only by ξ0, p′(0) = 1/ξ0, the curvature
p′′(0) = 2(ξ0 − ξ1)/(ξ 2

0 ξ1) is positive if ξ1 < ξ0. Finally, while
the model (8) has cylindrical symmetry, the self-consistent
solution presents a weak anisotropy. The gap relaxes faster to
its bulk value along the diagonals of the square lattice than
along the (10) and (01) directions. The same behavior is found
in the semiclassical approximation [57]. Consequently, the
model overestimates the data along (10) and underestimates
it along (11). The anisotropy is similar on both sides of the
Lifshitz point where it is minimal, such that the core is nearly
isotropic there. The figure also shows that the induced s∗-wave
component [25] varies strongly across the transition. Small
for the hole-like Fermi surfaces (∼6% at μ = 0 and ∼2% at
μ = −275 meV), it reaches ∼40% at μ = −500 meV.

Figure 9 shows the vortex LDOS calculated at three repre-
sentative values of the chemical potential. The zero-energy
LDOS extends from the vortex center along the antinodal
directions [28,31], both for electron-like and hole-like Fermi
surfaces. This is to be contrasted with the result in the
semiclassical limit [57,47]—as well as in the quantum limit for
a half-filled square lattice without second-neighbor hopping
[28]; see Sec. III A—where the zero-energy LDOS extends
along the nodal directions. It also hurts the widespread belief
that the LDOS should extend farther along the directions
where the gap is smallest. Weak arms pointing along the nodal
directions only show up on a logarithmic scale. Above 15 meV
(0.3	) the LDOS has the same starlike spatial pattern as in
the semiclassical approximation [57,59] when the chemical
potential is close to the Lifshitz point; for lower and higher
band fillings the patters are different. The spectral traces
displayed in Figs. 9(b) and 9(c) change considerably with
varying the chemical potential. At μ = 0, while two dispersing
features are seen in Fig. 9(c) along the direction (11), like in the
Caroli–de Gennes–Matricon vortex [8], four structures show
up in Fig. 9(b) along (10), like in the semiclassical model [57].
At μ = −275 meV, the LDOS looks globally more isotropic,
although is falls off more quickly along (11) as seen in the
spatial maps. The coherence peak at negative energy is taller

μ
=

0

log

(a) E = 0

lin

5 meV 10 meV 15 meV 20 meV

−
27

5
m

eV

log lin

−
50

0
m

eV

log lin

−50 0 50

μ = 0

(b)
(0, 0)

(20, 0)

−50 0 50

−275 meV

−50 0 50

−500 meV

−50 0 50

E (meV)

(c)
μ = 0 (0, 0)

(20, 20)

−50 0 50

E (meV)

−275 meV

−50 0 50

E (meV)

−500 meV

FIG. 9. (a) Spatial and (b), (c) spectral distributions of the LDOS
for open hole-like Fermi surface (μ = 0), nearly square Fermi
surface (μ = −275 meV), and closed electron-like Fermi surface
(μ = −500 meV). The first two columns in (a) show the same data
on logarithmic (log) and linear (lin) scales. The scale for the other
maps is linear. All maps show the same region of size 41a × 41a. (b)
and (c) display spectral traces running from the core along the (10)
and (11) directions, respectively; spectra are shifted vertically. The
solid lines show the LDOS for the self-consistent order parameter; the
red-dashed lines in (b) show the LDOS calculated with the isotropic
model (8) using the fitted parameters; the blue-dashed lines in (c)
show the LDOS calculated using (8) with the fixed values ξ0 = 1.3a

and ξ1 = 14a. Only one quarter of the dashed spectra is shown for
clarity. All calculation were performed with M = 350, N = 4M ,
a = 2.6 eV, and b = 0.3 eV − μ.

due to the Van Hove singularity at −25 meV in the bare
dispersion. At μ = −500 meV, the main peculiarity is that
the zero-energy peak is skewed toward positive energy. We
attribute this to the strong s∗-wave component in the order
parameter, which destroys locally the d-wave symmetry and
is not captured by the model (8).

The LDOS in and around d-wave vortices is not universal,
as exemplified by the differences between the traces of Fig. 9.
The figure also demonstrates that the variations are mostly due
to changes in the band structure, not to changes in the order
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parameter. This is established in two steps. The three traces
in Fig. 9(b) compare the LDOS for the fully self-consistent
order parameter with the LDOS calculated using the model
(8). When the model is in qualitative agreement with the
self-consistent result (small s∗-wave component), the two
sets of traces only differ by tiny quantitative details. At
μ = −500 meV, where the model misses the large s∗-wave
component, the differences are bigger but the traces remain
qualitatively similar. It appears that qualitative properties of
the order parameter, like an induced s∗-wave component, do
play a role in the LDOS, but quantitative details such as the
differences displayed in orange in Fig. 8 do not. In Fig. 9(c), the
three traces plotted with dotted lines were all calculated with
identical order parameters. They nevertheless exhibit the same
typical variations with changing μ as the fully self-consistent
traces, which proves that these variations are linked with
changes in the band structure. An examination of the spatial
maps leads to the same conclusion: the core size defined by the
contrast of the LDOS maps is not uniquely linked with the core
size ξc in Fig. 8, but shows different trends at different energies.
At E = 0, the core appears smallest near the Lifshitz point
and increases both for open and closed Fermi surfaces like ξc.
But at E = 20 meV the trend seems rather to follow the Fermi
velocity like ξ . These trends also display polarity: for instance,
for μ = −500 meV the core appears much larger in the LDOS
at E = −15 meV than at E = +15 meV. These observations
confirm the disconnection in the quantum regime between the
spatial patterns of the LDOS and the spatial structure of the
order parameter. A similar conclusion has been recently drawn
from studies of the vortex-core structure in LiFeAs [37,60].

In summary, the self-consistent order parameter of an
isolated vortex in a superconductor of dx2−y2 symmetry
varies across a Lifshitz transition. Part of this variation
can be tracked by the two-parameter model (8), but the
emergence of a local s∗-wave component goes beyond the
model. The simple correlation implied by the BCS formula
between the vortex-core radius and the Fermi velocity is
broken in the quantum regime. The LDOS around the
vortex is not tightly linked with the quantitative details of
the order parameter, but depends on band-structure prop-
erties in a way which has not been fully clarified so far.
Last but not least, there is no clear-cut signature of the
dx2−y2 -wave symmetry of the order parameter in the LDOS.
The latter statement will be further illustrated in the next
subsection.

C. New emerging length for quasibound vortex-core states

Previous studies of ideal vortex lattices with d-wave order
parameter have shown that the LDOS in the core changes
significantly with increasing field [33,35]. At a given field,
the LDOS also depends on the orientation of the vortex
lattice [35]. The interpretation is that the vortex-core states
are not exponentially localized and connect the various cores
to form bands [13,33]. It is natural to ask whether there is
a new emerging length scale, between the coherence length
and the penetration depth, associated with the overlap of
the core states. The magnetic field being uniform in our
calculations, the penetration depth is in effect infinite. We
examine the existence of a new length scale by asking the

following question: how far apart must the vortices be, for
the LDOS in each core to be independent of the vortex-lattice
orientation? We find that the sensitivity of the LDOS to vortex-
lattice orientation increases exponentially with reducing the
intervortex distance, over a characteristic length unrelated to
the parameter ξ0, which determines the gap modulus near the
core, but possibly connected with the parameter ξ1.

The microscopic model is the same as in the previous
section, with μ = t1 and 	 = 41.3 meV: the Van Hove
singularity of the bare DOS is at −50 meV and the largest gap
on the Fermi surface is 40 meV. We consider two orientations
of the vortex lattice with respect to the microscopic lattice, 0◦
and 45◦. For both orientations, we compute the self-consistent
order parameter at various intervortex distances d between
20a and 100a. The corresponding field range is 35–1.5 T for
a lattice parameter typical of the cuprates. Such low fields
are unreachable by conventional numerical techniques, but
relatively easy to access with the real-space method. We fit
the ansatz (12) to the self-consistent solution and obtain the
field dependence of the parameters ξ0 and ξ1 displayed in
the insets of Fig. 10(a). The s∗-wave component is smaller
than 1.6% at all fields and the difference between the fit and
the self-consistent data is below 6%. The field dependencies
of ξ0 and ξ1 are well described by the exponential form
ξ (d) = ξ (∞) + Ae−d/� with lengths � that are typically 21a

for ξ0 and 37a for ξ1. We see that ξ1  ξ0 in the whole field
range, such that the vortex-core size is ξc ≈ ξ0.

We first observe that the core size increases with increasing
field. This trend suggests that the cores grow and eventually
merge as the critical field is approached, which contradicts the
idea that the cores shrink due to the overlapping currents [61].
Several measurements [46,62,63] and calculations [46,47]
have indeed reported a decrease of the core size with increasing
field. We note that these measurements have probed the
low-field regime (below 1.5 T) for s-wave superconductors
such as NbSe2, which are far from the quantum limit. Likewise,
all calculations have been done for s-wave superconductors
within the semiclassical approximation. Our results show that
the behavior of the core size in a d-wave superconductor, in
the quantum limit and at high field, is opposite to the behavior
in a s-wave superconductor, in the classical limit and at low
field.

Next we calculate, for the two vortex-lattice orientations,
the LDOS in the core and at the most symmetric point in-
between the cores, as a function of field. The result is displayed
in Figs. 10(b) and 10(c), respectively. As the field increases [top
to bottom in Figs. 10(b) and 10(c)], the zero-energy peak in the
core gets suppressed and the superconducting gap in-between
the vortices gets filled. For the lowest field (d = 100a) the
LDOS depends very little on the orientation, while significant
differences appear for d < 50a. We quantify these differences
by computing the correlation (Ei are discrete energies)

C =
∑

i N
(0◦)(r,Ei)N (45◦)(r,Ei)√∑

i[N
(0◦)(r,Ei)]2

∑
i[N

(45◦)(r,Ei)]2
. (24)

Figure 10 shows that C decreases exponentially from unity
as the vortices get closer until d ≈ 30a (16 T). For shorter
distances, the LDOS curves are qualitatively different and the
correlation C is less meaningful. The exponential behavior
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FIG. 10. Insets in (a). Parameters ξ0 and ξ1 as a function of
intervortex distance d in the 0◦ (black squares) and 45◦ (red diamonds)
vortex lattices. The solid lines show exponential behavior with the
characteristic lengths indicated in parentheses. (b) LDOS in the core
and (c) in-between vortices for increasing field (top to bottom, from
d/a = 100 to d/a = 10, shifted vertically) in the 0◦ (black solid lines)
and 45◦ (red dashed lines) vortex lattice. The main graph (a) shows
how the correlation between the spectra for the 0◦ and 45◦ orientations
approaches unity with decreasing field in the core (filled circles) and
in-between vortices (empty circles). The magnetic field B = 0/d

2

is shown for a lattice parameter a = 3.8 Å. The self-consistent
calculations were performed with M = 100, N = 10000, a = 3.1 eV,
b = 0; the LDOS calculations with M = 500, N = 4M , a = 2.6 eV,
b = 0.55 eV.

extends over two decades with the same characteristic length
in the core and in between the vortices: � = 38a. This length
is 50 times longer than ξ0 of the isolated vortex, and two times
longer than ξ1.

In order to better understand the meaning of �, we
return to the isolated vortex and study the behavior of the
LDOS at long distances from the core, using a large system
(M = 500). Figure 11 shows the spatial dependence of the
LDOS N (r,E) along the directions (10) and (11) at various
energies. We overlook particle-hole asymmetry by averaging
the LDOS at positive and negative energies. For convenience,
we also normalize N (r,E) to its zero-field (no vortex) value
N0(E). Because in the calculation we keep the position r

|E | = 0

ξ0/a

ξ1/a

a
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r/a
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,E
)/

N
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FIG. 11. Spatial evolution of the LDOS along the antinodal (filled
black symbols) and nodal (empty red symbols) directions at various
energies for an isolated vortex. The LDOS is normalized to its value
in the absence of vortex. The vertical lines indicate the characteristic
lengths ξ0, ξ1, and �.

fixed at the system center and move the vortex with respect
to this position, the boundary errors affect in the same way
all points in the graph. Looking at zero energy first, one sees
the LDOS being larger along (10) than along (11) at short
distances, with an inversion for r > 4a. Both tails extend far
from the core: there is no sign that they have converged at
r = 200a. The stronger tail in the nodal direction explains
why the parameters ξ0 and ξ1 of the vortex lattice are more
sensitive to the field for the 45◦ orientation. It is worthwhile
stressing that the zero-energy LDOS leaks out of the core to
very large distances in the nodal and antinodal directions—as
a matter of fact, in all directions with the longest tails about 10◦
off the nodal direction; see Fig. 9(a). This indeed reveals the
existence of nodal excitations degenerate with the zero-energy
core states everywhere in the bulk of the superconductor, but
it also underlines that the gap nodes do not show up in the
form of a star in real space around the vortex. The reason is
that the LDOS mainly probes the center-of-mass coordinate of
the Cooper pairs, while the nodes are a property of the relative
coordinate. The nodes are directly visible in real space when
probing nonlocal properties connected with the off-diagonal
elements Gr r ′ of the Green’s function [31].

At finite energy, the LDOS appears to reach an asymptotic
value at some finite length of the order of �. No particular
meaning has been associated yet with the length ξ1 in the model
(8). The profile p(r) is mostly sensitive to ξ1 in the region
r �

√
2ξ0ξ1, which is well outside the core. Since ξ1 probes

the order parameter far from the core, while � probes the LDOS
in the same region, it is tempting to connect the two lengths.
The fact that � seems to set the field dependence of ξ1 (Fig. 10)
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points to the same direction. The relation � ≈ 2ξ1 may be a
consequence of the fact that the LDOS depends on the order
parameter squared. Consequently, ξ1 may be interpreted as
half a characteristic dimension of the vortex, which describes
the localization of states at finite energies. A systematic study
of � and its possible relation with ξ1 is left for a future work.

D. Vortex-core LDOS in disordered vortex lattices

In superconductors with short coherence length, the vortices
are easily pinned by defects leading to glassy vortex phases
[38,39]. In Bi-based cuprates, for instance, the disorder can
be such that the short-range coordination between vortex
positions has no obvious symmetry at high fields [64,65]. Dis-
ordered vortices have also been observed in the iron pnictides
[66]. This raises the question of how severely the vortex-core
spectra are affected by disorder in the vortex lattice. For strong
enough disorder, the information about the initial vortex-lattice
orientation is lost and the average vortex-core spectrum should
no longer depend on this orientation. In this section, we build
on the results of the previous section to study how the spectra in
the 0◦ and 45◦ vortex-lattice orientations progressively become
identical as disorder is increased. Unlike previous studies
[17,20], we consider positional disorder with respect to a
perfect lattice rather than completely random vortex positions,
and we focus on the vortex-core spectrum rather than the
average DOS. Starting from the ideal lattices, we introduce a
disorder δR = dρ(cos τ, sin τ ) in the vortex positions, where
d is the initial distance between vortices, ρ is a random number
with Gaussian distribution of variance η, and τ is a uniform
random number between 0 and 2π . η measures the strength
of disorder, the mean displacement being dη

√
2/π . We mimic

the vortex repulsion by constraining the intervortex distance to
be larger than 18a. For each disorder strength and both lattice
orientations, we generate 30 vortex configurations and, for
each configuration, we compute the vortex-core spectrum in
121 vortices. The resulting 3630 spectra are averaged and the
correlation C between the averages is calculated. The results
are summarized in Fig. 12.

Figures 12(a) and 12(b) display average vortex-core spectra
for two fields and three disorder strengths. In each case,
the standard deviation of the distribution of spectra gives a
measure of the disorder-induced spectral variability in the
core. The energy dependence of the standard deviation shows
that the effect of disorder on the LDOS is limited to low
energies � 30 meV and is maximal for zero-energy states, as
expected given their large spatial extension. Less expected is
the nonmonotonic behavior of the standard deviation, with a
minimum near ±6 meV. It appears that positional disorder
transfers spectral weight across a well-defined energy. This
energy increases slowly with increasing field and disorder,
from 5 to 7 meV for d = 50a over the range of disorder
considered, respectively from 6 to 8 meV for d = 30a.
As spectral weight is removed at low energy, the average
zero-energy peak is suppressed with increasing disorder, while
at the same time the orientation dependence disappears. At
η = 0.1, the spectral differences between the two orientations
are bigger than the disorder-induced variations, such that
the average spectra remain orientation dependent. At η =
0.5, the disorder-induced variations are a substantial fraction
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FIG. 12. (a) and (b) Average vortex-core spectra in the disordered
0◦ (solid black) and 45◦ (dashed red) vortex lattices for (a) d =
50a and (b) d = 30a and for three disorder strengths. In each case,
the average is calculated from a distribution of 3630 spectra. The
standard deviation of the distribution is displayed as gray area and
light red lines for the 0◦ and 45◦ orientations, respectively. (c) and
(d) Correlation between the average spectra for both orientations as
a function of disorder strength. Linear and exponential behaviors are
shown by solid lines on top of the calculation (circles).

of the signal and orientation dependence is lost. The correlation
C indicates a transition from a weak-disorder regime, where
C increases linearly with η, to a strong-disorder regime
characterized by an exponential suppression of the orientation
dependence over a characteristic disorder strength of the order
of 10%.

The data shown in Fig. 12 were compiled from the LDOS
calculated exactly at the vortex centers, i.e., at the lattice
points where the phase is singular and the order parameter
is zero. An inspection reveals that a small number of these
spectra exhibit a split zero-energy peak. Figure 13 shows the
zero-energy LDOS in a region containing 18 vortices. Two
nearby vortices at the center form a pair in which one has
a split peak and the other not. Zooming in [Fig. 13(b)], we
see that the split peak occurs because the maximum of the
zero-energy LDOS is spatially dissociated from the vortex
center: where the zero-energy LDOS has its maximum, the
peak is not split (spectrum 2). In the second vortex of the
pair, the LDOS maximum is spread over four sites and a
peak subsists at the center (spectrum 7). The dissociation
of the maximum zero-energy LDOS from the vortex center
is due to an asymmetric distribution of supercurrent around
the core [30], as illustrated in Fig. 13(c). For an isolated
vortex or an ideal vortex lattice, the supercurrent averages
to zero around each vortex and there is no resultant Lorentz
force. Positional disorder breaks this symmetry, so each vortex
endures a net force F = J × B, where J stands for a spatial
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FIG. 13. (a) Zero-energy LDOS over a 200a × 200a region in
a disordered 45◦ vortex lattice with d = 50a and η = 0.3. The
energy-dependent LDOS calculated at the vortex centers is displayed
next to each vortex. (b) Zoom of the central region showing spectral
traces across two vortex cores at the positions indicated in the insets.
Red crosses mark the vortex centers (phase singularity points). The
distance between the two centers is 22a. (c) Superfluid current density
(color scale and black arrows) in the same region as (b) and resultant
Lorentz force on each vortex (green arrows). The force is the average
of j × B inside the dashed circles of radius 11a.

average of the current density j over the core. Hence F
is a measure of the strength and direction of the current
asymmetry. Figure 13(c) shows that F is twice as large in
the vortex where the dissociation takes place compared with

the partner in the pair. The reason appears in Fig. 13(a): a
vortex-deficient zone in the direction of the force, with no
equivalent for the partner. In response to the Lorentz force, the
electronic structure gets polarized in the direction of the force,
leading to the separation of the geometric and electronic vortex
centers. Since experiments access the LDOS but are blind to
the order-parameter singularities, a systematic study of the
LDOS polarization as a function of the force may provide the
knowledge required in order to infer exact vortex positions
from experimentally observed LDOS maxima.

IV. SUMMARY AND CONCLUSION

The vortex cores hold keys to understand the superconduct-
ing state, especially its phase coherence and interaction with
competing orders. Scanning tunneling spectroscopy provides
an access to the LDOS, where much of this information is
stored. While the measurements are usually performed in low
magnetic fields and the vortex positions are often disordered,
the calculations reported so far considered either isolated
vortices or ideal vortex lattices at high fields. These results
may not be relevant to interpret some of the experiments.
The method described here opens new doors and improves
our capability to simulate experiments realistically. We have
demonstrated this by reporting self-consistent Bogoliubov–de
Gennes calculations for fields as low as 1.5 T, as well as LDOS
calculations for infinite disordered vortex configurations.
Thanks to a good energy resolution and excellent scalability,
the method is ideally suited for two-dimensional lattice models
in the quantum limit. We have obtained several results for
isolated vortices in d-wave superconductors: the vortex LDOS
is not universal and depends largely on the band structure,
which also affects the vortex-core profile; the representation
of this profile requires at least two characteristic lengths,
which show different behaviors compared with the canonical
BCS coherence length; consideration of the vortex LDOS
alone does not allow one to determine unambiguously the
order-parameter symmetry; the LDOS is delocalized in all
spatial directions at zero energy, while at finite energy it is
confined by a third characteristic length different from those
describing the vortex profile. The observation of this new
emerging scale was not possible with previous methods, as
it requires very large systems and/or vortex lattices at fields
lower than 10 T. For two square vortex lattices, we have
found that in the quantum limit, unlike in the semiclassical
limit, the vortex cores grow with increasing field. Disorder
in the vortex positions leads to a redistribution of spectral
weight around a characteristic energy inside the gap. The
net result is a broadening of the average zero-energy LDOS
peak and disappearance of its dependence on vortex-lattice
orientation. This disappearance crosses over from linear at
weak disorder to exponential at stronger disorder, defining
a characteristic positional disorder at 10% of the intervortex
distance. Lastly, we showed that a sufficiently asymmetric
distribution of supercurrent can dissociate the geometric and
electronic vortex centers in response to the Lorentz force
polarizing the LDOS.

The numerical method used here has a broad scope and
is straightforwardly generalized to include, e.g., multiple
bands, impurity potentials, and competing orders such as
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antiferromagnetism or charge-density waves. NbSe2 is an
interesting material to consider, being a charge-density wave
superconductor in which vortices have been extensively stud-
ied by STM [6], and sitting in an intermediate regime between
the quantum and semiclassical limits. The interplay between
charge-density wave and vortex-core structure [67] has so
far not been studied theoretically. Other interesting problems
where the real-space Chebyshev-expansion approach offers
obvious advantages include the evolution of the vortex-core
structure and spectroscopy on approaching a surface or a grain
boundary [68], or the Josephson vortices pinned at step edges
[69]. We have complemented the toolbox of this approach
with an ansatz order parameter for infinite disordered vortex
configurations; we hope this will stimulate further studies.
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APPENDIX: SYMMETRIES OF THE ORDER PARAMETER

The eigenvalues and eigenvectors of the Bogoliubov–de
Gennes Hamiltonian H may be defined as H = ∑

α |α〉Eα〈α|.
The electron and hole amplitudes are uα(r) = 〈r|α〉 and
vα(r) = 〈r̄|α〉, respectively. Alternatively, this means that the
amplitudes satisfy H (uα,vα) = Eα(uα,vα). By manipulating
this equation and using the form (2), it is easy to see that, if (and
only if) 	r r ′ = 	r ′ r , the following also holds: H (v∗

α, − u∗
α) =

−Eα(v∗
α, − u∗

α). The symmetry (uα,vα,Eα) ↔ (v∗
α, − u∗

α, −
Eα) shows that the spectrum of H is symmetric. Of course,
this does not imply that the electronic spectrum (the LDOS) is
particle-hole symmetric. Making use of this symmetry, we can
see how the anomalous function Fr r ′ (z) at complex energy z

changes upon exchanging the spatial indices:

Fr r ′(z) = 〈r|(z − H )−1|r̄ ′〉 =
∑

α

uα(r)v∗
α(r ′)

z − Eα

= −
∑

α

v∗
α(r)uα(r ′)
z + Eα

= Fr ′ r (−z). (A1)

If b = 0 (see Sec. II A), this symmetry also provides a useful
relation between the Chebyshev coefficients 〈r|Tn(H̃ )|r̄ ′〉 and
〈r ′|Tn(H̃ )|r̄〉. In this case, H̃ has the same symmetries as H ,
such that

〈r|Tn(H̃ )|r̄ ′〉 =
∑

α

uα(r)Tn(Ẽα)v∗
α(r ′)

= −
∑

α

v∗
α(r)Tn(−Ẽα)uα(r ′)

= (−1)n+1〈r ′|Tn(H̃ )|r̄〉 (b = 0), (A2)

were we have used a property of the Chebyshev polynomi-
als: Tn(−x) = (−1)nTn(x). Inserting (A2) into (18), we can

establish the symmetry of 	:

	r r ′ − 	r ′r = −Vr r ′

∞∑
n=1

Dn[1 + (−1)n]〈r ′|Tn(H̃ )|r̄〉 = 0.

This results because Dn = 0 for n even and 1 + (−1)n =
0 for n odd. The symmetry (uα,vα,Eα) ↔ (v∗

α, − u∗
α, −

Eα) is broken in the asymmetric gauge, because the
Bogoliubov–de Gennes amplitudes are gauge covariant: uα =
uαeig , v α = vαe−ih. Consequently, for the gauge (10) we
have 〈r ′|Tn( H̃ )|r̄〉 = eig(r ′)〈r ′|Tn(H̃ )|r̄〉 which, together with
	 r r ′ = 	r r ′eig(r), leads to Eq. (20). Proceeding like for (A2),
we find

〈r|Tn( H̃ )|r̄ ′〉 = (−1)n+1ei[r′−r (r)−2Ar r′ ]〈r ′|Tn( H̃ )|r̄〉.

Inserting this in (20) yields the symmetry property (21):

	 r r ′e
−i[r′−r (r)−2Ar r′ ] − 	 r ′ r

= −Vr r ′

∞∑
n=1

Dn[1 + (−1)n]〈r ′|Tn(H̃ )|r̄〉 = 0.

We now provide the relations which must be used instead
of (18) and (20) if the calculation is performed with b 
= 0.
Proceeding like in Sec. II E, we find in this case

	r r ′ = −Vr r ′

∞∑
n=1

[D+
n 〈r ′|Tn(H̃ )|r̄〉 + D−

n 〈r|Tn(H̃ )|r̄ ′〉],

where the coefficients are now given by

D±
n = ∓ 1

π

∫ 1

−1
dẼ f (±E)

e−in arccos(Ẽ)√
1 − Ẽ2

= −i

πn

{
(∓1)n −

∫ ∞

−∞
dE [−f ′(E)]e−in arccos[(E−b)/a]

}
.

In the asymmetric gauge, the corresponding expression is

	 r r ′ = −Vr r ′

∞∑
n=1

{ei[r′−r (r)−2Ar r′ ]D+
n 〈r ′|Tn( H̃ )|r̄〉

+D−
n 〈r|Tn( H̃ )|r̄ ′〉}.

To conclude this appendix, we show that in a vortex lattice,
the self-consistency equation (20) warrants the property that
	eiA has the periodicity of the vortex lattice. We proceed by
recurrence, noting that the property is satisfied by the ansatz
(12), because the function  is periodic. If the order parameter
has the required periodicity, a shift by a vortex-lattice vector
R changes it according to 	 r+R,r ′+R = 	 r r ′ei(Ar r′−Ar+R,r′+R).
The key point is that the phase Ar r ′ − Ar+R,r ′+R is a gradient
which we can write as

Ar r ′ − Ar+R,r ′+R = TR(r ′) − TR(r).
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Indeed, the Peierls phase is the sum of a linear term determined
by the average magnetic field and given by Eq. (17), and a
periodic contribution which drops in the difference. Using
(17), we get TR(r) = πYx/S. The hopping amplitude, hence
the whole Hamiltonian H , transforms in the same way as the
order parameter. Based on this, it is straightforward to check
that the Bogoliubov–de Gennes amplitudes in the asymmetric
gauge transform as uα(r + R) = uα(r)e−iTR(r) and v α(r +
R) = v α(r)e−iTR(r). Consequently, a shift of the Chebyshev

coefficient by R gives

〈r ′ + R|Tn( H̃ )|r + R〉 =
∑

α

uα(r ′ + R)Tn(Ẽα)v∗
α(r + R)

= ei[TR(r)−TR(r ′)]〈r ′|Tn( H̃ )|r̄〉
= e−i(Ar r′−Ar+R,r′+R)〈r ′|Tn( H̃ )|r̄〉.

Inserted in Eq. (20), this achieves proving the periodicity
of 	eiA.
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[13] M. Franz and Z. Tešanović, Quasiparticles in the Vortex Lattice
of Unconventional Superconductors: Bloch Waves or Landau
Levels? Phys. Rev. Lett. 84, 554 (2000).

[14] M.-R. Li, P. J. Hirschfeld, and P. Wölfle, Vortex state of a d-wave
superconductor at low temperatures, Phys. Rev. B 63, 054504
(2001).

[15] O. Vafek, A. Melikyan, M. Franz, and Z. Tešanović, Quasiparti-
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Berthod, Ø. Fischer, and C. Renner, Revisiting the vortex-core
tunneling spectroscopy in YBa2Cu3O7−δ , Nat. Commun. 7,
11139 (2016).

[57] M. Ichioka, N. Hayashi, N. Enomoto, and K. Machida, Vortex
structure in d-wave superconductors, Phys. Rev. B 53, 15316
(1996).

[58] The model with t2 = 0 is particle-hole symmetric with the LDOS
peak centered at E = 0. The model with t1 = 0, despite having
the same normal-state DOS as the former, is not particle-hole
symmetric such that the LDOS peak is not exactly at E = 0. In
Fig. 7, we plot the LDOS integrated around the peak maximum
in an energy window corresponding to our resolution.

[59] N. Schopohl and K. Maki, Quasiparticle spectrum around a
vortex line in a d-wave superconductor, Phys. Rev. B 52, 490
(1995).

[60] Y. Wang, P. J. Hirschfeld, and I. Vekhter, Theory of quasiparticle
vortex bound states in iron-based superconductors: Application
to scanning tunneling spectroscopy of LiFeAs, Phys. Rev. B 85,
020506 (2012).

[61] J. E. Sonier, Investigations of the core structure of magnetic
vortices in type-II superconductors using muon spin rotation,
J. Phys.: Condens. Matter 16, S4499 (2004).

[62] F. D. Callaghan, M. Laulajainen, C. V. Kaiser, and J. E. Sonier,
Field Dependence of the Vortex Core Size in a Multiband
Superconductor, Phys. Rev. Lett. 95, 197001 (2005).

[63] A. Fente, E. Herrera, I. Guillamón, H. Suderow, S. Mañas-
Valero, M. Galbiati, E. Coronado, and V. G. Kogan, Field
dependence of the vortex core size probed by scanning tunneling
microscopy, Phys. Rev. B 94, 014517 (2016).

[64] B. W. Hoogenboom, M. Kugler, B. Revaz, I. Maggio-Aprile,
Ø. Fischer, and C. Renner, Shape and motion of vortex cores
in Bi2Sr2CaCu2O8+δ , Phys. Rev. B 62, 9179 (2000); B. W.
Hoogenboom, K. Kadowaki, B. Revaz, M. Li, C. Renner, and

184510-18

https://doi.org/10.1103/PhysRevB.71.134513
https://doi.org/10.1103/PhysRevB.71.134513
https://doi.org/10.1103/PhysRevB.71.134513
https://doi.org/10.1103/PhysRevB.71.134513
https://doi.org/10.1103/PhysRevB.88.134515
https://doi.org/10.1103/PhysRevB.88.134515
https://doi.org/10.1103/PhysRevB.88.134515
https://doi.org/10.1103/PhysRevB.88.134515
https://doi.org/10.1103/PhysRevB.92.214505
https://doi.org/10.1103/PhysRevB.92.214505
https://doi.org/10.1103/PhysRevB.92.214505
https://doi.org/10.1103/PhysRevB.92.214505
https://doi.org/10.1103/PhysRevB.52.R3876
https://doi.org/10.1103/PhysRevB.52.R3876
https://doi.org/10.1103/PhysRevB.52.R3876
https://doi.org/10.1103/PhysRevB.52.R3876
https://doi.org/10.1103/PhysRevLett.83.4168
https://doi.org/10.1103/PhysRevLett.83.4168
https://doi.org/10.1103/PhysRevLett.83.4168
https://doi.org/10.1103/PhysRevLett.83.4168
https://doi.org/10.1103/PhysRevLett.83.3057
https://doi.org/10.1103/PhysRevLett.83.3057
https://doi.org/10.1103/PhysRevLett.83.3057
https://doi.org/10.1103/PhysRevLett.83.3057
https://doi.org/10.1143/JPSJ.69.3943
https://doi.org/10.1143/JPSJ.69.3943
https://doi.org/10.1143/JPSJ.69.3943
https://doi.org/10.1143/JPSJ.69.3943
https://doi.org/10.1103/PhysRevB.65.064527
https://doi.org/10.1103/PhysRevB.65.064527
https://doi.org/10.1103/PhysRevB.65.064527
https://doi.org/10.1103/PhysRevB.65.064527
https://doi.org/10.1088/0953-8984/22/3/035702
https://doi.org/10.1088/0953-8984/22/3/035702
https://doi.org/10.1088/0953-8984/22/3/035702
https://doi.org/10.1088/0953-8984/22/3/035702
https://doi.org/10.1103/PhysRevB.93.224503
https://doi.org/10.1103/PhysRevB.93.224503
https://doi.org/10.1103/PhysRevB.93.224503
https://doi.org/10.1103/PhysRevB.93.224503
https://doi.org/10.1103/PhysRevLett.72.1530
https://doi.org/10.1103/PhysRevLett.72.1530
https://doi.org/10.1103/PhysRevLett.72.1530
https://doi.org/10.1103/PhysRevLett.72.1530
https://doi.org/10.1080/000187300412257
https://doi.org/10.1080/000187300412257
https://doi.org/10.1080/000187300412257
https://doi.org/10.1080/000187300412257
https://doi.org/10.1103/PhysRevLett.105.167006
https://doi.org/10.1103/PhysRevLett.105.167006
https://doi.org/10.1103/PhysRevLett.105.167006
https://doi.org/10.1103/PhysRevLett.105.167006
https://doi.org/10.1143/JPSJ.81.024710
https://doi.org/10.1143/JPSJ.81.024710
https://doi.org/10.1143/JPSJ.81.024710
https://doi.org/10.1143/JPSJ.81.024710
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1007/BF01668869
https://doi.org/10.1007/BF01668869
https://doi.org/10.1007/BF01668869
https://doi.org/10.1007/BF01668869
https://doi.org/10.1103/PhysRevLett.72.3602
https://doi.org/10.1103/PhysRevLett.72.3602
https://doi.org/10.1103/PhysRevLett.72.3602
https://doi.org/10.1103/PhysRevLett.72.3602
https://doi.org/10.1103/PhysRevB.59.184
https://doi.org/10.1103/PhysRevB.59.184
https://doi.org/10.1103/PhysRevB.59.184
https://doi.org/10.1103/PhysRevB.59.184
https://doi.org/10.1103/PhysRevB.59.8902
https://doi.org/10.1103/PhysRevB.59.8902
https://doi.org/10.1103/PhysRevB.59.8902
https://doi.org/10.1103/PhysRevB.71.134505
https://doi.org/10.1103/PhysRevB.71.134505
https://doi.org/10.1103/PhysRevB.71.134505
https://doi.org/10.1103/PhysRevB.71.134505
https://doi.org/10.1088/0953-8984/27/12/125701
https://doi.org/10.1088/0953-8984/27/12/125701
https://doi.org/10.1088/0953-8984/27/12/125701
https://doi.org/10.1088/0953-8984/27/12/125701
https://doi.org/10.1103/PhysRevLett.75.2754
https://doi.org/10.1103/PhysRevLett.75.2754
https://doi.org/10.1103/PhysRevLett.75.2754
https://doi.org/10.1103/PhysRevLett.75.2754
https://doi.org/10.1016/S0921-4534(99)00720-0
https://doi.org/10.1016/S0921-4534(99)00720-0
https://doi.org/10.1016/S0921-4534(99)00720-0
https://doi.org/10.1016/S0921-4534(99)00720-0
https://doi.org/10.1103/PhysRevLett.85.1536
https://doi.org/10.1103/PhysRevLett.85.1536
https://doi.org/10.1103/PhysRevLett.85.1536
https://doi.org/10.1103/PhysRevLett.85.1536
https://doi.org/10.1103/PhysRevLett.78.4841
https://doi.org/10.1103/PhysRevLett.78.4841
https://doi.org/10.1103/PhysRevLett.78.4841
https://doi.org/10.1103/PhysRevLett.78.4841
https://doi.org/10.1103/PhysRevLett.79.4513
https://doi.org/10.1103/PhysRevLett.79.4513
https://doi.org/10.1103/PhysRevLett.79.4513
https://doi.org/10.1103/PhysRevLett.79.4513
https://doi.org/10.1038/ncomms11139
https://doi.org/10.1038/ncomms11139
https://doi.org/10.1038/ncomms11139
https://doi.org/10.1038/ncomms11139
https://doi.org/10.1103/PhysRevB.53.15316
https://doi.org/10.1103/PhysRevB.53.15316
https://doi.org/10.1103/PhysRevB.53.15316
https://doi.org/10.1103/PhysRevB.53.15316
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.52.490
https://doi.org/10.1103/PhysRevB.85.020506
https://doi.org/10.1103/PhysRevB.85.020506
https://doi.org/10.1103/PhysRevB.85.020506
https://doi.org/10.1103/PhysRevB.85.020506
https://doi.org/10.1088/0953-8984/16/40/006
https://doi.org/10.1088/0953-8984/16/40/006
https://doi.org/10.1088/0953-8984/16/40/006
https://doi.org/10.1088/0953-8984/16/40/006
https://doi.org/10.1103/PhysRevLett.95.197001
https://doi.org/10.1103/PhysRevLett.95.197001
https://doi.org/10.1103/PhysRevLett.95.197001
https://doi.org/10.1103/PhysRevLett.95.197001
https://doi.org/10.1103/PhysRevB.94.014517
https://doi.org/10.1103/PhysRevB.94.014517
https://doi.org/10.1103/PhysRevB.94.014517
https://doi.org/10.1103/PhysRevB.94.014517
https://doi.org/10.1103/PhysRevB.62.9179
https://doi.org/10.1103/PhysRevB.62.9179
https://doi.org/10.1103/PhysRevB.62.9179
https://doi.org/10.1103/PhysRevB.62.9179


VORTEX SPECTROSCOPY IN THE VORTEX GLASS: A . . . PHYSICAL REVIEW B 94, 184510 (2016)

Ø. Fischer, Linear and Field-Independent Relation between
Vortex Core State Energy and Gap in Bi2Sr2CaCu2O8+δ , Phys.
Rev. Lett. 87, 267001 (2001).

[65] T. Machida, Y. Kohsaka, K. Matsuoka, K. Iwaya, T. Hanaguri,
and T. Tamegai, Bipartite electronic superstructures in the
vortex core of Bi2Sr2CaCu2O8+δ , Nat. Commun. 7, 11747
(2016).

[66] Y. Yin, M. Zech, T. L. Williams, X. F. Wang, G. Wu, X. H. Chen,
and J. E. Hoffman, Scanning Tunneling Spectroscopy and Vortex
Imaging in the Iron Pnictide Superconductor BaFe1.8Co0.2As2,
Phys. Rev. Lett. 102, 097002 (2009).

[67] I. Guillamón, H. Suderow, S. Vieira, L. Cario, P. Diener, and P.
Rodière, Superconducting Density of States and Vortex Cores
of 2H-NbS2, Phys. Rev. Lett. 101, 166407 (2008).

[68] S. Graser, C. Iniotakis, T. Dahm, and N. Schopohl, Shadow
on the Wall Cast by an Abrikosov Vortex, Phys. Rev. Lett. 93,
247001 (2004).

[69] S. Yoshizawa, H. Kim, T. Kawakami, Y. Nagai, T. Nakayama, X.
Hu, Y. Hasegawa, and T. Uchihashi, Imaging Josephson Vortices
on the Surface Superconductor Si(111)-(

√
7 × √

3)-In using a
Scanning Tunneling Microscope, Phys. Rev. Lett. 113, 247004
(2014).

184510-19

https://doi.org/10.1103/PhysRevLett.87.267001
https://doi.org/10.1103/PhysRevLett.87.267001
https://doi.org/10.1103/PhysRevLett.87.267001
https://doi.org/10.1103/PhysRevLett.87.267001
https://doi.org/10.1038/ncomms11747
https://doi.org/10.1038/ncomms11747
https://doi.org/10.1038/ncomms11747
https://doi.org/10.1038/ncomms11747
https://doi.org/10.1103/PhysRevLett.102.097002
https://doi.org/10.1103/PhysRevLett.102.097002
https://doi.org/10.1103/PhysRevLett.102.097002
https://doi.org/10.1103/PhysRevLett.102.097002
https://doi.org/10.1103/PhysRevLett.101.166407
https://doi.org/10.1103/PhysRevLett.101.166407
https://doi.org/10.1103/PhysRevLett.101.166407
https://doi.org/10.1103/PhysRevLett.101.166407
https://doi.org/10.1103/PhysRevLett.93.247001
https://doi.org/10.1103/PhysRevLett.93.247001
https://doi.org/10.1103/PhysRevLett.93.247001
https://doi.org/10.1103/PhysRevLett.93.247001
https://doi.org/10.1103/PhysRevLett.113.247004
https://doi.org/10.1103/PhysRevLett.113.247004
https://doi.org/10.1103/PhysRevLett.113.247004
https://doi.org/10.1103/PhysRevLett.113.247004



