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Ever since BCS theory was first formulated it was recognized that a large electronic density of states at the
Fermi level was beneficial to enhancing Tc. The A15 compounds and the high temperature cuprate materials both
have had an enormous amount of effort devoted to studying the possibility that such peaks play an important role
in the high critical temperatures existing in these compounds. Here we provide a systematic study of the effect
of these peaks on the superconducting transition temperature for a variety of tight-binding models of simple
structures, both in two and three dimensions. In three dimensions large enhancements in Tc can occur, due to
van Hove singularities that result in divergences in the density of states. Furthermore, even in more realistic
structures, where the van Hove singularity disappears, large enhancements in Tc continue due to the presence of
“robust” peaks in the densities of states. Such a peak, recently identified in the bcc structure of H3S, is likely the
result of such a van Hove singularity. In certain regimes, anomalies in the isotope coefficient are also expected.
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I. INTRODUCTION

The weak coupling Bardeen-Cooper-Schrieffer (BCS) [1]
expression for the superconducting transition temperature Tc

is

Tc ∼ ωDe−1/[g(εF )V ] (1)

(we set � = kB = 1) where ωD is the typical (Debye) phonon
frequency, V is the attractive interaction strength, and g(εF )
is the electron density of states at the Fermi level. This simple
expression makes clear that a high value of the density of
states at the Fermi energy is desirable for high Tc, and has
served to motivate a directed search for high Tc materials
for more than half a century. Some understanding of the
impact on Tc has come historically from a study of the
A15 compounds, where experiments suggested that various
“anomalous” superconducting properties in these compounds
could be explained by peaks (or in some cases valleys) in the
electron density of states near the Fermi level.

Indeed, as early as 1967 Labbé et al. [2] suggested that
sharp peaks in the electronic density of states could explain
the high Tc and low isotope effects in some A15 compounds.
They adopted a density of states with a square-root singularity,
reminiscent of the result obtained in one dimension. Since that
time, Nettel and Thomas [3] and Horsch and Rietschel [4]
developed this model further in the context of Eliashberg
theory, again with an eye towards explaining the high critical
temperatures of some of the A15 compounds. Follow-up work
by Lie and Carbotte [5], Ho et al. [6], Pickett [7], and Mitrović
and Carbotte [8] served to establish the importance of peaked
structures in the electronic density of states near the Fermi
level for the critical temperatures in the A15 superconductors
[9].

In the mid 1980s the possibility of enhancing the super-
conducting critical temperature through a two-dimensional
structure was advanced by Hirsch and Scalapino [10], and
these authors also used Monte Carlo simulations and high-
order perturbation corrections to support their claims. They
found enhanced superconductivity when the Fermi level

was near a singularity, particularly in the weak coupling
regime. These ideas were further developed with the discovery
of high temperature superconductivity in 1986, and several
papers [11,12] subsequently explored some of the conse-
quences of a two-dimensional van Hove singularity for
superconductivity. Rather than recount a detailed history of the
various calculations, we refer the reader to review papers, a
comprehensive one in 1997 [13], and a more recent review [14]
focused on the A15 compounds. While the early work focused
on a square-root singularity, most of the work in the past 30
years has almost exclusively utilized a density of states with
a logarithmic divergence, motivated by the two-dimensional
tight-binding model. A notable exception is the extended
saddle point singularity pointed out through density functional
theory calculations in 1991 [15] and observed through ARPES
measurements and modeled in 1993 [16]. The extended saddle
point results in a one-dimensional-like square-root singularity
in the electronic density of states.

The theoretical description of these various scenarios has
focused on the situation where the Fermi energy lies close to
the singularity in the density of states. In this paper we wish
to do two things. First, we will extend these calculations to
all electron densities, in the vicinity of the singularity, and
well away from it. Our results will be numerical, and will
account self-consistently for changes in the chemical potential
as the electron density and coupling strength of the pairing
interaction varies. These calculations will be performed for
a two-dimensional tight-binding model on a square lattice,
where a logarithmic singularity in the electronic density of
states always exists.

Secondly, we will extend these calculations to three
dimensions. Of course, van Hove anomalies also exist in
three dimensions. Jelitto [17] showed long ago that for
the body-centred-cubic (bcc) and face-centred-cubic (fcc)
lattice structures these anomalies result in singularities in the
density of states as well. As this important result appears
to be underappreciated, we review some of his results in
the Appendix. Finally, we note that the density of states for
the bcc lattice, with a non-negligible next-nearest-neighbor
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(NNN) hopping amplitude, renders a density of states with
a significant and “robust” peak, very similar to one recently
calculated [18,19] with density functional theory for the newly
discovered superconductor, H3S [20]. We find a significant
enhancement of Tc for electron densities obtained for the
chemical potential close to the energy of this peak. In summary,
while the bulk of this paper is devoted to a comprehensive
survey for Tc (and in some cases the isotope coefficient
and the superconducting order parameter), as a function of
electron density and coupling strength, in both two and three
dimensions, for a variety of “cubic” lattice structures, we find
that the bcc structure itself results in a substantial enhancement
of Tc.

It is probably best to specify the following simplifying
assumptions that we utilize. (i) We assume a momentum
independent pairing interaction, and hence this study is
confined to a superconducting order parameter with s-wave
symmetry. (ii) We will adopt a nonretarded framework for the
interaction, i.e., we will use the BCS formalism, rather than the
Eliashberg formalism. Many authors (see, e.g., Ho et al. [6])
have pointed out that retardation effects will smear the effective
electronic density of states, so that a BCS-like treatment will
tend to overestimate the effects of a singularity in the density
of states. This is understood here, and it is desirable to have
a follow-up study similar to this one based on the Eliashberg
formalism [21]. (iii) We will focus on a metal in which a single
band crosses the Fermi level; furthermore, we will adopt a
tight-binding model to describe the dispersion of this band, and
correlation effects in the normal state are assumed to be absent.
(iv) While we will adopt analytical approximations from
time to time these will be for illustrative purposes only—all
our main results will be numerically exact, with no weak
coupling approximations, for example. The one exception
is that at the band edges we do not concern ourselves with
possible strong coupling effects. These effects will give rise to
Bose condensation physics dominating over BCS pairing (i.e.,
condensation arises not from pairing per se, but from phase
coherence); however, since the theoretical description of this
crossover is not universally agreed upon [22,23], for present
purposes we simply use the BCS formalism in this very small
regime as well.

The outline is as follows. In the next section we provide
a concise formulation of the equations we solve, both at
the critical temperature Tc, and at temperatures below Tc.
In the following section we focus on the two-dimensional
square lattice, first with nearest-neighbor hopping only, and
then with next-nearest-neighbor hopping. We examine Tc =
Tc(n,V,ωD), where n is the electron density, V is the
coupling strength, and ωD is used as a cutoff, representing
the Debye frequency of the phonons. We also examine the
isotope coefficient (to be defined below) and the supercon-
ducting order parameter, �. For the most part �(n,V,ωD)
tracks Tc(n,V,ωD), and the temperature dependence of �

is essentially indistinguishable from that achieved with a
constant density of states. Results for a constant density
of states have previously been presented [24] within the
Eliashberg [25,26] formalism. These results, recalculated with
the much simpler BCS formalism, will provide a baseline for
comparisons.

The fourth section will focus on the three-dimensional cubic
lattices: simple cubic (sc), body-centered cubic (bcc), and face-
centered cubic (fcc). The first two have particle-hole symmetry,
while the third does not, and the singularity in the electron
density of states for the fcc lattice lies at the upper end of
the spectrum. We also consider the impact of next-nearest-
neighbor hopping in all three cases. Somewhat surprisingly,
in the bcc and fcc cases, while the singularity is removed,
a robust peak remains, and considerable enhancement of Tc

occurs. Equally surprisingly, in the sc case, turning on the next-
nearest-neighbor hopping moves the density of states towards
one with a singularity.

Finally, we point out that for a particular range of NNN
hopping amplitude, the density of states resembles that
calculated [27,28] with density functional theory, and leads
to a significant enhancement of Tc.

II. PAIRING FORMALISM

The BCS equations are written as [29,30]

�k = − 1

N

∑
k′

Vkk′
�k′

2Ek′
[1 − 2f (Ek′)] (2)

and

n = 1

N

∑
k′

[
1 − εk′ − μ

Ek′
[1 − 2f (Ek′)]

]
, (3)

with

Ek ≡
√

(εk′ − μ)2 + �2
k′ . (4)

Here, �k is the superconducting order parameter; this parame-
ter goes to zero at the critical temperature Tc. N is the number
of unit cells in the lattice and the summation over k points is
to cover the entire first Brillouin zone (FBZ). In principle this
summation also covers all bands in the FBZ, but as specified
in our assumptions we focus on one band only, in which the
Fermi energy lies. The pairing interaction, to be specified
further below, is given by Vkk′ . Note that the dependence on
the center-of-mass momentum q is absent, so that this is the
interaction for the so-called “reduced BCS” Hamiltonian. We
have also adopted the convention that an attractive interaction
will be negative, so that Eq. (2) has a minus sign. The chemical
potential is denoted by μ; it will generally be altered by the
presence of the superconducting state, although in practice, in
weak and intermediate coupling situations it will change only
by a very small amount. By using Eq. (3) we take these changes
into account in order to preserve the electron density, n, as the
various parameters, such as temperature, or even the “fixed”
parameters like ωD , are varied. Finally all the temperature
dependence is included through the Fermi-Dirac distribution
function, f (x) ≡ 1/[exp(βx) + 1], where β ≡ 1/[kBT ] is the
inverse temperature, with kB the Boltzmann constant.

In addition we need to specify an energy dispersion, εk . We
adopt the tight-binding model, so for example, with nearest-
neighbor (NN) hopping only, we obtain

εk = −2t[cos(kxa) + cos(kya)] [2D], (5)

εk = −2ts[cos(kxa) + cos(kya) + cos(kza)] [sc], (6)
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εk = −8tb

[
cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kza

2

)]
[bcc], (7)

εk = −4tf

[
cos

(
kxa

2

)
cos

(
kya

2

)
+ cos

(
kxa

2

)
cos

(
kza

2

)

+ cos

(
kya

2

)
cos

(
kza

2

)]
[fcc] (8)

for the four structures considered, where a is the nearest-
neighbor distance in the 2D and (sc) cases, and is the length
of the cube in the bcc and fcc cases, containing eight atoms at
each vertex along with one in the center (bcc) and six on the
face centers (fcc). Also, t,ts,tb, and tf are the nearest-neighbor
hopping parameters for the 2D square, 3D simple cubic,
3D bcc, and 3D fcc lattices, respectively. Note that these
have bandwidths W of 8t , 12ts , 16tb, and 16tf , respectively.
In the main text and figures that follow, we will generally
use “t” to designate the NN hopping, and “t2” to designate
the next-nearest-neighbor (NNN) hopping parameter (see the
Appendix). Thus, unless necessary to distinguish the various
cases, we will drop the additional subscript, s, b, and f ,
and retain them only as needed. These dispersions are further
discussed in the Appendix.

At this point the main simplifying assumption in the ensuing
calculations is that the pairing interaction is essentially local,
so that the pairing interaction is independent of momentum.
We wish to retain the notion that pairing is via boson exchange,
and with the phonon mechanism in mind following BCS [1],
we want to include a feature that requires the two electrons to
have single particle energies that are no further than �ωD apart
from one another. This is difficult to implement in practice,
so instead we adopt the standard model that restricts each of
the single particle energies to be within �ωD of the chemical
potential, μ. That is,

Vkk′ = −V θ [�ωD − |εk − μ|]θ [�ωD − |εk′ − μ|], (9)

where θ [x] ≡ 0 for x < 0 and θ [x] ≡ 1 for x > 0 is the
Heaviside step function, and V > 0 implies that this is an
attractive interaction potential. With this model in place, the
order parameter becomes nonzero only for |εk − μ| < �ωD ,
and its value is independent of momentum [31].

Because of the simplicity of this model potential, one can
rewrite the momentum sums in Eqs. (2,3) in terms of the
electronic density of states, g(ε) (see the Appendix). Then
these equations become

1

V
=

∫ μ+

μ−
dε g(ε)

tanh[βE(ε)/2]

2E(ε)
(10)

and

n =
∫ εmax

εmin

dε g(ε)

[
1 − (ε − μ)

E(ε)
tanh[βE(ε)/2]

]
, (11)

with E(ε) =
√

(ε − μ)2 + �2. Here, the integration limits in
Eq. (10) are normally μ− = μ − �ωD and μ+ = μ + �ωD ,
while those in Eq. (11) are εmin, the band energy at the bottom
of the band, and εmax, the band energy at the top of the band.
An exception occurs when the chemical potential is close to
one of the band edges. In this case, the integration is cut off by

the band edge, so more accurately, μ− ≡ max[μ − �ωD,εmin],
and μ+ ≡ min[μ + �ωD,εmax].

Equations (10) and (11) represent two nonlinear equations
for the unknowns � and μ, given the parameters V and n. At
zero temperature the hyperbolic tangent function is replaced by
unity; at Tc the order parameter goes to zero so the problem is
slightly different. One then has to find the temperature and the
chemical potential at which both these equations are satisfied.
These equations are

1

V
=

∫ μ+

μ−
dε g(ε)

tanh[βc(ε − μ)/2]

2(ε − μ)
[T = Tc] (12)

and

n = 2
∫ εmax

εmin

dε g(ε)f (ε − μ) [T = Tc], (13)

where βc ≡ 1/[kBTc]. Numerical results in subsequent sec-
tions are the result of an iterative solution to these equations.

III. TWO DIMENSIONS

As detailed in the Appendix, the electron density of
states for a two-dimensional tight-binding model with nearest-
neighbor hopping only is

g2D(ε) = 1

2π2ta2
K

[
1 −

( ε

4t

)2
]
, (14)

where K(m) ≡ ∫ π/2
0 dθ (1 − m sin2θ )

−1/2
is the complete el-

liptic integral of the first kind [32]. This density of states is
well approximated by the expression

g2D(ε) ≈ 1

2π2ta2
log

(
16t

|ε|
)

. (15)

Equation (15) is the asymptotic form of Eq. (14) as ε → 0, and
is often used in lieu of Eq. (14). Both are shown in Fig. 13 in
the Appendix, along with a numerical evaluation of the density
of states when the next-nearest-neighbor hopping is included
as well. As discussed in the Appendix, a simple numerical
routine can efficiently and accurately evaluate complete elliptic
integrals, so we proceed with the full form, Eq. (14).

A. Numerical results

We show in Fig. 1(a) Tc/ωD (we set � = kB = 1) vs
electron density n, for a relatively weak coupling situation,
V/t = 2, for three different values of ωD/t = 1.0, 0.1, and
0.01. The latter two values are more realistic as in general,
ωD � t , i.e., phonon energy scales are much smaller than
electronic energy scales. The curves provide results for the
complete self-consistent solution without approximation, i.e.,
using the density of states from Eq. (14). There is a clear
enhancement of Tc, especially near the van Hove singularity.
and the enhancement is most pronounced for smaller values of
ωD . Also shown is the result for a constant density of states;
for electron densities near half-filling this shows that Tc can be
enhanced by more than an order of magnitude. In Fig. 1(b) we
show the same quantity as a function of ωD/t , now for a variety
of values of V/t , all for half-filling (shown with curves). Tc

will tend to increase as a function of ωD , but we have plotted
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FIG. 1. (a) Plot of Tc/ωD vs n for 0 < n < 1 (the results for
2 > n > 1 are symmetric) for V/t = 2, and ωD/t = 1.0,0.1,0.01.
Also shown is the result for a constant density of states, g(ε) = 1/W ,
where W = 8t is the electron bandwidth. This result is not sensitive to
ωD except at the band edges. In the inset we show an expanded view
of the region near zero density (also the case near n = 2), showing
how Tc ∝ √

n due to the lower band edge taking the place of μ − ωD

for the lower cutoff. There is a clear enhancement near the van Hove
singularity, especially for small ωD/t . (b) Tc/ωD vs ωD/t for n = 1
for several values of the coupling strength V , along with several
approximations discussed in the text.

the ratio, Tc/ωD vs ωD/t , which shows an enhancement of
Tc/ωD as ωD → 0.

B. Analytical results

Analytical results are possible through a series of sim-
plifications, as follows. First, we focus on half-filling, n =
1. This means that the chemical potential remains fixed
at μ = 0, independent of temperature. Second, we adopt
the approximation given in Eq. (15), which, based on the
comparisons of the density of states given in the Appendix,
we anticipate will be very accurate. Indeed, this is the case,
as indicated by the results depicted with square symbols in
Fig. 1(b). In particular, these results are always very accurate as
ωD → 0, as this is where the density of states at the singularity
is most important; this is also where the approximation Eq. (15)
is most accurate.

A so-called “strong-coupling” approximation to the BCS
equation is obtained as follows. We assume ωD/Tc � 1, which
means that the hyperbolic tangent function can be linearized.

The remaining integral is then elementary, so that

Tc

ωD

≈ V

4π2t

[
log

(
16t

ωD

)
+ 1

]
[strong coupling]. (16)

These results are indicated with x’s, and only for V = 10t in
Fig. 1(b), where it is seen to be very accurate. Here we caution
the reader that it is an accurate approximation to the fully
self-consistent solution as indicated, but in fact BCS theory
itself is not expected to be very accurate in this regime at
finite temperature. So here it merely serves as a check that our
solutions to the equations are accurate.

The opposite case, that of weak coupling, is the one most
normally used; furthermore, we expect BCS theory to be
reasonably accurate, at least in three dimensions. In two
dimensions, these results are also generally not so accurate,
because Kosterlitz-Thouless physics [37] is expected to come
into play. Our approximation follows the standard one [30],
but accommodates the density of states with the logarithm
singularity [Eq. (15)]; we obtain

Tc

ωD

≈ 1.134 exp

{
A −

√
A2 + 4π2t

V
− B − log[2(1.134)]

}
(17)

(weak coupling), where

A ≡ A(ωD/t) ≡ 1 + log

(
8t

1.134ωD

)
(18)

and

B ≡
∫ ∞

0
dx sech2x log2x ≈ 1.989 . . . . (19)

These results are indicated with asterisks for V = 2t and V =
1t in Fig. 1(b), where they are indeed very accurate. Although
not shown, they become less accurate as V increases. Notice,
however, that even for Tc/ωD ≈ 0.4 (V = 2t and ωD → 0) the
weak coupling approximation works very well. Equation (17)
is useful to illustrate how the logarithmic singularity in the
density of states changes the usual exponential suppression for
superconducting Tc to one that can be significantly enhanced,
as now the square root of the inverse coupling strength appears
in the exponential, a fact first pointed out, to our knowledge, in
Ref. [10]. This is most readily seen by allowing V/t → 0 in
Eq. (17), to get

Tc

ωD

≈ 1.134 exp

{
−

√
4π2t

V

}
. (20)

C. Beyond nearest-neighbor hopping

Going beyond nearest-neighbor hopping in two dimensions
destroys the particle hole symmetry, but the singularity in the
density of states remains, albeit at some different value for
the chemical potential (i.e., filling). The Appendix displays
the density of states for various values of the next-nearest-
neighbor (NNN) hopping parameter. Figure 2 shows Tc/ωD

vs filling and again illustrates that a significant enhancement
occurs when the chemical potential is close to the van Hove
singularity.
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FIG. 2. Plot of Tc/ωD vs n for V/t = 2, and ωD/t =
1.0,0.1,0.01, for the 2D case where next-nearest-neighbor (NNN)
hopping is also present. The van Hove singularity is now located at
ε = 4t2 which corresponds to a filling n ≈ 1.2. Also shown is the
result for a constant density of states, g(ε) = 1/W , where W = 8t is
the electron bandwidth. The same enhancement occurs as when NNN
hopping is not included, when the chemical potential approaches the
energy of the van Hove singularity. As was the case in Fig. 1 the
enhancement of Tc/ωD is amplified as ωD decreases.

D. Isotope effect

The partial isotope coefficient is defined by [25]

βi ≡ − d lnTc

d lnMi

, (21)

where Mi is the mass of the ith element; the total isotope
coefficient (β) is the sum of these, and for the purpose
of this work we will assume an elemental superconductor;
furthermore, for the harmonic approximation ωD ∝ 1/

√
M ,

Eq. (1) implies the expected standard result, β = 1/2. This
positive value indicates that increasing the Debye frequency is
expected to raise Tc.

The presence of a nonconstant density of states will
quantitatively change this result; in particular, if the chemical
potential is at a van Hove singularity, then decreasing the mass
(i.e., increasing the Debye frequency) will increase Tc less than
what one would expect normally. This is because more states
are included in the energy-lowering due to condensation, as
before, but the energy regime where this occurs (about ωD on
either side of the chemical potential) has a lower electronic
density of states, so the incremental benefit is decreased from
what it is if the density of states is constant.

Figure 3 shows the isotope coefficient vs ωD/t for (a)
nearest-neighbor (NN) hopping only, at half-filling, (b) NNN
with the chemical potential at the van Hove singularity (n =
1.219), and (c) NNN with a filling of n = 1.5. The results in
Figs. 3(a) and 3(b) are qualitatively similar; the coefficient
rapidly decreases as ωD increases, as would be expected,
since the relevant energy regime moves further away from
the singular part of the density of states with increasing ωD . In
both cases a precipitous drop occurs when ωD exceeds a value
that corresponds to the distance from the chemical potential
to the band edge. While these values are unrealistically large,
it is worth understanding what is occurring. In the case of
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FIG. 3. Isotope coefficient β vs ωD/t for (a) NN hopping only
and n = 1, (b) NNN hopping with t2 = 0.25t and n = 1.219, and
(c) NNN hopping, again with t2 = 0.25t , but with n = 1.5. In (a)
and (b) the filling is such that the chemical potential is at the van
Hove singularity. In both these cases the behavior is qualitatively
similar and the isotope coefficient decreases as a function of ωD/t

(note that the physically relevant regime is ωD/t � 1). Moreover,
the most significant decrease occurs in both instances for weaker
coupling, which is where BCS theory is to be most trusted. In (c)
the chemical potential is away from the van Hove singularity. This
results in a peak in the isotope coefficient, at a value of ωD which
tracks the energy difference between the chemical potential and the
van Hove singularity. This is as expected, as the highest impact on
Tc will occur when the value of ωD can include the states at the van
Hove singularity. At large (and unrealistic) values of ωD the isotope
coefficient decreases significantly as two (a) or one [(b) and (c)] band
edges replace ωD as the cutoff.
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FIG. 4. Tc and the zero temperature order parameter, �, vs
electron density n, for the 2D case with NN hopping only, with
V = 2t and ωD = 0.1t . The behavior of � follows that of Tc, with a
slight enhancement of the ratio as the singularity is approached.

NN hopping this value is 4t , and then the isotope coefficient
becomes zero, since further increasing ωD plays no role in
determining Tc, as the role of the cutoff is now taken by the
band edge, and not ωD . For NNN hopping only one band edge
takes on the role of the cutoff; the second bandwidth will enter
for larger values of ωD/t than those shown.

In Fig. 3(c) the chemical potential is well away from the
van Hove singularity; then the isotope coefficient β peaks in
value when the value of ωD is “tuned” to equal the difference
in energy between the chemical potential and the energy of
the van Hove singularity. Coupling to these states has the most
significant effect on Tc, which results in a peak and in the
achievement of anomalously high values of β.

E. Zero temperature energy gap

One can ask if the just-described effects of a van Hove
singularity similarly apply to the finite temperature energy
gap. We have thus solved the finite temperature gap equations,
Eqs. (10) and (11), in several representative cases. For the
most part we find that little differs for the pairing gap, �, as
a function of vicinity of the Fermi energy to the van Hove
singularity. For example, the temperature dependence, �(T ),
as a function of temperature T is barely discernible from the
usual temperature dependence obtained with a constant density
of states. By way of example, we show in Fig. 4 the pairing
gap at zero temperature, �, and the superconducting critical
temperature, Tc, as a function of electron density, n, for the
2D case with NN hopping only. Both peak near n = 1, i.e., the
location of the van Hove singularity in the density of states;
in this sense, � tracks Tc. The ratio, for example, 2�/(kBTc),
grows from 3.53 at low densities to about 3.7 at half-filling, a
rather insignificant change. We turn to three dimensions now,
and focus on Tc.

IV. THREE DIMENSIONS

We now turn to similar calculations in 3D. As summarized
in Eqs. (6)–(8), we focus only on the cubic lattice structures,
sc, fcc, and bcc. The densities of states for these were first
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FIG. 5. (a) Tc vs filling, n, and (b) the isotope coefficient β vs
ωD/t for a variety of values of ωD in (a) and for a number of
coupling strengths in (b). These results are for the simple cubic
three-dimensional case, with NN hopping only, and for n = 1. Results
are as expected and as explained in the text.

calculated by Jelitto [17] and are provided in the Appendix
for cases involving NNN hopping as well. As we mentioned
earlier, while these calculations were performed almost half
a century ago, most researchers are not aware [33] that
singularities indeed exist in the tight-binding model for the
bcc and fcc cases (for NN hopping only) and even in the sc
case when NNN hopping is included. This is true only for
“special” values of the hopping parameters, but as detailed
in the Appendix, remnants of these singularities remain even
when other values of the hopping parameters are used. Based
on what we found in two dimensions, along with some
exploratory calculations, here we will focus on Tc and the
isotope coefficient, β; results for � follow those of Tc, as we
found in two dimensions.

A. Simple cubic NN

The simple cubic density of states consists of van Hove
singularities only in the derivative of the density of states with
respect to energy (see the red curve in Fig. 14 in the Appendix).
The behavior of Tc is therefore not so unusual. Figure 5(a)
shows Tc/ωD vs n for a fairly weak coupling case (V = 3t)
from zero density to half-filling (n = 1). Note that this lattice
is bipartite and has particle-hole symmetry. Hence results for
n > 1 are a mirror reflection of those for n < 1, and we display
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FIG. 6. Plot of Tc/ωD vs n for V/t = 4, and ωD/t = 0.1,0.01,
for three different values of t2/t = 0,0.125,0.250. Note that the
results are relatively insensitive to ωD except for t2 = 0.25t , where
a singularity exists in the density of states near the top of the band
(see Fig. 14 in the Appendix), and Tc/ωD continues to increase near
n = 2 as ωD decreases. Also shown is the result for a constant density
of states, g(ε) = 1/W , where W = 12t is the electron bandwidth for
the sc lattice with |t2|/t � 1/4. This latter result is not sensitive to
ωD except at the band edges, and is shown only for ωD/t = 0.01.

only the latter. We show results for three values of ωD; in fact
as long as ωD � t the electron density of states at the chemical
potential plays the most important role, as is evident from how
Tc tracks g(εF ), albeit as a function of occupation rather than
as a function of energy. Only for ωD = t does the Tc curve
begin to become “rounded” compared to the density of states.
Also shown is the result obtained for a constant density of
states, 1/W , where W = 12t for the three-dimensional simple
cubic tight-binding model. In Fig. 5(b) we show the isotope
coefficient as a function of ωD/t for four different values
of the coupling strength, V/t . The results for V = 3t and
V = 1.5t cannot be distinguished from one another, indicating
that V = 3t is already in the weak coupling limit. The isotope
coefficient becomes reduced from the “canonical” value of 0.5
only when ωD increases beyond the energy of the first van Hove
singularity near the origin, at ±2t . The β decreases steadily
to zero, achieved for ωD � W/2 = 6t . The dependency on
coupling strength is very minor. Away from half-filling there
are no surprises, and both Tc and β track the density of states
at the chemical potential. As was the case in two dimensions,
the isotope coefficient displays a peak when the size of ωD

allows a coupling to states with significantly higher density of
states, i.e., when |μ| > 2t , where μ is the chemical potential.

B. Simple cubic NNN

Remarkably, including sufficient NNN hopping in the sc
lattice results in a singularity in the density of states at the top of
the band (see the blue curve in Fig. 14 in the Appendix), similar
to what occurs for the fcc lattice with NN hopping only (see
below). In Fig. 6 we show Tc/ωD vs electron density for three
different values of the NNN hopping, t2/t = 0,0.125,0.250
and two different values of ωD . The value of ωD is not so
important except in the case t2/t = 0.25, where a singularity
occurs in the density of states; this results in a singularity
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FIG. 7. (a) Plot of Tc/ωD vs n for 0 < n < 1 (the results for 2 >

n > 1 are symmetric) for V/t = 4, and ωD/t = 1.0,0.1,0.01. Also
shown is the result for a constant density of states, g(ε) = 1/W , where
W = 16t is the electron bandwidth. This latter result is not sensitive
to ωD except at the band edges. There is a significant enhancement
near the van Hove singularity, which continues to grow without bound
for decreasing ωD/t . (b) Tc/ωD vs ωD/t for n = 1 for various values
of V . This view highlights the sharp increase in Tc/ωD as ωD → 0.

in Tc/ωD near n = 2 as ωD decreases. Also shown is the
result for a constant density of states with value g(ε) = 1/W ,
where W = 12t is the electron bandwidth for the sc lattice with
|t2|/t � 1/4. Clearly the potential enhancement of Tc/ωD is
very large at high fillings. A particle-hole symmetry exists
with these results for negative values of t2/t (not shown).
The important point is that for values of t2/t close to 0.25 a
peak will remain in the density of states, giving rise to a large
enhancement in Tc/ωD .

C. Body-centered cubic NN

As noted in the Appendix the tight-binding model with
a bcc lattice with NN hopping only displays a singularity
at ε = 0. This singularity is a logarithm squared and hence
stronger than the two-dimensional singularity which diverges
logarithmically. Figure 7(a) shows Tc/ωD vs n for a fairly
weak coupling case (V = 4t) for zero density to half-filling
(n = 1). Like the sc 3D case, the bcc lattice is bipartite, and
with NN hopping only, this lattice has particle-hole symmetry.
Hence, as in that case, results for n > 1 are a mirror reflection
of those for n < 1, and we display only the latter. We show
results for three values of ωD; again, as long as ωD � t , the
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electron density of states at the chemical potential plays the
most important role. In particular, for the smallest value of ωD

shown, Tc again tracks g(εF ) as a function of occupation (rather
than as a function of energy). The enhancement above the
result for a constant density of states with the same bandwidth
(horizontal line just above zero) is enormous. Here, W = 16t

for the bcc NN tight-binding model. In Fig. 7(b) we show
the same quantity, Tc/ωD vs ωD , for a variety of coupling
strengths at half-filling. As expected, this BCS calculation
shows Tc increasing with V ; we remind the reader again that
this calculation is expected to be valid only for some weak
coupling range. The important point is that Tc/ωD eventually
diverges as ωD decreases, because the density of states at
μ = 0 is diverging, and the density of states right at the Fermi
level becomes the only key quantity as the Debye frequency
decreases.

Away from half-filling results are again as expected; the
chemical potential is at an energy where the density of states is
relatively low. As ωD increases to a point where the singularity
in the density of states becomes relevant, then Tc/ωD will peak.
Unlike Fig. 7(b), where Tc/ωD monotonically decreases as ωD

increases, Tc/ωD is nonmonotonic, i.e., the result is sensitive
to the singularity not at the Fermi level.

The isotope coefficient is similar to what we have seen
before; in Fig. 8(a) we show β as a function of ωD/t for n = 1
and for a variety of coupling strengths. Clearly the isotope
coefficient is greatly reduced even for fairly low values of
ωD/t . In Fig. 8(b) we show the same result for n = 0.5;
now the isotope coefficient peaks to very high values, as
values of ωD are reached that bring the singularity in the
electron density of states in “resonance” with the chemical
potential through ωD . That is, a prominent peak in β occurs,
particularly in weak coupling, when μ + ωD = εsing, where
εsing = 0 is the energy at which the singularity occurs. We thus
have the intriguing possibility of an anomalously high isotope
coefficient associated with a nonoptimal critical temperature.

The bcc tight-binding model shows significant enhance-
ment for Tc, for a wide range of electron density [Fig. 7(a)].
However, as was the case in 2D, it is important to examine the
impact of a NNN hopping parameter. We do this in the next
subsection.

D. Body-centered-cubic NNN

The introduction of NNN hopping for the bcc lattice
structure changes the nature of the density of states in a
profound way. As illustrated in the Appendix, the singular
behavior is entirely removed. Nonetheless, a highly peaked
structure remains, which we expect will continue to cause
a considerable enhancement of Tc. This enhancement is
more significant than the one found at half-filling since the
Fermi surface is no longer nested, and therefore competing
instabilities to superconductivity will be suppressed. Since the
density of states is not singular, however, we expect that Tc will
not continue to increase as ωD is decreased [as was the case in
Fig. 7(a) at n = 1]. Nonetheless, as noted in the Appendix, the
maximum is, in many respects, more “robust” than in the NN
case, in that a larger area is contained in the maximum region
than in the NN case. This was also the case in 2D, and is the
case for the fcc lattice structure (see Fig. 16 below).
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FIG. 8. (a) Isotope coefficient β vs ωD/t for the 3D bcc NN case
(t2 = 0), at half-filling, for a variety of coupling strengths. The isotope
coefficient is significantly reduced from 0.5, due to the singularity in
the density of states. (b) Isotope coefficient β vs ωD/t for the 3D bcc
NN case (t2 = 0), at quarter filling n = 0.5, for the same coupling
strengths as in (a). The isotope coefficient now has a significant peak,
particularly for weak coupling, when ωD is such that states in the
peak of the density of states are primarily included in determining Tc

(see text).

Figure 9 shows Tc/ωD vs n, for a variety of values
of ωD , for the particular case of t2 = 0.3t . As anticipated,
the enhancement with decreasing ωD now saturates; near
the peak values, Tc/ωD hardly increases as ωD = 0.1t (red
curve) decreases to ωD = 0.01t (blue curve). This is in
contrast to the scenario shown in Fig. 7, where, near the
peak electron density, Tc/ωD continues to increase indefinitely
as ωD decreases. Here, however, the Fermi surface is no
longer nested, and competing instabilities, not considered here,
will be significantly suppressed (see, for example, Fig. 1
in Ref. [36] for a demonstration of the suppression of a
charge-density-wave instability due to the removal of nesting).
Thus the large enhancement displayed in Fig. 9 will likely
remain even when competing instabilities are considered.

E. Face-centered-cubic NN and NNN

Similar to the bcc NN case, the electron density of states for
an fcc lattice with NN hopping only also displays a singularity,
right at the band edge, as shown by the red curve, i.e., the
rightmost curve, in Fig. 16 in the Appendix. In this case the
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FIG. 9. Plot of Tc/ωD vs electron density n for V/t = 4, for
the bcc lattice structure, now with NNN hopping, t2 = 0.3t , and
ωD/t = 1.0,0.1,0.01. Also shown is the result for a constant density
of states, g(ε) = 1/W , where W = 16t is the electron bandwidth. As
before, this latter result is not sensitive to ωD except at the band edges.
There is a clear enhancement of Tc over a wide range of densities near
the maximum in the density of states (see Fig. 15). Note, however,
that because the density of states is no longer singular, Tc/ωD now
saturates as ωD decreases (red to blue curve).

FCC lattice is not bipartite, so no nesting occurs. In Fig. 10
we show results for relatively weak coupling, V = 4t , as a
function of electron density, for several values of ωD . The
expected enhancement in Tc/ωD occurs near the singularity,
now at the top of the band, and this increases indefinitely as
ωD decreases. Note that for decreasing ωD , enhancement of
Tc/ωD continues only for a limited electron density region
near the singularity.

This is expected to be a robust result, in that there will not
be a large enhancement of competing instabilities due to the
lack of nesting. On the other hand, one always expects a small
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FIG. 10. Plot of Tc/ωD vs electron density n for V/t = 4, for the
fcc lattice structure, with NN hopping only, and ωD/t = 1.0,0.1,0.01.
Also shown is the result for a constant density of states, g(ε) = 1/W ,
where W = 16t is the electron bandwidth. As before, this result is not
sensitive to ωD except at the band edges. There is a clear enhancement
of Tc over a wide range of densities near the maximum in the density
of states (see Fig. 16). Note that, near n = 2, this maximum will
increase without bound as ωD decreases.
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FIG. 11. Plot of Tc/ωD vs electron density n for V/t = 4, for
the fcc lattice, now with NNN hopping, t2 = 0.3t , and ωD/t =
1.0,0.1,0.01. Also shown is the result for a constant density of
states, g(ε) = 1/W , where W = 17.2t is the electron bandwidth for
t2 = 0.3t . Even for the nonconstant density of states results, note
the lack of sensitivity of Tc/ωD to ωD over essentially all electron
densities, for sufficiently small values of ωD/t . There remains a
clear enhancement of Tc/ωD over a wide range of densities near
the maximum in the density of states (see Fig. 16).

amount of NNN hopping, and as this removes the singularity
in the electron density of states, one might well ask whether the
ensuing enhancement of Tc/ωD will also disappear. Figure 16,
which also displays the electronic density of states for nonzero
values of t2/t , illustrates that a “robust” peak remains. We
focus now on results for t2/t = 0.3. Figure 11 shows Tc/ωD

vs electron density for relatively weak coupling, and shows
that a strong enhancement of Tc/ωD continues to occur near
the peak structure in the density of states. In fact the values of
Tc/ωD are comparable to (or even greater than) those achieved
(for electron densities 1.0 < n < 1.9) even with ωD = 0.01t

in the case with t2 = 0 (see Fig. 10), where a singularity exists
in the density of states.

F. H3S as a case of bcc with NNN hopping

First-principles calculations show that the Fermi energy
occurs near a well-defined peak in the electronic density of
states [see Fig. 8 of Ref. [27] and Fig. 2 b or 9 of Ref. [28]].
A very reasonable facsimile of this peak is given by our
tight-binding model for the bcc lattice structure with a negative
NNN hopping parameter, as shown in the inset of Fig. 12.
Not surprisingly, Tc as a function of electron density will
display the same peak structure, as illustrated in the main
part of Fig. 12 (compare with Fig. 9). While it is not so
useful to attempt an actual fit to Tc with such limited data
and such a limited theoretical framework (see Ref. [28] for
positive steps in removing several of the limitations), for the
sake of completeness, we show Tc vs electron density for
a number of weak coupling strengths. By way of illustration,
for V = 2t [V/(16t) = 0.125], with nearest-neighbor hopping
t = 1 eV, and ωD = 100 meV (all conservative values), then
Tc ≈ 160 K. We expect actual reductions due to retardation
and other effects [28], but these estimates suggest that the
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FIG. 12. Plot of Tc/ωD vs electron density n for various values
of coupling strength, V/t = 2, 3, and 4. We used the bcc lattice with
NNN hopping, t2 = −0.3t , which provides a reasonable facsimile to
the peak in the density of states (see inset) calculated with DFT
methods. For illustration purposes, if V = 2t [V/(16t) = 0.125],
with nearest-neighbor hopping t = 1 eV, and ωD = 100 meV, then
Tc ≈ 160 K (at n = 1). In this range of ωD the results for Tc/ωD are
insensitive to ωD , and therefore Tc scales with ωD .

possibility of an enhanced Tc due to a peaked electronic density
of states is quite realistic.

V. SUMMARY

In the context of BCS theory, we have examined the role
of van Hove singularities in the electronic density of states
on the superconducting critical temperature and the isotope
coefficient (and briefly the pairing gap) for various band
structures given by tight-binding models in two and three
dimensions. We have adopted the simplest kind of pairing
potential, an attractive interaction with energy scale ωD , which
gives rise to an order parameter with s-wave symmetry. While
the model follows the original BCS [1] paper and is therefore
suggestive of a phonon-mediated interaction, it in fact has
greater generality.

Many such models have been proposed for high temperature
superconductors, and many calculations have been performed,
as documented in the references. However, here we have
gone beyond the existing literature in two respects. First, we
have systematically treated the tight-binding models over all
electron densities, with careful account of the BCS number
equation [our Eq. (3) below Tc or Eq. (11) at Tc], and we have
utilized the tight-binding density of states as given, whether
for NN hopping only or with NNN hopping included as well.
Secondly, we have performed calculations for systems with
van Hove singularities in three dimensions. While the simple
cubic lattice structure is well known to produce a density
of states without singularities (the van Hove singularities
manifest themselves in cusps and the derivatives of the density
of states), it is less appreciated that both the face-centered
cubic and the body-centered cubic exhibit singularities in
their densities of states [17]. It is also surprising that the
sc lattice structure results in a singular density of states
when the NNN hopping t2 in increased to t/4. Well before

this value is reached the density of states exhibits a strong
peak.

We have illustrated that these singularities can give rise to
very large enhancements in Tc. Even in the case of the sc lattice,
when NNN hopping is included, significant enhancements of
Tc can occur. The bcc lattice is bipartite and therefore nested.
As is well known from other nested Fermi surface problems
(though certainly less studied for the bcc lattice in particular)
other competing instabilities are expected to play an important
role, and the BCS calculations provided here become doubtful,
as superconducting Tc will often be suppressed. For example,
a CDW instability would certainly compete in the case of a
bcc lattice, with �q = (4π/a,0,0) along with equivalent wave
vectors. Of course, with NNN hopping the CDW instability
would likely become incommensurate, and would become
suppressed as well. Moreover, this is not an issue with the
fcc lattice, as it is not bipartite, the singularity in the density
of states in this instance occurs near the top of the band, and
other finite q instabilities will not play such a significant role.
The possibility still remains that a competing q = 0 instability
will suppress superconductivity, but consideration of these is
beyond the scope of this paper.

Nonetheless, for both the bcc and fcc lattice structures,
some NNN hopping is expected, and we have shown here that
this immediately leads to the disappearance of the singularity
in the density of states. In fact, a “robust” peak remains
in the density of states, and as we have shown, a very
large enhancement of Tc continues to be present, now in a
regime where the BCS calculation is more trustworthy, at
least for the bcc lattice structure. This is true for several
reasons—for example, as discussed competing instabilities
will be suppressed, but in addition, narrow structures in
the density of states will be smeared both by impurities,
and by retardation effects not accounted for in our BCS
calculations. Given the number of superconductors with the
fcc and bcc lattice structures, it would be interesting to perform
a survey to see if there is any correlation between their
critical temperatures and the “remnants” of these van Hove
singularities. In fact, the recent discovery of superconducting
hydrogen sulfide under high pressure by Drozdov et al. [20] has
motivated theoretical work [27] that has identified a van Hove
singularity in the electronic density of states. The underlying
lattice structure is bcc and thus far the origin of this singularity
is not clear. This work, particularly the previous subsection,
strongly suggests that ultimately the origin of the singularity
(and ultimately an important factor in the high superconducting
critical temperature) may in fact be bcc structure of the
material, along with circumstances that place the Fermi energy
in the vicinity of the robust peak that remains even when NNN
hopping is included.

We have also computed the isotope coefficient in a
variety of cases. It is clear that anomalies in this coefficient
will exist due to peaks in the density of states. In some
respects the few observations where anomalies are found
in known superconductors can be regarded as signatures
of peaks in the density of states (although of course other
explanations also exist). We have also briefly examined the
pairing gap, but there is no significant deviation from what
standard BCS theory predicts, i.e., the gap tracks the critical
temperature.
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APPENDIX: DENSITY OF STATES
WITHIN TIGHT BINDING

The general equation for the density of states (DOS) is

g(ε) = 1

N

∑
k∈FBZ

δ(ε − εk), (A1)

where εk is the dispersion relation, the summation is over all
points in the first Brillouin zone (FBZ), and N is the number
of k points in the FBZ. Dispersion relations are determined
by overlap integrals and geometry; for a Bravais lattice the
dispersion relation can be written as

εk = −
∑

δ

tδcos�k · �δ, (A2)

where the sum is over all neighbors of a particular lattice site,
with decreasing amplitude tδ , to reflect the decreasing overlap
between atoms that are further apart from one another. This
decrease with distance is usually exponential, so very often
only nearest-neighbor overlaps are considered to be nonzero.
It turns out that this simplified model often possesses special
symmetries, not necessarily inherent in the more general
model, and therefore, if for no other reason, further than
nearest-neighbor overlaps are often considered as well. Within
the tight-binding approach only a few nearest neighbors are
retained, so for example, we obtain

εk = −2t[cos(kxa) + cos(kya)]

− 4t2cos(kxa)cos(kya) [2D NNN], (A3)

εk = −2ts[cos(kxa) + cos(kya) + cos(kza)]

− 4ts2[cos(kxa)cos(kya) + cos(kxa)cos(kza)

+ cos(kya)cos(kza)] [sc NNN], (A4)

εk = −8tb

[
cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kza

2

)]
[bcc NNN]

− 2tb2[cos(kxa) + cos(kya) + cos(kza)], (A5)

εk = −4tf

[
cos

(
kxa

2

)
cos

(
kya

2

)
+ cos

(
kxa

2

)
cos

(
kza

2

)

+ cos

(
kya

2

)
cos

(
kza

2

)]
[fcc NNN]

− 2tf 2[cos(kxa) + cos(kya) + cos(kza)]. (A6)

We repeat here important definitions already mentioned in
the text. The distance a is the nearest-neighbor distance in
the 2D and simple cubic (sc) cases, and is the length of the
cube in the body-centered-cubic (bcc) and face-centered-cubic
(fcc) cases; these latter two each contain eight atoms, one at
each vertex, along with one in the center (bcc) and six on the
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FIG. 13. Plot of the tight-binding 2D density of states for various
values of the next-nearest-neighbor (NNN) hopping parameter, ρ ≡
t2/t , as given analytically in Eq. (A7). A logarithmic singularity
remains even in the presence of NNN. Note that the results for
negative values of ρ are symmetric (about ε = 0) to those shown
with positive values of ρ. As mentioned in the text, numerical results,
using Eq. (A8), are also shown, and are indistinguishable from the
analytical results. The black dashed curve is the approximation given
by Eq. (15) in the text, valid for ρ = 0.

face centers (fcc). Also, t,ts,tb, and tf are the nearest-neighbor
hopping parameters and t2, ts2, tb2, and tf 2 are the next-nearest-
neighbor hopping parameters for the 2D square, 3D sc, 3D bcc,
and 3D fcc lattices, respectively.

Note that without NNN hopping these have bandwidths W

of 8t , 12ts , 16tb, and 16tf , respectively. We have additionally
included next-nearest-neighbor hopping in all these cases; for
the 3D cases all but the sc case exhibit singularities when only
nearest-neighbor hops are considered; in two dimensions the
existence of a singularity is retained as next-nearest-neighbor
hops are introduced, while in the three dimensions, in either the
face-centered-cubic (fcc) or body-centered-cubic (bcc) cases,
the singularity disappears.

For our purposes the important property emerging from
these different band dispersions is the shape of the density
of states, defined above. In two dimensions, the DOS can be
determined analytically in terms of complete elliptic integrals.
The result is

g2D(ρ; ε) = 1

2π2ta2

1√
1 − 4ρε̄

K

[
1 − (ρ − ε̄)2

1 − 4ρε̄

]
, (A7)

where ε̄ ≡ ε/(4t) and ρ ≡ t2/t , with the restriction that
−1/2 < ρ < 1/2. A different expression applies for |ρ| >

1/2, but we omit this regime as being unphysical. Figure 13
shows the DOS for a few values of ρ > 0; note that g2D(ρ; ε) =
g2D(−ρ; −ε), so the DOS with negative values of ρ are mirror
images of those shown. It is evident from Eq. (A7) that the
logarithmic singularity occurs at ε = 4t2.

Also shown, but indistinguishable from the analytical
curves drawn using Eq. (A7), are results obtained numerically,
using the Gaussian representation for a δ function. With x ≡
kxa/π and y ≡ kya/π , the 2D version for the first dispersion
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FIG. 14. Plot of the tight-binding 3D SC density of states
for various values of the next-nearest-neighbor (NNN) hopping
parameter, ρ ≡ t2/t . Note that a singularity develops at the top of
the band, for ε = 3t , as the two van Hove singularities (originally at
ε = 2t and at ε = 6t for t2 = 0) merge into one. Results are shown
for positive t2 since the results for negative values of ρ are symmetric
(about ε = 0) to those shown with positive values of ρ.

given in Eq. (A6) is

gδ(ε) = 1

2ta2

1√
πδ2

∫ 1

0
dx

∫ 1

0
dy exp

{
−

[
ε − εk

2tδ

]2
}

,

(A8)

where the approximation improves for smaller value of the
smearing parameter, δ. In Fig. 13 we use δ = 0.0005t . For 3D
dispersions an additional integral over z ≡ kza/π from zero
to unity is required and a2 → a3.

In three dimensions, the integrals must be done numerically.
It is straightforward to simplify some of the results when
there is no next-nearest-neighbor hopping, [17] and we cite
some of these results for convenience. For the rest we develop
formulas in some instances or simply use Eq. (A8), as this is
straightforward and continues to work extremely well, even in
three dimensions.

The result for SC with next-nearest-neighbor hopping is

gSC(ε) =
∫

dx

2π2ta3

K(y)√
(1 + 2ρ cosπx)2−ρ(4ε̄ + 2 cosπx)

,

(A9)

where

y ≡ 1 −
(
ρ − ε̄ − 1

2 cosπx
)2

(1 + 2ρ cosπx)2 − ρ(4ε̄ + 2 cosπx)
(A10)

and ε̄ ≡ ε/(4t), K(y) is the complete elliptic integral of the
first kind, ρ ≡ t2/t is the ratio of the NNN to the NN hopping
amplitude, and a3 is the unit cell volume. The limits on the
integration are such that y remains positive and less than unity
at all times. As remarked in the text, this density of states has
no singularities for t2 = 0 [there remain van Hove singularities
in the form of cusps and singularities in the derivative of g(ε)],
but develops a singularity as t2 increases. This is evident in
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FIG. 15. Plot of the tight-binding 3D bcc density of states
for various values of the next-nearest-neighbor (NNN) hopping
parameter, ρ ≡ t2/t . Note that the singularity for ε = 0 disappears as
t2 becomes nonzero. Results are shown for positive t2 since the results
for negative values of ρ are symmetric (about ε = 0) to those shown
with positive values of ρ. Even with nonzero t2 a significant peak in
the density of states remains. The inset shows numerical results as
a function of ε very close to the cusp located at εcusp = 6tρ − 4ρ3t

for ρ = t2/t = 0.3, for various values of the smearing parameter,
δ/t = 0.01,0.005,0.002,0.001,0.0001.

Fig. 14, where we use the 3D version of Eq. (A8) to plot the
density of states.

The result for the bcc lattice with nearest-neighbor hopping
only is [17]

gbcc(ε) = 2

a3

1

2π3t

∫ 1

|ε̄|
dx

1√
x2 − ε̄2

K[1 − x2]. (A11)
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FIG. 16. Plot of the tight-binding 3D fcc density of states
for various values of the next-nearest-neighbor (NNN) hopping
parameter, ρ ≡ t2/t . For t2 = 0 there is a singularity at the top of the
band (red curve as indicated). As t2 becomes nonzero the singularity
disappears and the maximum shifts to the left. In fact, as t2 grows the
maximum in the density of states becomes “robust” in the sense that
a significant area exists in the maximum region (also the case with
bcc and with the 2D result—see the ρ = 0.45 result in Fig. 13).
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Note that the unit cell volume for the bcc lattice is a3/2; that is
why we isolate this factor at the front of the previous formula.
Using the fact that K(1 − x2) → ln(4/x) as x → 0, one can
straightforwardly derive that

lim
ε̄→0

gbcc(ε) = 2

a3

1

2π3t

[
3

2
ln2

(
1

|ε̄|
)

+3 ln2 ln

(
1

|ε̄|
)

+ 2(ln2)2

]
, (A12)

so that the divergence is an ≈ln2( 1
|ε̄| ) singularity, stronger than

occurs in two dimensions. For the case with NNN hopping
we use Eq. (A8) to determine the result numerically; these

are shown in Fig. 15. The van Hove points are at energies
−8t − 6tρ (bottom of the band), 2tρ, 6tρ − 4tρ3, 6tρ, and
8t − 6tρ (top of the band). Note that the bandwidth remains
16t even when NNN hopping is nonzero.

Finally, for fcc, we show numerical results for NNN
hopping as well. Our use of the exponential representation
of the δ function still allows sufficient resolution to show the
various van Hove singularities, apparent in Fig. 16. However,
with NNN hopping the singularity at the top of the band
for t2 = 0 disappears, but various cusps remain, signifying
discontinuities in the first derivative. Note that the fcc lattice
is not bipartite, and nesting is not present, even in the case of
NN hopping only.
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