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The nematic-superconductor state is an example of a quantum liquid crystal that breaks gauge as well as
rotation invariance. It was conjectured to exist in the pseudogap regime of the cuprates high-Tc superconductors.
The nematic-superconductor state is characterized by two complex order parameters: one of them is related to
superconductivity and the other one describes a nematic order. It supports two main classes of topological defects:
half vortices and disclinations. In this paper we present a Ginzburg-Landau approach to study the structure of
these topological defects. Due to a geometrical coupling between the superconductor and the nematic order
parameters, we show that vortices are strongly coupled with disclinations. We have found a restoring force
between vortices and disclinations that produces harmonic excitations whose natural frequency depends on the
geometrical coupling constant and the superconductor condensation energy. Moreover, in a regime with high
density of defects, we have found a structural phase transition between vortex-disclination lattices with different
symmetries.
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I. INTRODUCTION

It is by now well established that electronic anisotropies
play an important role in several strongly correlated systems
[1]. Strong repulsive interactions could spontaneously break
lattice translation as well as rotation invariance. Depending
on the broken symmetries, different ordered phases can
be classified in a very similar way from liquid crystals.
For instance, a stripe phase, which breaks translation in-
variance in one direction, has the same symmetries as the
smectic phase. On the other hand, phases breaking only
rotation invariance, but preserving translations, are called
nematic phases. This equivalence allows us to generically
call these phases “quantum liquid crystals” [2]. In particular,
theories for the quantum Hall smectic phase [2,3] and
the nematic Fermi liquid [4,5] were presented some time
ago.

In some strongly correlated systems, the superconductor
(SC) order parameter can break rotational as well as discrete
translational invariance, in such a way that the orientational
and positional orders are intertwined with the SC and magnetic
orders [6,7]. In these cases, the traditional classification of s

wave, d wave, etc., coming from the irreducible representation
of the lattice point symmetry group, no longer applies.
An important particular example is the pair density wave
state (PDW) [7–9]. It was originally proposed to describe
the striking dynamical dimensional decoupling, observed in
La2−xBaxCuO4 near x = 1/8 [10,11]. Similar effects have
been observed in stripe-ordered La1.6−xNd0.4SrxCuO4 [12,13]
and in the magnetic-field-induced stripe-ordered phase of
La2−xSrxCuO4 [14]. Roughly speaking, the PDW state can
be thought of as a condensate of Cooper pairs with finite
momentum. Interestingly, there is a recent claim that a
PDW state has been measured in Bi2Sr2CaCu2O8+x by
means of nanometer-resolution scanned Josephson tunneling
microscopy [15].

The nematic superconductor, which we study in this paper,
is induced by the more basic PDW state. Consider, for instance,
the simplest unidirectional PDW state characterized by a wave

vector q,

�PDW = �qe
iqx + �−qe

−iqx, (1)

with �q �= �∗
−q . Both order parameters, �q = |�q | exp(iθq)

and �−q = |�−q | exp(iθ−q), represent Cooper pairs (charge
2e) with momentum q. Thus, the state is characterized by
two complex order parameters. The corresponding phases can
be identified as the superconducting phase θ+ = (θq + θ−q)/2
and the smectic displacement θ− = (θq − θ−q)/2. Since θ±q

are defined modulo 2π , the related phases θ± are defined
modulo π . Thus, the PDW state supports several topological
defects, such as vortices, double dislocations, and half vortices
bounded to single dislocations [16]. By means of thermal
melting, several phases can be reached from the PDW
state, producing a very rich phase diagram [17]. One of
these phases, called the nematic superconductor (NSC), is
reached from the PDW state by thermal proliferation of
double dislocations. The proliferation of dislocations restores
the translation invariance, retaining the SC as well as the
orientational (nematic) order. The NSC is understood as a
quadratic combination ψ ∝ �q�−q . In this way, ψ is a
complex homogeneous order parameter, since the combination
of �q and �−q cancels any modulation in q. However, the
state still “remembers” the original orientation of q, thus
producing a homogeneous anisotropic state. Interestingly,
from its definition, it is simple to check that, under gauge
transformations, it transforms with double the phase of
the PDW state, since ψ ∝ |�q�−q | exp(2iθ+). Then, this
superconductor state should be interpreted as a condensation
of four particles and not of Cooper pairs. For this reason it is
also called a “charge-4e nematic superconductor” (4e-NSC).

Nematic fluctuations enhance this state since, for weak
lattice couplings, the PDW phase turns out to be unstable.
Indeed, in the limit where the lattice is completely decoupled,
two-dimensional positional order cannot exist, due to linearly
divergent fluctuations [17]. It is highly hypothesized that the
NSC state could exist in the pseudogap region of cuprates.
Indeed, several experimental clues point in this direction. For
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instance, fluctuating stripes have been measured [18] at the
onset of the pseudogap state of Bi2Sr2CaCu2O8+x . Moreover,
measurements of the Nernst effect in YBa2Cu3Oy [19] showed
that the pseudogap temperature coincides with the appearance
of a strong in-plane anisotropy of electronic origin, compatible
with the electronic nematic phase [5].

The NSC state has extremely interesting properties. Its
main topological defects are half vortices (vortices with
half a flux) and disclinations. Thus, thermal melting could
produce a metallic nematic phase (by proliferation of half
vortices) or even an isotropic superconductor (by proliferation
of disclinations). However, the scenario is not so simple
since, as we will show, vortices and disclinations are strongly
interacting.

In this paper, we analyze the structure of the topolog-
ical defects supported by the NSC state. By means of a
Ginzburg-Landau (GL) theory, we compute the vortex and the
disclination profiles in two different regimes: a very diluted
regime, where vortices and disclinations can be considered
isolated (with axial symmetry), and a high-density regime,
where vortices and disclinations tend to form lattice structures.
The effect of local nematicity is to produce a fluctuating
metric which produces a geometrical coupling between the
nematic and the SC order parameter. In some sense, the
system behaves similarly to an order parameter living on
a curved surface [20]. We have found that the geometrical
coupling tends to align the nematic director perpendicularly
or parallel to the supercurrent, depending on the sign of
the coupling. This effect implies that vortices are strongly
tightened to disclinations. We will show that, at short distances,
both topological defects interact through a quadratic potential.
The excitations are harmonic oscillations with frequency
�2 ∼ λSC�, where λSC is the SC condensation energy and
� is the geometrical coupling constant. The potential remains
attractive when the separation between the vortex and the
disclination grows, having a logarithmic dependence at large
distances. In the high-density regime, this strongly attractive
interaction induces the system to be arranged in a lattice of
vortices tightly bounded to disclinations. While vortices prefer
to form triangular lattices, disclinations have a tendency to
form square lattices. Then, there is a competition produced by
the geometrical coupling, opening the possibility of a structural
phase transition between lattices with different symmetries.

The NSC state has never been directly detected; however,
there is strong evidence that its parent PDW state has a relevant
role near the pseudogap regime and could recently have been
observed [15]. A clear signature of the existence of the NSC
state should be a detection of a half-flux (hc/4e) vortex,
possibly by means of a SQUID loop arrangement [16]. Due
to the strong interaction between vortices and disclinations, in
this paper we open the interesting possibility of probing the
NSC state by using mechanical probes [21,22].

In this paper we present details of the model and calcula-
tions that are conducive to the above described main results.
The paper is organized as follows: In Sec. II we review the
superconductor and the nematic order parameters and we show
how to build the Ginzburg-Landau theory for the NSC state.
In Sec. III we analyze the simplest approximation, in which
the relevant degrees of freedom are the SC and the nematic
phases. Section IV is the main part of the paper. In Sec. IV A

we compute the profile of an isolated vortex disclination with
axial symmetry, while in the Sec. IV B we analyze the case
of a high density of vortices and disclinations showing the
competition between different lattice symmetries. Finally, we
discuss our results in Sec. V and reserve three appendices to
show computational details.

II. ORDER PARAMETERS AND GINZBURG-LANDAU
THEORY OF THE CHARGE-4e NEMATIC

SUPERCONDUCTOR

The nematic superconductor is an example of a quantum
liquid crystal [23,24]. It is a homogeneous electronic state
that breaks gauge as well as rotation invariance. Thus, it is
necessary to deal with two order parameters, one of them
complex, related to superconductivity and the other one related
to the orientational order [4]. With the aim of making this paper
self-contained, we briefly review in this section the Ginzburg-
Landau theory for the NSC state [6], paying special attention
on the geometrical coupling induced by nematicity [17].

The simplest superconductor order parameter is given by a
scalar complex function

ψ(�x) = ρ(�x)eiθ(�x). (2)

Moreover, the two-dimensional nematic order parameter is
represented by a second-order, traceless symmetric tensor N,
whose components are given by

Nij = 2S(�x)
{
ni(�x)nj (�x) − 1

2δij

}
, (3)

with i,j = x,y. S(�x) is the modulus of the order parameter
and the unit vector n̂ = (cos α, sin α) is the director of the
nematic order. Nij is a quadratic function of the director,
making it invariant under π rotations, n̂(�x) → −n̂(�x). In two
dimensions, N has two independent components, Nxx and Nxy ,
that could be arranged in a complex function Q = Nxx + iNxy ,
in such a way that

Q(�x) = S(�x)ei2α(�x). (4)

The complex representation of the nematic order parameter
is only possible in two dimensions. In three dimensions, it is
necessary to go back to the tensor representation since, in this
case, there are more degrees of freedom and more possibilities
for the nematic structure such as uniaxial and biaxial nematics
[25].

Both order parameters ψ(�x) and Q(�x) are formally very
similar, in the sense that both are complex functions. How-
ever, their transformation properties are very different: ψ(x)
transforms under an internal U (1) gauge symmetry group
and it is a scalar field under external global rotations; i.e.,
if we rotate the coordinate system by an angle ϕ, �x ′ = Rϕ(�x),
then ψ ′(�x ′) = ψ(�x). On the other hand, the nematic order
parameter does not transform under the internal gauge group;
however, Q′(�x ′) = ei2ϕQ(�x) under rotations, since it comes
from a second rank tensor structure. The factor 2 in the
exponential enforces the nematic symmetry. These properties
are very important in order to correctly build up a gauge and
rotationally invariant free energy.

For uniform configurations, the Landau expansion for both
order parameters can be made as usual. Assuming that near
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the transition |ψ | is small, and asking for rotational and gauge
invariance, with the additional requirement of analyticity,
we have the quartic potential for the superconductor order
parameter

VSC = a|ψ |2 + b

2
|ψ |4 = aρ2 + b

2
ρ4, (5)

where we assume b > 0. The metallic/superconductor phase
transition is controlled by the sign of a = ã(T − TSC), where ã

is a constant and TSC is the mean-field superconductor critical
temperature. For the nematic order parameter we have an
equivalent expansion

VN = t

2
Tr(N2) + u

4
Tr(N4)

= t |Q|2 + u

2
|Q|4 = tS2 + u

2
S4. (6)

Since u > 0, the isotropic/nematic transition is controlled by
t = t̃(T − TN ), where t̃ is a constant and TN is a mean-field
nematic critical temperature. We assume that TN > TSC ,
such that a metallic nematic phase exists at temperatures
TSC < T < TN . The expression of Eq. (6) is typical of the
two-dimensional nematic where Tr(N2n+1) = 0. Conversely,
in three dimensions, Tr(N3) �= 0, producing a first-order phase
transition.

The simplest way to couple Q and ψ taking into account
phase symmetry and rotation invariance is through the quartic
potential

VSCN = v

2
|ψ |2Tr(N2) = v|ψ |2|Q|2 = vρ2S2, (7)

where v is a coupling constant. For weak coupling, |v/ub| 	
1, the homogeneous Landau free energy is minimized by

ρ2
m = −a

b
+ t

(
v

ub

)
+ O[(v/ub)2], (8)

S2
m = − t

u
+ a

(
v

ub

)
+ O[(v/ub)2]. (9)

Thus, if v < 0, the presence of one phase strengthens the
presence of the other one. However, for v > 0, both phases
are competing.

Coupling the nematic order parameter with inhomogeneous
superconductor configurations is more subtle. Since the
nematic order parameter is a second-rank tensor it couples
with the derivatives of the superconductor order parameter.
Indeed, the simplest coupling of this type is ∇iψ

∗Ni,j∇jψ ,
which is obviously globally gauge invariant and rotationally
invariant. In this sense, the nematic order parameter behaves
as a fluctuating metric [17]. It is worth mentioning that the
effect of nematicity as an effective fluctuating metric was
recently found in other electronic systems such as fractional
quantum Hall systems [26]. We can build the GL free energy
by considering that the SC order parameter lives in a curved
space [20], characterized by the metric

gij (�x) = δij + �

Sm

Nij (�x), (10)

where the constant � measures the geometrical coupling and
Sm is just a normalization to get the coupling dimensionless.
We note here that � could be any small real number, positive

or negative. On the other hand, remembering that the nematic
tensor is invariant under rotations by π and changes sign under
rotations by π/2, a change of sign in � is equivalent to a global
rotation of π/2 of the director n̂(x).

We will consider essentially three contributions to the GL
free energy: the potential terms, given by Eqs. (5), (6), and (7),
that involve only scalar homogeneous couplings; the derivative
terms proportional to gij∇iψ

∗∇jψ where the geometrical
coupling plays an important role; and the inhomogeneous
nematic terms that take into account the “elastic” properties of
the nematic degrees of freedom. Moreover, as usual, we need
to minimally couple the electromagnetic field in order to force
local gauge invariance. In this way, the GL free energy reads

FLG =
∫

d2x
√

det g

{
αsg

ij (Diψ)∗(Djψ) + αn
�∇Q∗ · �∇Q

+VSC + VN + VNSC + 1

8π
B2

}
. (11)

The first term in Eq. (11) codifies the interaction between
derivatives of the SC order parameter. It contains couplings
with nematic degrees of freedom through the metric gij given
by Eq. (10). The constant αs measures the superconducting
stiffness and is related to the coherence length, as we will show
in the next sections. The second term, proportional to αn, is
the simplest nematic elastic energy; we have considered, for
simplicity, that all Frank constants are equal [25]. The second
line of Eq. (11) contains the potentials and the energy density
of the magnetic field B = �∇ × �A. The covariant derivatives
are given by

Di = ∇i − i4eAi. (12)

The value of the electric charge of elementary excitations is
not fixed in a GL theory. In the usual superconductors we fix
it to 2e since we associate the modulus of the order parameter
with the density of Cooper pairs. In the case of the NSC, we
have no microscopic theory (such as BCS) to guide us to fix
the charge. Conversely, we fix it to 4e, since we understand the
NSC as a melted PDW state as explained in Sec. I. Finally, the
integration measure d2x

√
det g is the usual invariant measure

under reparametrizations.
Equation (11) is the main result of this section and is the

starting point of the subsequent analysis of the topological
defects structure. This model has certain similarities with other
superconductor states described by multicomponent order
parameters [27,28]. For instance, two-band superconductors
with different coherence lengths admit vortices with fractional
magnetic flux [29]. Moreover, using a two-component order
parameter theory, it has been recently conjectured that a
square lattice of skyrmions could be topologically stable in
the pseudogap regime [30]. The essential difference with
our model is that the nematic order parameter Q does not
couple with the vector potential Ai in a minimal way, but it
does couple through the metric. There is also a nontrivial
geometrical coupling between both order parameters that
uniquely characterize the NSC state. In the next sections we
analyze the influence of these couplings on the topological
configurations that minimize the free energy, Eq. (11).
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III. WARMING UP: LONDON APPROXIMATION

Some general features of the topological defects structure
can be visualized using a simpler free energy, obtained
in analogy with the London approximation in the usual
superconductors [31]. The system described by Eq. (11) has
three typical length scales. The superconducting coherence
length

ξs =
√

αs

|a| , (13)

which relates the coefficient of the derivative of the order
parameter with the curvature of the SC potential, indi-
cating the typical length scale of the modulations of the
SC order parameter. There is an analogous length scale
for the coherence of the nematic order parameter given
by

ξn =
√

αn

|t | . (14)

Finally, the London penetration length λL is related to
the electromagnetic response of the system, and represents
the typical length in which a magnetic field can pene-
trate a superconductor state. In our system, it is given
by

λL =
√

1

138πe2αs

(
b

a

)
+ O(�). (15)

The numerical coefficient is half the usual one, since the
elementary charge of the NSC is 4e. Moreover, it has small
corrections due to the anisotropy of order �. Thus, we can
define two dimensionless constants given by

κs = �L

ξs

, κn = �L

ξn

. (16)

The first one is the usual Abrikosov parameter while the second
one is a similar parameter for the nematic component. The
penetration length is the same for both definitions since the
nematic order parameter does not couple in a minimal way
with the electromagnetic field.

In a temperature regime where T 	 TSC < TN , we can
ignore ρ and S fluctuations. From Eq. (11), and considering
S = Sm and ρ = ρm given by Eqs. (8) and (9), we find the
following free energy for the superconducting phase θ (x) and
the nematic orientation α(x),

FL =
∫

d2x

{
ρs | �∇θ + 4e �A|2 + K| �∇α|2

+ λ(n̂ · ( �∇θ + 4e �A))2 + 1

8π
( �∇ × �A)2

}
, (17)

where ρs = αsρ
2
m(1 − �), K = 4αnS

2
m, and λ = 2αsρ

2
m�.

This is a quite good approximation for low temperatures and
systems with κs � 1 and κn � 1.

For weak external magnetic fields, the system is in a Meiss-
ner phase. It has phase coherence and the magnetic field is
completely expelled from the sample. However, near a critical
value Hc1 ∼ φ0/λ

2
L, determined by the penetration length λL

and the magnetic flux quantum φ0, the system can lower
its energy by letting a quantized magnetic flux penetrate the

sample in a limited region determined by the coherence length
ξs . Once the magnetic field penetrates the sample, circulating
supercurrents suppress the SC order parameter inside the core.
On the other hand, for large distances, the screening currents
produce a magnetization that suppresses the magnetic field
on a length scale λL. For longer distances the current density
rapidly vanishes. The nematic order parameter can present
topological defects called disclinations [25,32]. Disclinations
are regions where the director n̂(x) has a discontinuity. In two
dimensions, disclinations are pointlike objects in such a way
that

∮
C

d �� · n̂ = 2π , provided the discontinuity is inside the
closed path C. These defects are composed by a core where
the system is essentially isotropic. At very low temperatures,
much smaller than the isotropic-nematic transition we expect
only a few disclinations since the main mechanism to produce
them are thermal fluctuations. However, due to the geometrical
coupling with the SC order parameter, the presence of vortices
always induces disclinations. Thus, in our model, disclinations
are indirectly driven by the magnetic field.

In the absence of the geometrical coupling (λ = 0), Eq. (17)
reduces to two decoupled XY models [16]. In this context,
by rising temperature, we expect two independent Kosterlitz-
Thouless transitions: one of them driven by vortex unbinding
producing a metallic nematic phase [5] and the other one
by unbinding disclinations, reaching a completely isotropic
metallic phase. This scenario changes in the presence of the
geometrical coupling since it forces the director to point
perpendicular or parallel to the supercurrent depending on
the sign of λ. This effect is easily seen by observing that
the last term of Eq. (17) is proportional to λ(n̂ · �Jsc)2 with the
supercurrent �Jsc ∼ �∇θ + 4e �A. To minimize this term, n̂ ⊥ Jsc

for λ > 0. Conversely, for λ < 0 the energy is minimized
considering n̂ ‖ Jsc. Thus, in either case, currents induce
nematicity. In particular, the presence of a vortex induces a
disclination configuration, as shown in Fig. 1 for the case
λ > 0.

To be specific, let us minimize the free energy by com-
puting δF/δθ = 0 and δF/δα = 0. We obtain the following

FIG. 1. Isolated vortex attached to a disclination. The radial
director �n(�x) is locally perpendicular to the vortex current �Jsc(�x).
Inside the core, the system is an isotropic metal.
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differential equations (for simplicity we put �A = 0),

∇2θ + λ

ρs

(∇2
nθ + ∇nθ∇n⊥α

) = 0, (18)

∇2α − λ

K
∇nθ∇n⊥θ = 0, (19)

where we have defined the following scalar differential
operators:

∇n = n̂ · �∇, (20)

∇n⊥ = n̂ × �∇. (21)

∇n and ∇n⊥ are directional derivatives parallel and perpendic-
ular to the director n̂(x), respectively.

We find three types of configurations that solve Eqs. (18)
and (19):

(a) The trivial solution is θ (x) = θ0, α(x) = α0, where θ0

and α0 are two arbitrary constants. This solution corresponds
to an anisotropic superconductor state with global phase θ0

and the nematic director aligned with the direction n̂0 =
(cos α0, sin α0).

(b) Isolated disclinations for which θ (x) = θ0, and for
instance, ni(x) = xi/r for r �= 0. This solution has zero
supercurrent �∇θ = 0, and the director is in a radial topological
configuration.

(c) A vortex attached to a disclination in such a way that the
director is perpendicular to the supercurrent at all points. One
of these configurations is ∇iθ = εij xj /r2 and ni(x) = xi/r

for r �= 0. εij is the antisymmetric Levi-Civita tensor; thus,
n̂(x) · �∇θ (x) = 0. We depict this solution in Fig. 1.

Interestingly, an isolated vortex is not a solution of Eqs. (18)
and (19), since the geometrical coupling forces the director
to be perpendicular (or parallel) to the current streamlines,
producing a disclination.

Therefore, in the London approximation, the thermal
melting of the NSC state can be produced in two ways:
by unbinding isolated disclinations, which restores isotropy
but does not affect the SC, or by the proliferation of
vortices tightly bound to disclinations. It is timely to notice
that this mechanism is proper to isotropic interactions. The
coupling to lattice anisotropy changes this scenario since
the nematic transition becomes Ising-like and it is driven by
the proliferation of domain walls. In this case, vortices are no
longer bounded to disclinations.

The energy associated with a vortex-disclination config-
uration in the London approximation is simple to com-
pute. For � > 0, Jsc ⊥ n̂ and the energy has essentially
two independent contributions Fvd = Fv + Fd . The energy
of the vortex is approximately Fv ∼ (φ2

0/λ
2
L) ln(κs). Since

the disclination does not couple with the electromagnetic
field, Ed = 2πK ln(L/ξn), where L is the linear size of the
sample [32]. This infrared divergence could be cut off at the
inter-disclination distance in the diluted regime. In order to
understand more deeply the interaction between vortices and
disclinations, let us compute the energy needed to create a
vortex-disclination pair separated by a distance R. Consider,
for instance, the configuration depicted in Fig. 2. The vortex
is centered at the origin, while the disclination is centered at a

FIG. 2. Vortex and disclination shifted by a distance R in the x

direction

distance R along the x axes,

∇iθ = εij

xj

x2 + y2
, (22)

ni = xi − Ri√
(x − R)2 + y2

, (23)

with Rx = R and Ry = 0. We compute the energy difference
�F (R) = Fvd (R) − Fvd (0) using Eq. (17),

�F (R) = λ

∫
d2x [n(x) · ∇θ (x,R)]2. (24)

Replacing Eqs. (22) and (23) into Eq. (24), and performing the
integrals (see Appendix B), we find

�F (R) = π |λ| ln

(
R

a

)
, (25)

where a is the vortex core and R � a. Thus, at large distances,
vortices and disclinations have an attractive logarithmic
interaction, whose sign is independent of the sign of their
topological charges.

IV. VORTEX AND DISCLINATION PROFILES

In this section we study more closely the interplay between
vortices and disclinations by analyzing the complete GL free
energy. It is useful to rewrite Eq. (11), in terms of modulus and
phases of both order parameters. We have

F = FSC + FN + FNSC, (26)

where

FSC =
∫

d2x

{
αs(| �Dρ|2 + ρ2| �∇θ + 4e �A|2) + VSC

+ 1

8π
( �∇ × �A)2

}
, (27)

FN =
∫

d2x{αn(| �∇S|2 + 4S2| �∇α|2) + VN }, (28)

FNSC =
∫

d2x

×
{

2αs�
S

Sm

[
(|n̂ · �Dρ|2 + ρ2[n̂ · ( �∇θ + 4e �A)]2)

− 1

2
(| �Dρ|2 + ρ2| �∇θ + 4e �A|2)

]
+ VNSC

}
. (29)
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The first and the second equations are the superconductor and
nematic free energies, respectively, while the last one describes
the interaction between the order parameters. While the first
term of Eq. (29) describes the geometrical interaction, the last
term is the potential given by Eq. (7). The main purpose of
this section is to understand the effect of these interactions on
the vortex and disclination profiles. To do this we consider
two different regimes. For weak magnetic fields, near the
critical value H � Hc1, vortices are extremely diluted and
we can consider the case of an isolated vortex-disclination
configuration. On the other hand, for higher magnetic fields,
near H � Hc2, there is high density of vortices and we study
the formation of vortices/disclinations lattices with different
symmetries.

A. Effect of the geometrical coupling in a single
vortex-disclination profile

Guided by the results obtained in the London approxi-
mation, we look for a single vortex solution attached to a
disclination centered at the origin. For � > 0, the director
should be perpendicular to the current; then, the simplest
vortex-disclination configuration with axial symmetry can be
written as

ψ(�x) = ρ(r) eiϕ, (30)

Q(�x) = S(r) ei2ϕ, (31)

where (r,ϕ) are usual polar coordinates. The factor 2 in the
exponential of Eq. (31) guarantees the nematic symmetry
ϕ → ϕ + π . With this configuration, the current is locally
perpendicular to the disclination as depicted in Fig. 1.
Conversely, if � < 0, the ansatz is replaced by changing
Q → −Q, or equivalently ϕ → ϕ + π/2, in Eq. (31). In this
way, the director is parallel to the supercurrent. Replacing
Eqs. (30) and (31) into (26), and minimizing the free energy
with respect to the radial functions ρ(r) and S(r), we find the
following set of coupled differential equations:

αs

[
−ρ ′′ − ρ ′

r
+ ρ

r2

]
+ aρ + bρ3

− αs�

Sm

[
S

(
ρ ′′ + ρ ′

r
+ ρ

r2

)
+ S ′ρ ′

]
+ vρS2 = 0, (32)

αn

[
−S ′′ − S ′

r
+ 4

S

r2

]
+ tS + uS3

+ αs�

2Sm

[
(ρ ′)2 − ρ2

r2

]
+ vρ2S = 0, (33)

where the prime means total derivative with respect to r ,
i.e., ρ ′ = dρ/dr , ρ ′′ = d2ρ/dr2, and so on. To obtain these
equations, we have considered that the magnetic field is
essentially constant up to λL � ξs , meaning that we are
deep inside the type II superconductor regime [33]. We have
essentially disregarded screening effects in such a way that
the solution is strictly reliable for 0 < r � λL. However, we
expect that at r ∼ λL the vortex profile is already saturated
to the value ρ(r) ∼ ρm, since the typical modulation length is
0 � r � ξs 	 λL. The boundary conditions are limr→0 ρ = 0,
limr→0 S = 0, limr→∞ ρ = ρm, and limr→∞ S = Sm. ρm and

Sm are given by Eqs. (8) and (9) respectively. The first line
of Eq. (32) is the vortex differential equation with axial
symmetry, while the first line of Eq. (33) is the analogous
equation for the disclination. On the other hand, the second
lines of Eqs. (32) and (33) contain the two main couplings: the
geometrical one, proportional to �, and the mixed potential
energy, proportional to v. Interestingly, the system is invariant
under the transformation � → −� and S → −S. Changing
the sign of S means to rotate the director in π/2. Thus, the
vortex and disclination profiles are insensitive to whether the
disclination is formed by directors parallel or perpendicular to
the supercurrents.

It is useful to rewrite Eqs. (32) and (33) in dimensionless
form. For this, we first introduce the functions f (r) and g(r),

ρ(r) = ρm f (r), S(r) = Sm g(r), (34)

in such a way that the boundary conditions now read f (0) =
g(0) = 0, limr→∞ f (r) = 1, and limr→∞ g(r) = 1. Replacing
Eq. (34) into Eqs. (32) and (33), using Eqs. (8) and (9), and
keeping just linear terms in v, we finally find

1

2κ2
s

[
−f ′′ − f ′

r
+ f

r2

]
− (f − f 3) + v1f (g2 − f 2)

− �

2κ2
s

[
g

(
f ′′ + f ′

r
+ f

r2

)
+ g′f ′

]
= 0, (35)

1

2κ2
n

[
−g′′ − g′

r
+ 4

g

r2

]
− (g − g3) + v2g(f 2 − g2)

+ �

4κ2
s

ρ2
m

S2
m

[
(f ′)2 − f 2

r2

]
= 0. (36)

We chose to measure distances in units of
√

2λL. κs and κn

are given in Eq. (16). We have also introduced the couplings
v1 = (t/au)v and v2 = (a/tb)v, both of them proportional
to v.

We are interested in the solutions of Eqs. (35) and (36)
paying special attention to the effect of the geometrical
coupling on the vortex-disclination profile. Of course, there
is no exact analytical solution to these equations. Thus, we
will analyze the behavior of f (r) and g(r) at two extreme
limits, r → 0 and r → ∞. Then, we propose a systematic
variational approach to interpolate between these regions.

Very near the origin (r 	 1), we expect a linear behavior
for the vortex solution, f (r) ∼ r . On the other hand, due to
nematic symmetry, the disclination approaches zero quadrat-
ically as r → 0, g(r) ∼ r2. Then, we look for a solution in a
power series of the form

f (r) =
(

r

Rv

)
{1 + c1r

2 + c2r
4 + . . .}, (37)

g(r) =
(

r

Rd

)2

{1 + d1r
2 + d2r

4 + . . .}. (38)

Rv and Rd are related to the core extension of the vortex
and the disclination, respectively. Replacing these expressions
into Eqs. (35) and (36), it is possible to compute the set
of coefficients {c1,c2, . . .} and {d1,d2, . . .} recursively. The
leading order correction is (for simplicity we ignore the
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potential interaction v)

c1 = −1

4
κ2

s , (39)

d1 = −1

6
κ2

n

[
1 + �

4

(
κs

κn

)2(
ρm

Sm

)2]
. (40)

We see that c1 is not affected by the geometrical coupling,
while d1 has a small correction, since κs/κn and ρm/Sm are
order 1, and � 	 1. Even though the complete sets {c1,c2, . . .}
and {d1,d2, . . .} can be univocally determined by Eqs. (35) and
(36), the leading order coefficientsRv andRd remain arbitrary
and cannot be determined by a short distance expansion. These
quantities can only be fixed by the behavior of the solutions
at large distances. For this reason we need to analyze the
asymptotic behavior of the solutions.

For r � 1/κs and r � 1/κn we have

f (r) = 1 + f1(r), (41)

g(r) = 1 + g1(r), (42)

where limr→∞ f1(r) = 0 and limr→∞ g1(r) = 0. Introducing
Eqs. (41) and (42) into Eqs. (35) and (36), and linearizing the
equations at large r , we find

(1 − v1)f1 + v1g1 = −
(

1 − �

4κ2
s

)
1

r2
, (43)

v2f1 + (1 − v2)g1 = −
(1 − 1

8
ρ2

m

S2
m
�

κ2
n

)
1

r2
. (44)

We immediately find the asymptotic solutions

f (r) = 1 − 1

4κ2
f r2

, (45)

g(r) = 1 − 1

κ2
g r2

, (46)

where at linear order in v,

κ2
f = κ2

s

1 − �

{
1 − v1

(
1 − 4

κs

κn

[1 − 1
8

ρ2
m

S2
m
�

1 − �

])}
, (47)

κ2
g = κ2

n

1 − 1
8

ρ2
m

S2
m
�

⎧⎨
⎩1 − v2

⎛
⎝1 − 1

4

κn

κs

⎡
⎣ 1 − �

1 − 1
8

ρ2
m

S2
m
�

⎤
⎦
⎞
⎠
⎫⎬
⎭.

(48)

The asymptotic behavior, Eqs. (45) and (46), resembles
the usual isolated Abrikosov vortex [34], with renormalized
parameters κ . In fact, taking the limits � → 0 and v → 0, we
should recover the Abrikosov result for f (r). As can be seen
from Eq. (47), lim�→0,v→0 κf = κs .

In order to completely determine the solutions, fixing the
arbitrary constants Rv and Rd , it is necessary to interpolate
between the short and large distance regions. A very simple
variational ansatz for the vortex profile is [35,36]

f (r) =
√

2κf r√
1 + 2κ2

f r2
, (49)

while for the disclination the equivalent ansatz reads

g(r) = κ2
g r2

1 + κ2
g r2

. (50)

Equations (49) and (50) correctly reproduce the asymptotic
solutions Eqs. (45) and (46) for κf r � 1 and κgr � 1, while
for small r , they reproduce the same power series structure
as Eqs. (37) and (38), respectively, i.e., an odd power series
for f and an even power series for g. We can improve
the ansatz in order to fit an arbitrary number of terms in
the small-r expansion. We present a systematic approach in
Appendix A. Fortunately, the leading order approximation,
given by Eqs. (49) and (50), captures the main contribution of
the geometrical coupling and is sufficient for the purpose of
this section. The leading order estimation of the vortex radius
is

Rv =
√

1 − �

2

1

κs

. (51)

On the other hand, at the same level of approximation, the
disclination radius is

Rd =
√

1 − 1

8

ρ2
m

S2
m

�
1

κn

. (52)

In dimensionful quantities, Rv ∼ ξs . For most cuprate super-
conductors [37] ξn ∼ 20 Å while the penetration length is
approximately λL ∼ 2000 Å. Thus, κn ∼ 100 lies deep in the
type II region, where the approximations we used are accurate.
On the other hand, the disclination radius Rd ∼ ξn. An actual
estimation of this length is more speculative since we have no
experimental inputs for αn. In our calculations, we assumed
that λL is the biggest length scale, in such a way that κs as well
as κn are much bigger than 1. In Fig. 3(a) we depict a typical
vortex and disclination profile for κs = κn = 100, � = 0.4,
and ρm = Sm. In Fig. 3(b) we show the vortex profile for
different values of the geometrical coupling �, displaying the
radius dependence as given by Eq. (51).

We see that the main effect of the geometrical coupling is
to increase κs , or equivalently to decrease the superconductor
coherence length. This is the same effect that disorder produces
in a SC. In general, scattering from impurities reduces the value
of αs and, as a consequence, produces a smaller coherence
length, ξs . Then, just observing the vortex core extension, or
the coherence length, is not sufficient to characterize the NSC
state.

In order to look for a clear signature, proper to the NSC
state, let us compute the energy of a vortex and a disclination
shifted by a distance R. The energy difference, �F (R),
between the shifted and coincident vortex-disclination profile
is given by

�F (R) = 2
αs�

Sm

∫
d2xS(r)ρ2(r)(n̂ · �∇θ )2

= 2αs�ρ2
mR2

∫ ∞

0

dr

r
f 2(r)

∫ 2π

0
dϕ

g(r̄)

r̄2
sin2 ϕ,

(53)
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FIG. 3. Vortex and disclination profiles. We fixed κs = κn = 100
and v = 0 for all the curves. r is measured in units of

√
2λL. (a)

The continuous line is the vortex profile f (r) while the dashed line
represents the disclination profile g(r). � = 0.4. (b) Vortex profile for
different values of the geometrical coupling �. Dot-dashed, dashed,
and continuous lines correspond to � = 0,0.4,0.8, respectively.

where r̄ = r2 + R2 − 2rR cos ϕ. The integrals can be easily
done in two limits, R 	 Rv and R � Rv . We find

�F (R) ∼
{ 1

2�2R2, R 	 Rv,

�2

κ2
s

ln(R/Rv), R � Rv,
(54)

where the frequency �2 = λSC� and λSC = a2/2b is the
superconductor condensation energy. The estimation of the
frequency �2 is equivalent to determine the condensation
energy of a given material. This quantity is in general quite
difficult to estimate. It could be obtained, for instance, form
specific heat measurements [38–40].

Thus, the geometrical coupling produces an attractive force
between the vortex and the disclination that does not depend
on the sign of the topological charges. For large distances,
the force is of the Coulomb type (∼1/R), consistent with the
London approximation. On the other hand, at short distances,
there is a linear restoring force producing oscillations whose
characteristic frequency is proportional to the condensation
energy and the geometrical coupling constant.

B. Vortex-disclination lattices

In stronger magnetic fields, a high density of vortices
is present. We also expect a high density of disclinations,
since in our model they strongly tighten to vortices. Since
disclinations behave differently from vortices when coupled
with electromagnetic fields, we expect unusual properties of
the vortex-disclination structure. As we will show, as a result
of the geometrical coupling, a structural phase transition may
take place between different lattice symmetries. In a different
context, similar structural phase transitions were also predicted
in lattices of half vortices [41].

To explore this state of matter we closely follow
Abrikosov’s reasoning [34]. We consider a magnetic field
H very near Hc2 = φ0/4πξ 2

s , where φ0 is the quantum
of magnetic flux, and ξs = √

αs/a is the superconductor
coherence length. In this regime ρ is very small, since we are
near the metal-superconductor transition. Then, we can keep
only quadratic terms in the free energy Eq. (11) in such a way
that the superconductor and nematic order parameters are
essentially decoupled. Thus, in a quite good approximation,
the magnetic field can be considered constant H ∼ Hc2 and
the linearized equations are essentially degenerated harmonic
oscillators. An approximate family of solutions can be cast in
a linear superposition of solutions of the linearized equation
in the form

ψ(x,y) =
∑

n

Cne
i 2π

b
ny exp

{
− 1

2ξ 2
s

(
x − 2πξ 2

s

b
n

)2}
,

(55)

where b is the periodicity in the y axes. To impose periodicity
in the x axes, it is necessary to put constraints in the
coefficients Cn. For instance, for tetragonal symmetry,
Cn = C0 for all n. On the other hand, for a triangular
geometry Cn+2 = Cn for all n, and C0 = iC1.

Then, we propose the variational vortex lattice solution as

ψ(x,y) = C1 χ (x,y), (56)

where C1 is a variational parameter and χ (x,y) has different
expressions depending on the symmetry. For tetragonal sym-
metry we have

χ�(x,y) =
∑

n

ei 2π
a

ny exp

{
− 1

2ξ 2
s

(x − na)2

}
, (57)

while for triangular symmetry

χ�(x,y) =
∑

n

e
i 4π√

3a
ny

[
exp

{
− 1

2ξ 2
s

(x − na)2

}

+ ie
i 2π√

3a
ny exp

{
− 1

2ξ 2
s

[x − (n + 1/2)a]2

}]
.

(58)

In both cases, a is the lattice constant.
The nematic order parameter has a different structure than

the superconductor one because it does not couple with the
magnetic field in a minimal way. In order to determine it, it
is necessary to look at the geometrical coupling between both
order parameters. Specifically, the second term of Eq. (29)
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displays the form

�αsSρ2{n̂ · ( �∇θ + 4e �A)}2 = �

αsρ2
( �N · �J sc)2, (59)

where �N = S1/2n̂ is a vector with the same direction of the
director and the supercurrent �Jsc = αsρ

2( �∇θ + 4e �A). It is
clear that, for � > 0, this term is minimum when the director is
perpendicular to the supercurrent. This effect was deduced in
the previous section for an isolated vortex with axial symmetry.
The physical consequence is that vortices necessarily tighten
to disclinations in the nematic-superconductor state. The same
physics applies here where we have no axial symmetry and a
high density of vortices. The key observation to determine the
nematic order parameter is that the streamlines of �Jsc and the
contours of constant ρ coincide. To see this, we note that the
ground state satisfies, near Hc2, the first-order equation

(Dx − iDy)ψ = 0. (60)

With this property, it is immediate to show that

J sc
i = −αsεij∇j ρ

2 ∼ −εij∇j |χ |2. (61)

Thus, by choosing

�N (x,y) = C2 �∇|χ (x,y)|2, (62)

where C2 is a variational parameter, we guarantee that locally
�N (�x) · �J sc(�x) = 0. In Fig. 4, we illustrate the vortex and the

disclination lattice profiles for the tetragonal symmetry case.
The vortex contours are drawn from the equation |χ�|2 =
constant, while the disclination profile is computed from
| �∇|χ�|2| = constant. These pictures represent the modulus
of the order parameters. The phase structure is shown in
Fig. 5. In Fig. 5(a) we depict the supercurrent �Jsc(�x), while in
Fig. 5(b) we show the director configuration �N (�x)/| �N |, locally
perpendicular to the current. It is important to note that, while
the direction of the current determines the magnetization, the
direction of the director is meaningless, since the nematic
order parameter is a quadratic function of the director. Thus,
the particular configuration shown in Fig. 5(b), as well as all
the configurations obtained by locally rotating the director by
π , represent exactly the same state. This is at the stem of the ne-
matic symmetry. In Figs. 6 and 7 we show the equivalent mod-
ulus and phase representation in the triangular lattice case.

The next step is to compute the free energy as a function of
the variational parameters C1 and C2. Near the transition, the
relevant contribution comes from the potentials. The derivative
terms are higher order corrections that do not change the qual-
itative results. The free-energy density has the following form:

f (C1,C2) = fSC + fN + fNSC, (63)

where the main three contributions are

fSC = aC2
1 〈|χ |2〉 + b

2
C4

1〈|χ |4〉, (64)

fN = tC4
2〈( �∇|χ |2)4〉 + u

2
C8

2〈( �∇|χ |2)8〉, (65)

fNSC = v

2
C2

1C
4
2〈|χ |2( �∇|χ |2)4〉. (66)

We have defined the average 〈. . .〉 = (1/A)
∫
A

d2x . . . in
which A is the area of the sample. Minimizing with respect to

FIG. 4. Vortex and disclination lattice in a tetragonal configura-
tion. (a) Contours of constant SC order parameter, |χ�|2 = constant.
(b) Contours of constant nematic order parameter, | �∇|χ�|2| =
constant.

C1 and C2,

∂(fSC + fNSC)

∂C1
= 0,

(∂fN + fNSC)

∂C2
= 0, (67)

and computing the energy at this minimum, we find

fm = − a2

2b

1

βA

− t2

2u

1

βN

+ atv

2bu

βI

βAβN

, (68)
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FIG. 5. Phase structure of the SC and nematic order parameters
in a vortex-disclination square lattice. (a) Currents in a square vortex-
disclination lattice. (b) Director n̂(x) in a square vortex-disclination
lattice.

where the numerical coefficients βA, βN , and βI depend only
on the lattice symmetry and are given by

βA = 〈|χ |4〉
〈|χ |2〉2

, (69)

βN = 〈( �∇|χ |2 · �∇|χ |2)4〉
〈( �∇|χ |2 · �∇|χ |2)2〉2

, (70)

βI = 〈|χ |2( �∇|χ |2 · �∇|χ |2)2〉
〈|χ |2〉〈( �∇|χ |2 · �∇|χ |2)2〉 . (71)

FIG. 6. Vortex and disclination lattice in a triangular (or hexag-
onal) configuration. (a) Contours of constant SC order parameter,
|χ�|2 = constant. (b) Contours of constant nematic order parameter,
| �∇|χ�|| = constant.

Equation (69) is the well-known Abrikosov coefficient [34].
On the other hand, Eq. (70) defines an analog parameter for
the nematic order and Eq. (71) takes into account correlations
between the two order parameters. We have numerically
computed these coefficients for the triangular as well as the
square lattice (see Appendix C). The results are depicted in
Table I. We are showing these coefficients with two decimal
digits because this is sufficient for our purpose. However,
we could compute them with any precision needed (see

184507-10



VORTEX AND DISCLINATION STRUCTURES IN A . . . PHYSICAL REVIEW B 94, 184507 (2016)

FIG. 7. Structure of the streamlines of currents and the nematic
director in a vortex-disclination triangular lattice. (a) Currents in a
triangular vortex-disclination lattice. (b) Director n̂(x) in a triangular
vortex-disclination lattice.

Appendix C). The first line of Table I depicts the known
results for the Abrikosov coefficients for the triangular as
well as for the square lattice. Since β

�
A < β�

A , the triangular
lattice of vortices is more stable than the square lattice.
Interestingly, we found that β

�
N > β�

N , making more favorable
the square lattice of disclinations. Then, there is a competition
between vortices and disclinations and the form of the most
stable configuration will depend on the parameters of the

TABLE I. Free-energy coefficients for triangular and square
lattices. βA is the known Abrikosov coefficient. βN is an analog
coefficient for the nematic phase, given by Eq. (70). βI describes
correlation contributions given by Eq. (71).

Free-energy parameters Triangular lattice Square lattice

βA 1.16 1.18
βN 2.93 2.53
βI 1.60 1.21

potentials. To see this more clearly, let us compute the
energy difference between the triangular and the square
lattice of vortices attached to disclinations. Using Eq. (68)
with the values of βA, βN , and βI taken from Table I, we
find

�fm = f �
m − f �

m

= 0.02λSC − 0.05λN − 0.07ṽλSCλN, (72)

where λSC = a2/2b and λN = t2/2u are the superconductor
and the nematic condensation energy respectively, and we
have renormalized the coupling constant ṽ = v/at . We can
clearly see a competition between the superconductor and
the nematic contribution. The first term of Eq. (72), coming
from the superconductor free energy, favors the triangular
lattice configuration. On the other hand, the second term,
coming from the nematic free energy, favors the square
lattice configuration. The interaction contribution depends on
the sign of ṽ. Positive couplings v > 0 strengthen the square
lattice configuration, while negative couplings v < 0 favor the
triangular one. We have depicted this competition in Fig. 8,
where we show the line �fm = 0 for three different values of
the coupling ṽ = −1,0,1. In the region �fm > 0 the system
tends to form a triangular lattice of vortices attached to discli-
nations, while for �fm < 0, the state is arranged in a square
lattice configuration. Thus, the curves �fm = 0 represent a
structural phase transition between these two different discrete
symmetries.

fm 0

fm 0

0. 0.15 0.3
0.

0.07

0.14

ΛSC

Λ N

FIG. 8. �fm = 0, continuous line ṽ = 0, dashed line ṽ = 1, dash-
dot line ṽ = −1.
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V. CONCLUSION AND DISCUSSION

The charge-4e nematic superconductor is a homogeneous
state of electronic matter that breaks gauge as well as rotational
symmetry. It can be understood as a condensation of four
particles of charge e or, equivalently, as a melted state of
pair density waves, obtained by the proliferation of double
dislocations [16]. The 4e-NSC state has essentially two types
of topological excitations: half vortices, or vortices with half
a quantum flux, and disclinations. In this paper, we have
analyzed in detail the structure of these topological defects
in different regimes of magnetic fields.

We have built up a Ginzburg-Landau theory for the
simplest superconductor order parameter coupled with a
two-dimensional nematic order. The SC order parameter is
a complex function while the nematic one is a symmetric
traceless tensor of order 2. The main effect of local nematicity
is to induce a deformation of the metric, in such a way that
the SC order parameter “feels” an effective curved space. As a
result, the nematic director has a tendency to be perpendicular
or parallel to the supercurrent, depending on the sign of the
geometrical coupling. Thus, vortices induce disclinations. We
have minimized the Ginzburg-Landau energy in two regimes:
for magnetic fields near Hc1 where the vortices are extremely
diluted and near Hc2 where the system develops a high density
of vortices.

Computing the energy of a vortex-disclination configu-
ration, we obtained an attractive force as a function of the
distance R between the cores of the vortex and the disclination,
that does not depend on the sign of the topological index.
At short distances, the potential is harmonic, V (R) ∼ �2R2,
where the typical frequency depends on the geometrical
coupling constant and the SC condensation energy. At large
distances, the potential remains attractive and it is logarith-
mic V (r) ∼ ln(R/Rv), where Rv is the vortex core radius.
Interestingly, Rv is a decreasing function of the geometrical
coupling constant while the core of the disclination is very
weakly dependent.

Increasing the external magnetic field, we reach a regime
of high density of vortices, where each vortex is tightly
bounded to a disclination. In this high-density regime, the
director has also a strong tendency to be perpendicular to
the supercurrent. We explored the possibility of forming
vortex/disclination lattices. We have implemented a variational
calculation, analogous to the Abrikosov lattice, but taking
into account the effect of disclinations. Comparing the free
energy for different configurations, we found that while the
vortices’ contribution is minimum for triangular symmetry,
the disclination contribution is minimized by a square lattice.
Then, there is a competition that, depending on the SC and
nematic condensation energies, produces a structural phase
transition between lattices with different symmetries.

Interactions between vortices and disclinations should have
a profound influence in the elastic response of the material.
On the one hand, vortices induce strain and consequently, the
energy of the vortex lattice has a contribution from the vortex-
induced strains [42]. On the other hand, disclinations induce
torque [25] and there should be a corresponding contribution
to the disclination lattice. Moreover, since the strain and the
nematic order parameters are second-order tensor, they should

also be coupled. In this way the magnetoelastic properties
of the vortex-disclination structure should be nontrivial. We
believe that the magnetoelastic properties should contain
signatures that, in principle, could allow us to study the
4e-NSC state by means of experimental magnetomechanical
probes, such as the application of strain [21] or acoustic waves
[22].
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APPENDIX A: VARIATIONAL ANSATZ

Although Eqs. (49) and (50) are a very good and simple
ansatz for the vortex and the disclination profile, it is possible
to perform a systematic procedure to improve it, getting closer
to the exact solutions. For this, we define the function

τ (x) = x√
1 + x2

. (A1)

The simple ansatz of Eqs. (49) and (50) now reads

f (r) = τ (
√

2κf r), (A2)

g(r) = τ 2(κgr). (A3)

The function τ (r) maps the open domain rε[0,∞) to the
compact interval τε[0,1]. Then, we write a complete solution
in the form

f (r) = τ (
√

2κf r) + �f [τ (
√

2κf r)], (A4)

g(r) = τ 2(κgr) + τ (κgr)�g[τ (κgr)], (A5)

where the arbitrary functions �f,g[τ ] satisfy �f,g[0] =
�f,g[1] = 0. These boundary conditions allow us to represent
�f,g[τ ] by means of sin-Fourier series [43]. Based on that, we
propose the following ansatz for the full vortex-disclination
solution:

f (r) = τ (
√

2κf r) +
∞∑

n=1

an sin[nπτ (
√

2κf r)], (A6)

g(r) = τ 2(κgr) + τ (κgr)
∞∑

n=1

bn sin[nπτ (κgr)]. (A7)

This ansatz has the correct behavior at the boundaries r ∼ 0
(τ ∼ 0) and r ∼ ∞ (τ ∼ 1) and it is completely determined
by the set of Fourier coefficients {a1,a2, . . .} and {b1,b2, . . .}.
The Fourier coefficients can be computed in two ways. We
can expand Eqs. (A6) and (A7) in Taylor series for small r and
compare the coefficients to the ones computed in Eqs. (37)
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and (38). An alternative procedure is to plug the Ansatz into
the free energy and minimize it with respect to a finite set
of Fourier coefficients. Amazingly, we found that the Fourier
series converge very fast. Indeed, after the second harmonic, it
is no longer possible to distinguish any significant difference
within the graphic precision. This is so because the leading
order f ∼ τ and g ∼ τ 2 is an excellent qualitative description
and it is very “near” (in functional space) to the exact solution.

APPENDIX B: VORTEX-DISCLINATION
INTERACTION ENERGY

Considering the vortex and the disclination configuration
given by Eqs. (22) and (23) and shown in Fig. 2 we can compute

(n̂ · �∇θ )2 = R2 sin2 ϕ

r2(r2 + R2 − 2rR cos ϕ)
, (B1)

where (r,ϕ) are usual polar coordinates given by x = r cos ϕ

and y = r sin ϕ. Then, the energy �F (R) = F (R) − F (0) is
given by

�F (R) = λ

∫
d2x[n(x) · ∇θ (x,R)]2 (B2)

= λ�

∫ L

a

dr

r

∫ 2π

0
dϕ

R2 sin2 ϕ

r2 + R2 − 2rR cos ϕ
,

where a is the vortex core and L is the linear size of the
sample. Introducing the dimensionless variable z = r/R we
immediately find

�F (R) = πλ

∫ L/R

a/R

dz

z
Iϕ(z), (B3)

where we have defined

Iϕ(z) = 1

π

∫ 2π

0
dϕ

sin2 ϕ

z2 + 1 − 2z cos ϕ

= 1

2z2
{1 + z2 − (1 + z)|1 − z|}. (B4)

Thus,

Iϕ(z) =
{

1, z < 1,
1
z2 , z � 1.

(B5)

Introducing Eq. (B5) into Eq. (B3) we have

�F (R) = πλ

{∫ 1

a/R

dz

z
+
∫ L/R

1

dz

z3

}
. (B6)

We see that the first term of Eq. (B6) has a logarithmic
divergence regulated by the vortex core a. This divergence
will dominate the interaction energy. The integrals in Eq. (B6)
can be done without any difficulties obtaining

�F (R) = λπ

{
ln

(
R

a

)
− 1

2

(
R

L

)2

+ 1

2

}
. (B7)

Considering a 	 R 	 L, we can take the thermodynamic
limit L → ∞ and ignore the unimportant constant contribu-
tion obtaining

�F (R) = λπ ln

(
R

a

)
, (B8)

which coincides with Eq. (25). Equations (B2) are invariant
under the transformation λ → −λ, ϕ → ϕ + π/2. For this
reason �F (R) does not depend on the sign of λ.

APPENDIX C: β COEFFICIENTS

In this appendix we sketch the explicit calculation of the
coefficients β, displayed in Table I.

1. βA

Let us review the computation of the well known Abrikosov
parameter βA [34,44,45]. We want to compute

βA = 〈|χ |4〉
〈|χ |2〉2

, (C1)

for different lattice symmetries. The main observation is that
|χ (x,y)|2 is periodic,

|χ (�r + �Rn,m)|2 = |χ (�r)|2, (C2)

where �Rn,m = (mx1 + nx2; ny2), with n,m = 0, ± 1, ± 2, . . .,
are lattice vectors. In the square lattice case, x1 = y2 = a, x2 =
0, where a is the lattice constant. For triangular symmetry,
x1 = a, x2 = x1/2, and y2 = x1

√
3/2. Vectors in the reciprocal

lattice are written as Kn,m = (2π/x1y2)(my2; −mx2 + nx1)
in such a way that �Rn,m · �Kn,m = (n2 + m2)2π . Thus, it is
possible to represent the order parameter as a Fourier series of
the form

|χ (x,y)|2 =
∑
n,m

an,m ei �Kn,m·�r , (C3)

where a∗
n,m = a−n,−m. The Fourier coefficients are computed

by inverting this equation and using Eqs. (57) and (58). We
find

an,m = (−1)nme− 1
8π

| �Kn,m|2 . (C4)

The Abrikosov coefficient can be cast in terms of the Fourier
coefficients by replacing Eq. (C3) into Eq. (C1) and performing
the integrals

βA =
∑
n,m

a2
n,m. (C5)

Then, using Eq. (C4) we immediately find

βA =
∑
n,m

e− 1
4π

| �Kn,m|2 . (C6)

Computing this expression explicitly for different geometries
we have

βA =
∑
n,m

e−π(n2+m2) ∼ 1.18 (C7)

for the square lattice and

βA =
∑
n,m

e
− 2π√

3
(n2+m2−nm) ∼ 1.16 (C8)

for the triangular one. Notice that although βA is given by
a series, it converges exponentially. Thus, the first few terms
give an excellent approximation to the numerical value.
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2. βN

The computation of the nematic coefficient

βN = 〈( �∇|χ |2 · �∇|χ |2)4〉
〈( �∇|χ |2 · �∇|χ |2)2〉2

(C9)

follows exactly the same lines as the computation of the
Abrikosov coefficient. There are essentially two differences.
It contains more powers of the order parameter and it depends
on its derivatives. The main object that enters the computation
of βN is

�∇|χ |2 · �∇|χ |2 =
−
∑
n,m

∑
p,q

an,map,q
�Kn,m · �Kp,q ei( �Kn,m+ �Kp,q )·�r , (C10)

where the Fourier coefficients are given by Eq. (C4). Thus, the
numerator of Eq. (C9), using Eq. (C10) and performing the

integrals, is

〈( �∇|χ |2 · �∇|χ |2)4〉
=

∑
n1,m1

. . .
∑
n4,m4

∑
p1,q1

. . .
∑
p4,q4

× δ

(∑
�

(n� + p�)

)
δ

(∑
�

(m� + q�)

)
(C11)

×
4∏

i=1

e− 1
8π

(| �Kni ,mi
|2+| �Kpi ,qi

|2)
( �Kni,mi

· �Kpi,qi

)
.

In this expression all the series converge exponentially. For this
reason, the numerical computation is not difficult, since very
few terms gives a reasonable approximation. By computing
these sums explicitly for the triangular and the square lattice
we found βN = 2.93 and βN = 2.53, respectively, as shown
in Table I.

The computation of βI follows exactly the same lines as
βN without additional difficulties.
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