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Inelastic scattering of xenon atoms by quantized vortices in superfluids
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We study inelastic interactions of particles with quantized vortices in superfluids by using a semiclassical
matter wave theory that is analogous to the Landau two-fluid equations, but allows for the vortex dynamics. The
research is motivated by recent experiments on xenon-doped helium nanodroplets that show clustering of the
impurities along the vortex cores. We numerically simulate the dynamics of trapping and interactions of xenon
atoms by quantized vortices in superfluid helium and the obtained results can be extended to scattering of other
impurities by quantized vortices. Different energies and impact parameters of incident particles are considered.
We show that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex
during the interaction even if there is no capture. The capture criterion of an impurity is formulated in terms of
the binding energy.
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I. INTRODUCTION

In-depth understanding of the dynamics of quantum fluids,
and in particular understanding of processes occurring in
quantum turbulence during the formation and evolution of
a vortex tangle, requires advanced theoretical modeling and
precise experimental probing techniques. Superfluid helium,
being the first quantum fluid available for experiments, and
probably the most studied one, generates vorticity at the length
scale of angstroms which makes the direct observation of
vortices complicated. Indirect measurements usually involve
probing vortices with impurities, which are often used as
doping for subsequent optical detection. Early experiments
were performed with electrons [1–3] and ions [4,5]. Later,
many types of other impurities including molecules, molecular
clusters, and excimers [6] were used as doping to visualize and
study quantized vortices. Modern particle image velocimetry
techniques allow to use various kinds of micron size tracer
particles to visualize flow patterns in helium [7–9]. These
methods allow one to trace both the normal and superfluid
components (through the interaction with vortices) and thus
provide a useful tool to study two-fluid hydrodynamics [10].
It is shown experimentally that the coalescence of metal
particles trapped on quantized vortices may lead to the
formation of centimeter-long wires [11,12]. Such a mechanism
provides not only a way to visualize the structure of quantized
vortices but also a new approach for producing long metal
nanowires. Zmeev et al. [6] have shown that a moving vortex
tangle can transport molecules through superfluid helium, so
the composite particles and molecules can be used to probe the
density and orientation of the vortex tangle and lead to some
new and unusual types of matter organization with potentially
peculiar properties.

Recently, nanodroplet experiments that embed single atoms
and molecules into liquid helium droplets have become a new
tool to study various aspects of superfluid behavior. In these
experiments ultracold helium works as a homogeneous matrix
for subsequent spectroscopic studies [13]. In the experiments
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of Gomez et al. [14] a femtosecond x-ray coherent diffractive
imaging technique was used to demonstrate the existence of
vortex arrays in helium droplets through the observation of
Bragg patterns. Xenon atoms were used as doping in these
experiments. The analysis revealed an unusual form of droplets
and line associations of xenon atoms which was explained by
the formation of vortices in a rotating helium droplet with
subsequent trapping of the xenon atoms at the vortex cores.

The most commonly used theoretical approach to study the
static behavior of impurities in nanodroplets is based on DFT
calculations [15]. It is particularly successful in finding the
minimal energy configurations and so capable of describing
the various aspects of the particle-vortex interaction. The
dopant of choice to detect vortices by means of spectroscopic
experiments is discussed in Ancilotto et al. [16] where
the adsorption properties of different atomic impurities are
compared. This approach was used to study vortex array equi-
librium configurations in rotating nanodroplets, the properties
of xenon chains trapped by the vortex lines, and to explain
shapes and the surprising stability of nanodroplets [17,18].

Despite the large number of studies, the details of particle-
vortex scattering and especially processes which take place at
the vortex core during the interaction are not well understood,
first, because of the interatomic distances involved, and second,
because there are no first-principles models that allow one to
describe such a dynamics correctly. Minimalistic models of
particles moving in superfluids at zero temperature usually
assume that the Bernoulli’s force is a dominant one and that it
adequately describes the motion far from the vortex cores [10].
Close to the vortex, substitution energy based analysis is often
used to explain the existence of the potential energy barrier
with certain parameters which define the capture and escape
probabilities [19,20]. At the same time, 3D simulations based
on the Gross-Pitaevskii equation [21] and the self-trapping
model [22,23] demonstrate that the capture of an electron
by a quantized vortex is accompanied by the emission of
Kelvin waves which propagate along the vortex core and
carry a certain portion of energy with them. It makes the
particle-vortex scattering process inelastic and renders more
detailed energy redistribution analysis. Nonelasticity of the
trapping process is similar to inelastic scattering of electrons on

2469-9950/2016/94(18)/184505(8) 184505-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.184505


I. A. PSHENICHNYUK AND N. G. BERLOFF PHYSICAL REVIEW B 94, 184505 (2016)

molecules, where electrons can be captured by molecules, as a
result of internal energy redistribution through the electron-
phonon coupling mechanism, forming long-living negative
ions.

Xenon particles used as doping in the experiments of
Gomez et al. [14] are very different from electrons, considered
in Berloff and Roberts [21]. Electron in helium, through its
zero-point motion, forms an electron bubble of a radius of
about 16 Å, that brings about a large (in comparison with the
electron) effective mass and the distortion of the soft bubble
boundary. This effect for the electrically neutral xenon is
minimal and we expect its radius in helium to be of the order of
the size of vortex cores. It results in a significant difference of
substitution energies of electrons and xenon atoms. Moreover,
atoms are much heavier than electrons and can potentially
produce more disturbance along the vortex lines when used as
doping.

In this paper we develop ideas formulated in Berloff and
Roberts [21] to study scattering of Xe atoms by quantized
vortices in different regimes. We shall elucidate the role of the
binding energy and attachment/detachment criteria. The paper
is organized as following. We present the model representing
the mathematical equivalent of the Landau two-fluid theory
which is the basis for our numerical and analytical study in
Sec. II. We discuss the motion of a xenon atom next to a
straight line quantized vortex and analyze various scenarios of
the impurity-vortex interactions in Sec. III. We conclude with
Sec. IV, summarizing the main findings.

II. MODELING OF THE VORTEX-IMPURITY
INTERACTIONS

A useful approach in modeling the dynamics and inter-
actions of particles with quantized vortices was originally
formulated by Gross [24]. In this approach the nonlinear
Schrödinger equation (NLSE) also known as Gross-Pitaevskii
equation (GPE) which describes the wave function of a Bose-
Einstein condensate is coupled with the linear Schrödinger
equation for the particle’s wave function. In reality only about
10% of superfluid helium is in a condensed phase and the fluid
is dominated by many-body effects, so its approximation by
the condensate order parameter is at best phenomenological.
It was later demonstrated [25] that the NLSE in the context
of the semiclassical matter field description corresponds to
the Landau two-fluid model and, therefore, describes both the
superfluid and the normal fluid as long as the low-occupancy
modes and their coupling to the highly occupied modes are
neglected. The framework of the coupled GP-type equation for
the superfluid and normal fluid components and the equation
for the particle’s wave fuction can therefore be used at finite
temperature. We can further remedy this description and
incorporate the equation of state correct for the superfluid
helium using a higher order NLSE [26,27]. The higher order
nonlinearity appears for dense fluids with the equation of state
given by a polynomial expression [28]. Such an equation
is mathematically equivalent to the Landau two-fluid model
and allows one, in addition, to account for the processes
associated with quantized vortices. In this sense it provides
a framework to describe the behavior of superfluid helium at

finite temperatures. In Appendix A we show how to recover
the Landau two-fluid model from our theory.

We formulate the Hamiltonian of the system by introducing
various contributions—the kinetic and internal energies of
superfluid helium Ekin and Eint, the particle-helium interaction
energy Eh (which is the most significant in the healing layer
between the particle and the fluid), the energy of the xenon
particle Ep (it includes the kinetic energy of motion Epk ,
which will be discussed later, and the zero-point energy)—and
explicitly introducing the Lagrange multiplier (the chemical
potential) μ in view of the constraint on the total number of
matter

∫ |ψ |2dV = N , where N is a number of bosons in the
system:

E = Ekin + Eint + Eh + Ep − μN, (1)

Ekin =
∫

�
2

2m
|∇ψ |2dV , (2)

Eint =
∫

εint(|ψ |2)dV , (3)

Eh =
∫

U0|ψ |2|ϕ|2dV , (4)

Ep =
∫

�
2

2M
|∇ϕ|2dV . (5)

Here m and M are the masses of the helium atom and the xenon
atom, respectively, ψ is classical complex matter field which
describes the superfluid and the normal fluid components, and
ϕ is the wave function of the particle. The parameter U0 =
2πl�2/M∗ is the local He-Xe interaction potential strength,
where l = 3.4 Å is the He-Xe scattering length [29]. This value
is also close to the sum of the van der Waals radii of xenon
and helium atoms. M∗ is the reduced mass of the interaction.

The internal energy functional is based on the phenomeno-
logical equation of state of liquid helium [15,27] and has the
form

εint(n) = −V0

2
n2 − V1

3
n3 + V2

4
n4, (6)

where n = |ψ |2. Coefficients V0 = 719 kb K Å
3
,V1 = 3.63 ×

104 kb K Å
6
, and V2 = 2.48 × 106 kb K Å

9
(where kb is the

Boltzmann constant) are chosen to reproduce the binding en-
ergy, the density, and the sound velocity of liquid helium [28].
The Hamiltonian of Eq. (1) was used in Berloff et al. [27] and
Pshenichnyuk [30] to study the multiplication of vortex rings
in a superfluid during pressure oscillations.

Performing a variation of the full energy E with respect to
ψ∗ and ϕ∗ we get the following system of equations, the first
of which we refer to as the NLSE-7:

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + U0|ϕ|2ψ

+ (−V0|ψ |2 − V1|ψ |4 + V2|ψ |6)ψ − μψ, (7)

i�
∂ϕ

∂t
= − �

2

2M
∇2ϕ + U0|ψ |2ϕ. (8)

Function ϕ is normalized by
∫ |ϕ|2dV = 1. Away from the

impurity the fluid wave function acquires its ground state
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FIG. 1. A snapshot of the one-dimensional cross sections of the
matter field ψ and the wave function ϕ along the particle-vortex
interaction line. The left drop in the modulus of the amplitude of ψ

corresponds to the quantized vortex; the right drop corresponds to the
position of the xenon atom. The plots of the real and imaginary part
of ϕ are given to indicate that the atom is moving towards the vortex.

value ψ = ψ∞ fixing the chemical potential to μ = −V0ψ
2
∞ −

V1ψ
4
∞ + V2ψ

6
∞. For superfluid helium at atmospheric pressure

ρ∞ = mψ2
∞ = 145.2 kg/m3. The healing length, ξ , is given

by the characteristic length scale on which fluid heals itself to
the unperturbed value from zero value and is determined by
matching the kinetic and the potential energy of interactions
ξ = �/

√
2mμ = 0.92 Å. This value also defines the charac-

teristic radius of vortex cores.
We nondimensionalize the system of Eqs. (7) and (8) by

x → ξx,t → ξ 2m

�
t,ψ → ψ∞ψ,ϕ → ξ−3/2ϕ and numerically

integrate it using the 4th-order space discretization and the
4th-order Runge-Kutta time propagation. Scattering processes
are modeled in a computational box of the size (37.5ξ )3 with
the resolution of 4 points per healing length ξ . Before the
beginning of the dynamical computation, the initial guess for
ψ and ϕ is optimized using the imaginary time evolution for
a few time steps [21]. The initial kinetic energy is given to the
particle by multiplying its wave function ϕ by the factor eik·r.
A typical one-dimensional cross section of the fields prepared
by this procedure is shown on Fig. 1, where the initial velocity
of the particle points towards the vortex along the plotted
axis. The figure shows the fluid and the particle amplitudes
and oscillating real and imaginary parts of the particle’s wave
function. Two minima in the fluid’s amplitude correspond to
the vortex and the depletion due to the repulsive interactions
with the impurity.

For comparison, we have also performed computations
using a simple classical model for the interaction of the
particle with a vortex. It is based on the theory developed
in Poole et al. [10] and Sergeev et al. [31] to study the motion
of tracer particles in superfluid helium in the presence of
quantized vortex lines. This approach takes into account a
number of forces which are associated with both superfluid
and normal components of superfluid helium. At sufficiently
low temperatures (below 1 K) where the superfluid component

dominates, this approach reduces to the Newton equation
of motion for the xenon atom with the dominating effect
coming from the Bernoulli’s force that appears as the result
of the existence of the pressure gradients, produced by the
inhomogeneous velocity field of the vortex. The equation of
motion reads

M
dvp

dt
=

∫
S

P (r)n̂dS, (9)

where P (r) is the superfluid pressure field, n̂ is the unit vector
normal to the surface of the particle S, and the integral is taken
over the impurity’s surface which is assumed to be spherical
with the radius 2.4 Å. This value is close to the van der Waals
radii of the xenon atom and is consistent with the scattering
length used in the NLSE-7 modeling. Being based on the
classical Euler equations, this theory cannot handle properly
the capture of particles by vortex lines [10] as it can describe
only elastic scattering and the particle’s motion away from any
vortex cores.

III. INTERACTIONS OF THE VORTEX
WITH A MOVING IMPURITY

It is energetically favorable for a particle to be captured by
a vortex [21,32] since the particle-vortex binding energy 	E0,
defined as the difference between the energy of the system
when the vortex and the particle are far away from each other
and the energy of the particle located on the vortex core, is
positive. Both energies have the same logarithmic divergencies
linked to the divergence of the energies of the vortex velocity
field which falls as �/mr with the distance r away from the
vortex. The standard approach to deal with such integrals is
to introduce a finite radius R of integration, which gives the
energy of the vortex line in the NLSE-7 to be (see Appendix B
for derivation)

Evort = Lπψ2
∞

�
2

m
ln

(
1.39R

ξ

)
, (10)

where L is the length of the straight line vortex. The
logarithmic divergencies of the vortex-particle complex and
the vortex line cancel out to give proper integrals that are
evaluated numerically to give 	E0 = 0.19 meV for the xenon
atom and 	E0 = 6.46 meV for the electron bubble; see
Table I. We have also considered various energy contributions
to the binding energy to show that the main contribution comes
from the kinetic energy: when trapped the impurity replaces
a significant volume of circulating fluid [19,21]. The second
contribution to 	E0 comes from the zero-point energy of the
particle Ep (the particle does not move and there is no kinetic
energy component in Ep). It is connected with the confinement
radius of its wave function and the uncertainty principle.
Since the vortex core is “hollow” inside it provides a weaker
confinement than the bulk helium, decreasing the uncertainty
in momentum and the zero-point energy. The density of the
xenon atom captured by the vortex has an ellipsoidal shape, in
contrast with the spherical shape in the bulk. Changing of the
form and staying inside the vortex core rearranges the healing
layer between the particle and the fluid, which decreases the
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TABLE I. Binding energies 	E0 of the xenon atom and the electron attached to the quantized vortex. Values are obtained using stationary
numerical computations. Corresponding energy terms and their contributions to the total binding energy are shown.

	E0 (meV) 	Ekin (meV) 	Eint (meV) 	Eh (meV) 	Ep (meV)

Xenon 0.19 0.10 (53%) 0.01 (5%) 0.03 (16%) 0.05 (26%)
Electron 6.46 5.48 (85%) 0.53 (8%) 0.03 (<0.5%) 0.42 (7%)

healing energy Eh as well. The internal energy change 	Eint

is negligible.
When the xenon atom approaches the vortex core and gets

trapped it releases a portion of energy 	E0. In comparison
with a weakly interacting condensate modeled by the GPE
a system described by the NLSE-7 is not as compressible,
so only a negligible amount of energy is converted into sound
waves [33]. The dominant effect is the generation of the Kelvin
waves along the vortex line, carrying the excess energy away
from the interaction site [21]. The emission of the Kelvin waves
plays an important role during the scattering of xenon atoms
on vortices, when particles possess some initial kinetic energy.
If the particle’s kinetic energy is large enough the particle may
pass through the vortex. Since some portion of the full energy
stays locked in the Kelvin waves, the impurity should sacrifice
the same amount of its kinetic energy, and slow down or get
trapped. This makes the particle-vortex scattering a purely
inelastic process. It has a certain resemblance to the well-
studied inelastic scattering of electrons on molecules, where
vibrational modes of the molecule may accept a certain portion
of energy, keeping the electron trapped for a long time [34–37].
The difference between our case and the scattering of electrons
on molecules is that the spectrum of the Kelvin waves is
continuous [38,39] (while molecular electronic and vibrational
spectra are discrete) and the particle-vortex interaction is likely

to be nonresonant. A discrete spectrum can be introduced in
our system by considering a narrow channel where the vortex
line is pinned by the container walls and therefore only certain
wavelengths of the Kelvin waves can be exited.

First we consider a head-on collision of the impurity with
the vortex line. In Fig. 2 we present the visualization of
two scattering processes with (the top row) and without (the
bottom row) trapping. The vortex line is initially located
along the vertical axis. The particle is placed 11 Å away
from the vortex, with the initial velocity directed towards the
vortex. The left panels in each row show the trajectory of the
particle (blue line), recorded at the position of the particle’s
density maximum. Motion of a selected point of the vortex
core (slightly above the particle) is shown by the gray line.
The maximum amplitude of the Kelvin waves generated is
approximately 1 Å in this case. The Kelvin waves appear in
both cases whether or not the trapping took place. If the particle
detaches from the vortex core we also detect its vibrational
motion [40]. Other panels in Fig. 2 illustrate the dynamics of
the vortex interactions with the impurity via the time snapshots
of the absolute value of the matter field |ψ |.

In Fig. 3 the kinetic energy of the particle [41]

Epk = �
2

2M

[
Im

∫
ϕ∗∇ϕdV

]2

(11)

FIG. 2. Visualization of two scattering processes with (the top row) and without (the bottom row) trapping. Initially the impurity is located
11 Å away from the vortex and moving with an initial kinetic energy 0.16 meV (the top row) or 0.38 meV (the bottom row). The panels (a)
and (e) show the trajectories of the atom (blue line) and the vortex (gray line). Panels (b)–(d) and (f)–(h) show two-dimensional cross sections
of the modulus of the amplitude of the fluid |ψ(x,0,z)| at different moments of time. Small three-dimensional insets show the corresponding
isosurfaces |ψ(x,y,z)| = 0.3ψ∞. Animated movies illustrating the scattering dynamics are available [47].
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FIG. 3. Time evolution of kinetic energies of particles during the
scattering events for different initial velocities. The insets show (a) the
corresponding trajectories of the impurity and (b) the corresponding
time evolutions of the kinetic energy based on the classical Bernoulli’s
force calculations. Curves in the inset (b) are plotted in the same
time/energy window as the main figure.

is shown as the function of time for the different initial
velocities of the impurity. In Fig. 3(a) we present correspond-
ing trajectories of the impurity. The initial position of the
vortex is shown with a black dot. In three cases out of five,
which correspond to lower initial energies, the xenon atom
gets trapped. Figure 3(b) shows the results obtained for the
same initial configurations using the Bernoulli force based
classical approach as described in the previous section. Such a
minimalistic model draws a purely elastic scattering picture in
a centrally symmetric potential. The Bernoulli’s force causes
the particle to accelerate when it approaches the vortex and to
decelerate when it moves away from it. The width and position
of the resulting peak depends on the initial velocity. There
are obvious similarities with NLSE-7 results with respect to
the positions of peaks which indicates that the Bernoulli force
accurately describes the dynamics of particles outside of the
interaction region (where the separation between the impurity
and the vortex is larger than 5 Å, according to our simulations).
The height of the peaks is higher in classical computations, as
the energy in our model is being continuously redistributed
between various terms. The trapped particles oscillate around
the vortex core along elliptic trajectories with an amplitude
of about 5 Å. Their kinetic energy time dependence contains
multiple maxima as it is shown in Fig. 3. During such motion
the particle’s energy continuously dissipates and the amplitude
of the peaks goes down in time. It is accompanied by the
increase in the healing energy while no further increase in
the Kelvin wave amplitude is detected. The time evolution for
trapped particles is computed for 1 ns to ensure that the particle
does not detach.

When the particle does not become trapped there is
an energy drop 	Epk ≈ 0.2 meV, given by the difference
of the initial and final kinetic energies, characterizing the
nonelasticity of the process. The value of 	Epk within the
accuracy of the simulation coincides with the binding energy

FIG. 4. Kinetic energies of particles scattered with different val-
ues of the impact parameter d . The insets show (a) the corresponding
trajectories of the impurity and of the vortex core and (b) the inelastic
energy loss 	E for different d . Numerical estimations of the two
main contributions to 	E are shown with dashed and dotted lines in
(b).

	E0 which shows that the portion of energy equal to 	E0 is
being transferred to the Kelvin waves during the interaction
causing the drop in the kinetic energy of the particle. If the
xenon initial energy is lower than 	E0 it cannot escape and
gets trapped by the vortex line. This value defines the capture
criteria for xenon atoms by vortices in superfluid helium at low
temperatures.

In some regimes we observe the splitting of the particle
wave function ϕ between two spatial locations. During the
detachment, small part of the particle wave function may
remain attached to the vortex. This reflects the probabilistic
nature of the process, and is interpreted as the existence of
some finite probability of the particle to get captured even at
high energies. In cases which are characterized as scattering
regimes with no trapping this probability is usually less than
5% (defined as the portion of the trapped mass of the particle).
We stress that despite the fact that the superfluid is modeled in
terms of classical fields, for the particle we have the usual linear
Schrödinger equation, which describes quantum effects typical
for a particle in a potential well. Nevertheless, the interaction
picture in our models is more classical than quantum; there
exists a sharp border between attachment and detachment
regimes.

Next we consider the scattering and trapping of the xenon
atom which is offset from a vortex line in the direction of
its motion. As was shown for the head-on collision, the main
contribution to the binding energy comes from 	Ekin (see
Table I), which represents the kinetic energy of superfluid
displaced from the vortex velocity field by the particle. The
value of 	Ekin is expected to be smaller than the one in
Table I if the particle is placed at a certain distance from
the vortex core, since the superfluid velocity decreases with
this distance. It should be reflected in scattering events when
the particle passes at a certain distance from the core. In Fig. 4
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we present results for different values of an impact parameter
d (the minimal distance between the straight line trajectory of
the particle in the absence of the vortex and the position of the
vortex core). The particle trajectories are plotted in Fig. 4(a). It
is clearly seen how the inelastic energy drop, 	Epk, decreases
with d. This dependence is plotted on Fig. 4(b) by the solid
line. We have shown above that for the head-on collision 	Epk

coincides with the binding energy 	E0. It is impossible to use
the same method of evaluation for 	E0 when d �=0, since such
configurations are not steady. In Fig. 4(b) we show rough nu-
merical estimations of how 	Ekin (dashed line) and Ep (dotted
line) depend on the distance from the core. Ep is associated
with the zero-point energy variation during the interaction,
and not with the kinetic energy of the particle. Their sum
constitutes almost 80% of 	E. This analysis again points out
that the effective radius of interaction for xenon atoms and
quantized vortices in helium is about 5 Å [see Fig. 4(b)].

The theory described in this paper can be easily extrapolated
to other types of particles. To illustrate, in Table I we compare
binding energies 	E0 with corresponding components for the
xenon and an electron. The fraction of 	Ekin in the binding
energy is much larger for the electron than for the xenon in
view of the large radius of the electron bubble as compared to
the xenon radius and therefore larger volume of displaced fluid.
The value of 	Ekin obtained here for the electron is close to the
one obtained using the GPE [21]. For the basic analysis of the
electron capture we may assume 	E0 ≈ 	Ekin and compute
it using the model suggested by Parks and Donnelly [19].

IV. CONCLUSION

In this paper we studied the inelastic scattering of xenon
atoms on quantized vortices in liquid helium. The theoretical
framework based on the modified version of the self-trapping
wave function approach is used to model the dynamics of
the vortex-particle interactions. It is argued that NLSE-7 as a
model of superfluid helium is mathematically analogous to the
Landau two-fluid model and in this sense can be used to model
the dynamical effects in superfluid helium. It is shown that
Kelvin waves are excited along the vortex filament during the
interaction with a particle whether or not the particle is trapped
at the vortex core, keeping a certain portion of energy and
providing a mechanism for the inelastic trapping or scattering
of particles. The simple capture criteria for xenon atoms is
formulated. It states that in head-on collisions the particle is
captured if its kinetic energy is less than the binding energy,
which is equal to 0.2 meV for xenon. For the nonzero impact
parameter d the capture criteria becomes weaker and starting
from d ≈ 6 Å practically no capture occurs.

ACKNOWLEDGMENT

The financial support from the Skoltech-MIT Next Gener-
ation Program is gratefully acknowledged.

APPENDIX A: DERIVATION OF THE LANDAU
TWO-FLUID MODEL FROM CLASSICAL FIELD

EQUATIONS

The idea to use classical fields approximation to model
superfluid helium can be traced back to the works of Putterman
and Roberts [42]. Using the scale separation in GPE they

derived an equivalent set of kinetic equations which describe
both the condensate and the thermal cloud, as well as their
interaction, so the classical field ψ is no longer directly associ-
ated with the condensate. Instead, the separation of scales leads
to association of the slowly varying, large-scale background
field with the superfluid component, and the short, rapidly
evolving excitations with the normal component. Therefore, ψ
in this context gives rise to both components. This result allows
one to generalize the classical field approach and perform
finite temperature GPE based computations [25,43]. Another
important step in this direction was made by demonstrating
the equivalence of GPE and the Landau two-fluid model using
the local gauge transformation [44–46]. The gauge field in this
case is related to additional macroscopic degrees of freedom
and allows one to switch from a one-fluid to a two-fluid system.
In this section we use a similar procedure to demonstrate the
equivalence of NLSE-7 and Landau two-fluid model.

The Lagrangian density for NLSE-7 reads

L0 = i�

2
[ψψ̇∗ − ψ∗ψ̇] + �

2

2m
|∇ψ |2

− V0

2
|ψ |4 − V1

3
|ψ |6 + V2

4
|ψ |8. (A1)

We apply the local gauge transformation ψ → ψeiα(r,t)m/�,
which provides 4 additional independent variables for the
nonzero temperature two-fluid model description. Newly
introduced scalar and vector fields are denoted as ξ ≡
α̇(r,t),A ≡ −∇α(r,t). They appear as additional terms in the
Lagrangian

L1 = L0 + mξ |ψ |2 + m

2
A2|ψ |2

− �

2i
A · [ψ∗∇ψ − ψ∇ψ∗]. (A2)

Switching to hydrodynamic variables ρ and φ such that

ψ =
√

ρ(r,t)
m

eiφ(r,t)m/�, (A3)

we get

L0 = ρφ̇ + �
2

8m2ρ
(∇ρ)2 + ρ

2
(∇φ)2

+
{

− V0

2

ρ2

m2
− V1

3

ρ3

m3
+ V2

4

ρ4

m4

}
, (A4)

L1 = L0 + A2ρ

2
+ ρξ − ρA · ∇φ. (A5)

According to Coste [44] we link scalar and vector fields with
physical variables in the following way:

ξ = η(ρ,s) + vn · A, (A6)

A = χ (ρ,s)(∇φ − vn), (A7)

where χ and η are Galilean invariant scalars which are
functions of density and entropy only. Thus, the new variables
which we add to the model are the normal fluid velocity vn

and the entropy s. The Lagrangian reads (curly brackets are
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used to highlight the nonlinear part of NLSE-7)

L1 = ρφ̇ + ρ

2
(∇φ)2 + �

2

8m2ρ
(∇ρ)2

+
{

− V0

2

ρ2

m2
− V1

3

ρ3

m3
+ V2

4

ρ4

m4

}
+ ρη

+ ρχvn · (∇φ − vn)

+ ρχ

2
(χ − 2)(∇φ)2 + ρχ (1 − χ )∇φ · vn + ρ

2
χ2v2

n.

(A8)

The Euler-Lagrange equation for φ is

∂L1

∂φ
− ∇ ∂L1

∂(∇φ)
− ∂

∂t

∂L1

∂φ̇
= 0. (A9)

Substituting L1 and computing derivatives we get

∂ρ

∂t
+ ∇ · [vnρχ (2 − χ ) + ∇φρ(1 − χ )2] = 0. (A10)

Recalling that vs = ∇φ and introducing notations ρ(1 −
χ )2 = ρs and ρχ (2 − χ ) = ρn we obtain the first equation
of Landau’s model (the equation for mass conservation).

The second Landau equation (the equation for the superfluid
velocity) is derived from the Euler-Lagrange equation for ρ

(one should recall that both χ and ξ are functions of ρ)

∂φ

∂t
+ 1

2
(∇φ)2 + μ̃ = �

2

2m2

[
(∇ρ)2

4ρ2
+ ∇2ρ

2ρ

]
, (A11)

where

μ̃ ≡ η + ρ
∂η

∂ρ
+

{
− V0

m2
ρ − V1

m3
ρ2 + V2

m4
ρ3

}

− 1

2

[
2ρ(1 − χ )

∂χ

∂ρ
+ χ (2 − χ )

]
(vn − vs)

2. (A12)

The difference of this result with the one obtained in Salman
et al. [46] is contained in μ̃. The polynomial function of ρ in
curly brackets appears instead of single linear term in GPE.
This does not change the main logic of the original derivation.

The remaining two equations of the two-fluid model
should be derived from additional constraints which appear as
Lagrange multipliers in L1 and correspond to the conservation
of entropy and relative fluid velocity. This part of the derivation
is the same for GPE and NLSE-7 [44].

APPENDIX B: ENERGY OF THE VORTEX IN NLSE-7

Stationary NLSE-7 reads

− �
2

2m
∇2ψ + (−V0|ψ |2 − V1|ψ |4 + V2|ψ |6)ψ − μψ = 0.

(B1)

FIG. 5. Dimensionless radial part f of vortical solutions in
NLSE-7 and GPE models as a function of dimensionless coordinate
η. The superfluid density is given by n = f 2ψ2

∞.

We switch to cylindrical coordinates (r , �, z) and search
the vortical solution in the form [28]

ψ = ei�|ψ0(r)|. (B2)

Using the dimensionless units such that |ψ0| = f (η)ψ∞ and
r = ηξ along with definitions of chemical potential μ and
healing length ξ given in Sec. II we can derive the following
equation for the radial part f of the vortical solution of
Eq. (B2):

1

η

d

dη

(
η
df

dη

)
−

(
1

η2
+ 1

)
f + c1f

3 + c2f
5 − c3f

7 = 0,

(B3)

where c1 = 2.19329,c2 = 2.42001, and c3 = 3.61330. To
obtain the details of the vortex core structure this equation
is solved numerically using the shooting method with initial
conditions f (0) = 0,

df (0)
dη

= k. Parameter k is chosen to fulfill
another known physical boundary condition f (∞) = 1. The
resulting function is plotted in Fig. 5 along with the vortex
amplitude of the GPE for comparison.

The energy of the vortex is given by the full Hamiltonian of
the system, where ψ represents the vortex solution computed
above,

Ev =
∫ (

�
2

2m
|∇ψ |2 − V0

2
|ψ |4 − V1

3
|ψ |6

+ V2

4
|ψ |8 − μ|ψ |2

)
dV − Egs. (B4)

The ground state energy Egs is given by the Eq. (1) with
ψ = ψ∞. Substituting the solution of Eq. (B2) and using
dimensionless variables as above we can express this integral
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in terms of f

Ev = πLψ2
∞�

2

m

R/ξ∫
0

{(
df

dη

)2

+
(

1

η2
+ 1

)
f 2

− c1

2
f 4 − c2

3
f 6 + c3

4
f 8 − c4

}
ηdη, (B5)

where c4 = 0.00001. This formula gives the energy of the
vortex enclosed in a cylindrical volume of length L and
radius R.

For large R 
 ξ the formula reads

Ev = πLψ2
∞�

2

m
ln

(
1.39R

ξ

)
. (B6)

The numerical coefficient 1.39 obtained here differs from
the coefficient in the similar GPE formula which is equal to
1.46 [28].
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