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The effect of long-range (LR) interactions on frustrated-spin models is an interesting problem, which provides
rich ordering processes. We study the effect of LR interactions on triangular Ising antiferromagnets with the
next-nearest-neighbor ferromagnetic interaction (TIAFF). In the thermodynamic limit, the LRTIAFF model
should reproduce the corresponding mean-field results, in which successive phase transitions occur among
various phases, i.e., the disordered paramagnetic phase, so-called partially disordered phase, three-sublattice
ferrimagnetic phase, and two-sublattice ferrimagnetic phase. In the present paper we focus on the magnetic
susceptibility at the transition point between the two-sublattice ferrimagnetic and the disordered paramagnetic
phases at relatively large ferromagnetic interactions. In the mean-field analysis, the magnetic susceptibility shows
no divergence at the transition point. In contrast, a divergencelike enhancement of the susceptibility is observed
in Monte Carlo simulations in finite-size systems. We investigate the origin of this difference and find that it is
attributed to a virtual degeneracy of the free energies of the partially disordered and 2-FR phases. We also exploit
a generalized six-state clock model with an LR interaction, which is a more general system with Z6 symmetry.
We discuss the phase diagram of this model and find that it exhibits richer transition patterns and contains the
physics of the LRTIAFF model.
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I. INTRODUCTION

The effect of frustration brings a variety of critical
phenomena and phase transitions [1]. The triangular Ising
antiferromagnet is a typical example [2–4]. It exhibits a
critical point only at zero temperature, where the system has
macroscopic degeneracy. The CsCoCl3 is an experimental
counterpart, which is a three-dimensional (3D) system with
layered triangular lattices and exhibits successive phase
transitions [5].

Taking into account a strong interlayer coupling, Mekata
modeled the system by the triangular Ising antiferromagnet
with a next-nearest-neighbor ferromagnetic (TIAFF) interac-
tion and analyzed it by a mean-field (MF) method [6]. He
found that there exist various interesting phases: disordered
(D), partially disordered (PD), three-sublattice ferrimagnetic
(3-FR), and two-sublattice ferrimagnetic (2-FR) phases. When
the ratio α (>0) [7] between the nearest-neighbor (NN) anti-
ferromagnetic coupling and the next-nearest-neighbor (NNN)
ferromagnetic coupling is lower than a critical value (case I:
α < αC), successive phase transitions take place among them.
When the ratio is higher (case II: α > αC), the D phase changes
to the 2-FR phase directly, and vice versa.

Since the prediction of the PD phase attracted much interest,
many studies of the TIAFF model by Monte Carlo (MC)
methods have been performed to clarify the nature of the
phase [8–11]. On the other hand, the TIAFF model has
been intensively studied to elucidate the multicritical behavior
of lattice gas models because under a magnetic field it is
equivalent to a triangular lattice gas model which describes, in
particular, the adsorption of helium on graphite [12–14].

Those studies reached the consensus that in two dimensions,
the TIAFF model exhibits double Berezinskii-Kosterlitz-
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Thouless (BKT) transitions [15,16]. The model has been
analyzed by mapping from the Ising configuration on a trian-
gular lattice to the six-state clock (6SC) modes [8–11,13,17],
and the nature of phase transitions of the systems which
pose Z6 symmetry has been studied [18–20]. Between the
BKT critical points a characteristic intermediate-temperature
phase exists, in which the correlation function decays with a
power law r−η with temperature-dependent exponent η(T ).
Thus this phase is qualitatively different from the PD
phase.

The PD phase was found between the 2-FR and the D
phases in MC studies of the 3D model without [10,21,22] and
with [23,24] the NNN interaction. A picture of the first-order
phase transition between the 2-FR and the PD phases without
latent heat has been proposed, which explains the experimental
results of CsCoCl3 [24]. The structure of the phase transitions
has also been understood by the use of renormalization-group
(RG) flow diagrams [21,24,25].

The importance of the long-range (LR) nature of the
interaction has been suggested in spin-crossover compounds,
which exhibit rich phase transitions by a variety of external
perturbations, such as light, pressure, and magnetic field
[26–54]. This feature has attracted much attention for applica-
tions to photomemory, sensors, etc.

It has been pointed out that the effective LR interaction
is realized by elastic interactions [45,51,52]. Recently we
studied the effect of the LR interaction on the TIAFF model for
spin crossover and found that the double BKT transitions are
modified to a combination of a second-order transition with
a new critical universality (low-temperature end point) and a
BKT transition (high-temperature end point) [54]. There the
elastic interaction plays as an infinite-range interaction among
all sites.

The infinite-range interaction has been used as a theoretical
tool to study the properties of the LR interaction in the
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strong limit and equivalence to the MF model, but now it is a
practical one.

Furthermore, recently the difference in transition properties
between finite size (nano) and bulk in spin-crossover com-
pounds has been in the limelight [55–59]. Namely, the effect
of the LR interaction may be modified by the finite-size effect.
Therefore, it is important to investigate both the effect of LR
interactions and the finite-size effect.

In the present work we study antiferromagnetic intersub-
lattice LR and ferromagnetic intrasublattice LR interactions
acting on the three sublattices of the TIAFF model. This model
corresponds to the above-mentioned Mekata’s three-subalttice
MF model in the thermodynamic limit. We focus on the finite-
size effect. We call the TIAFF model with these sublattice
long-range interactions the long-range TIAFF (LRTIAFF)
model. In particular, we study case II (α > αC).

The MF analysis shows that the magnetic susceptibility
diverges only between the PD and the 3-FR phases in
case I. However, we find that an unexpected divergencelike
enhancement of the susceptibility of a different origin appears
between the 2-FR and the D phases in case II in finite-size
systems. We investigate the origin of this divergencelike
behavior. It is found that the free energy has a peculiar structure
and the difference in free energies between the PD and
the 2-FR phases is very small, which causes a divergencelike
enhancement of the magnetic susceptibility in MC simulations
even in a large system.

Because the properties of the TIAFF model are well under-
stood from the picture of the nonchiral 6SC model, we exploit
a general and fundamental expression for the LRTIAFF model,
which is called the long-range generalized six-state clock
(LRG6SC) model. We demonstrate that the LRG6SC model
has richer transition patterns and the LRTIAFF model is well
captured in a part of the phase diagram of the LRG6SC model.

The rest of the paper is organized as follows. In Sec. II,
the LRTIAFF model is introduced. In Sec. II A, we review
properties of the LRTIAFF model in the thermodynamic limit.
In Sec. II B, we give the method for study of finite-size
effects of the LRTIAFF model and investigate the finite-size
properties. Section III is devoted to study of the LRG6SC
model in the thermodynamic limit and discussion of the phase
diagram, including the correspondence between the LRTIAFF
and the LRG6SC models. The finite-size effect in the LRG6SC
model is summarized in Appendix A and the critical value
of the control parameter for the LRG6SC model is given in
Appendix B. In Sec. IV, we provide a discussion and summary.

II. TRIANGULAR ANTIFERROMAGNET WITH
LONG-RANGE INTERACTIONS

The Hamiltonian of the TIAFF model is given by

H = −J1

∑
〈i,j〉

σ A
i σ B

j − J1

∑
〈i,j〉

σ B
i σ C

j − J1

∑
〈i,j〉

σ C
i σ A

j

− J2

∑
〈〈i,j〉〉

σ A
i σ A

j − J2

∑
〈〈i,j〉〉

σ B
i σ B

j

−J2

∑
〈〈i,j〉〉

σ C
i σ C

j − h
∑
i=1

σi, (1)

FIG. 1. Triangular lattice for the TIAFF model (black lattice)
and that for the 6SC model (blue lattice). Each colored triangular
plaquette (green) has three spins of sublattices A, B, and C. Spin
configurations of the colored triangular plaquettes are mapped to spin
states of the 6SC model [see Figs. 5 and 10(b)]. The spin configuration
here corresponds to a ground-state configuration of the TIAFF model
(black arrows) and the 6SC model (blue arrows) under zero field.

where each site belongs to sublattice A, B, or C, σ A
i denotes

the spin state at site i on sublattice A and takes 1 or −1,
and σ B

i and σ C
i are defined in the same manner (Fig. 1).

The antiferromagnetic intersublattice interaction and the fer-
romagnetic intrasublattice interaction are denoted J1 < 0 and
J2 > 0, respectively, and h is a magnetic field. Here 〈i,j 〉 and
〈〈i,j 〉〉 denote the NN and NNN couplings, respectively. The
coordination number for the three J2 terms is z = 6, while that
for the three J1 terms is z/2 = 3.

In the present work, we study a model of LR interactions
for the TIAFF model (LRTIAFF model):

H = −J1z/2

N/3

∑
i,j

σ A
i σ B

j − J1z/2

N/3

∑
i,j

σ B
i σ C

j

− J1z/2

N/3

∑
i,j

σ C
i σ A

j − J2z

N/3

∑
i<j

σ A
i σ A

j − J2z

N/3

∑
i<j

σ B
i σ B

j

− J2z

N/3

∑
i<j

σ C
i σ C

j − h

N∑
i=1

σi, (2)

where the sum of the interactions is taken all over the pairs,
N is the number of sites in the system, and the coefficient 1

N/3
normalizes the energy as the Kac procedure.

A. Thermodynamic limit of a triangular antiferromagnet
with long-range interactions

The free energy of model (2) is obtained by the
Bragg-Williams approximation as follows. Let the sublattice
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magnetizations be

mA = 3

N

N/3∑
i∈A

σi, mB = 3

N

N/3∑
i∈B

σi,

and mC = 3

N

N/3∑
i∈C

σi. (3)

The energy for large N is given by

EMF = N

(
−1

6
J1z(mAmB + mBmC + mCmA)

−1

6
J2z
(
m2

A + m2
B + m2

C

))

− h
N

3
(mA + mB + mC). (4)

The entropy for size N is expressed as

S = kB ln W,

W =
N
3 !N

3 !N
3 !

NA!
(

N
3 − NA

)
!NB!

(
N
3 − NB

)
!NC!

(
N
3 − NC

)
!
, (5)

where NA, NB, and NC denote the number of up spins on
sublattices A, B, and C, respectively. Thus, for large N , by
making use of Stirling’s formula, the entropy is given by

SMF = −N

3
kB

(
1 + mA

2
ln

1 + mA

2
+ 1 − mA

2
ln

1 − mA

2

+ 1 + mB

2
ln

1 + mB

2
+ 1 − mB

2
ln

1 − mB

2

+ 1 + mC

2
ln

1 + mC

2
+ 1 − mC

2
ln

1 − mC

2

)
. (6)

Then the free energy in the thermodynamic limit (MF free
energy) is given by

FMF = EMF − T SMF. (7)

This is also obtained using

SMF = −kB

∑
σ1,...,σN

P (σ1, . . . ,σN ) ln P (σ1, . . . ,σN ), (8)

where

P (σ1, . . . ,σN ) =
∏
i∈A

P A
1 (σi)

∏
i∈B

P B
1 (σi)

∏
i∈C

P C
1 (σi). (9)

Here P A
1 (±1) = (1 ± mA)/2 is the single-site probability for

state σi of sublattice A [P B
1 (±1) and P C

1 (±1) are defined in
the same manner].

The self-consistent field (SCF) equations for the sublattice
magnetizations are given by

∂FMF

∂mA
= 0,

∂FMF

∂mB
= 0, and

∂FMF

∂mC
= 0, (10)

which leads to

mμ = tanh

(
1

2
βzJ1(mν + mλ) + βzJ2mμ + βh

)
, (11)

where (μ,ν,λ) denote (A,B,C), (B,C,A), and (C,A,B), respec-
tively. The solutions of Eq. (11) are given by mA = mB =

2-FR 3-FR PD D

(a)

(b)

2-FR

PD

case I

case II

T/TN

D

3-FR

αc

α

FIG. 2. (a) Phase diagram for α vs T . (b) Plaquette states of
possible phases: two-sublattice ferrimagnetic (2-FR) state, three-
sublattice ferrimagnetic (3-FR) state, partially disordered (PD) state,
and disordered (D) state.

mC = 0 (D), mA = −mB and mC = 0 (PD), mA �= mB �= mC

and mA �= mC (3-FR), and mA = mB �= mC (2-FR) (the order
of A, B, and C is arbitrary).

The highest critical temperature at which Z6 symmetry is
broken is TN = zJ2 − zJ1/2. In case I (α < αC), the PD phase
appears, while in case II (α > αC) the 2-FR phase appears,
where

α = 2
J2

|J1| (12)

and the critical value is αC � 0.8 [60]. The phase diagram for
the ordered states is depicted in Figs. 2(a) and 2(b):

Case I. With decreasing temperature, the D phase, PD
phase, 3-FR phase, and 2-FR phase appear successively.

Case II. Only one continuous transition occurs between the
D and the 2-FR phases (Fig. 2).

The magnetization per site is defined as m ≡ 1
3 (mA + mB +

mC) and the magnetic susceptibility per site is given by

χ = dm

dh

∣∣∣
h=0

= 3a2
1 + uv + vw + wu + 2a1(u + v + w)

9
(−2a3

1 − a2
1(u + v + w) + uvw

) ,

(13)

where a1 = J1z1, u = 1
β

cosh2 βJ1( z
2 (mB + mC) + α

2 zmA) −
J2z, v = 1

β
cosh2 βJ1( z

2 (mC + mA) + α
2 zmB) − J2z, and w =

1
β

cosh2 βJ1( z
2 (mA + mB) + α

2 zmC) − J2z.
We give in Fig. 3 typical temperature dependences of mA,

mB, mC, and m at α = 0.6 and α = 0.8 � αC. The magnetic
susceptibilities χ are also shown. Here we set J1 = −0.1 and
use the unit kB = 1, which is also applied hereafter. We found
that for α > 0.8 qualitatively the same features of χ , mA, mB,
and mC as for α = 0.8 are realized, and the case α = 0.8 is
regarded as case II.
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χ
χ

TN

TN

(a) (c)(b)

(d) (f)(e)

TN

TN

TN

TN

FIG. 3. Properties of the LRTIAFF model in the thermodynamic limit (MF theory). For α = 0.6, temperature dependences of (a) sublattice
magnetizations (mA, mB, and mC), (b) magnetization (m), and (c) susceptibility χ . For α = 0.8, (d) sublattice magnetizations, (e) magnetization,
and (f) susceptibility. For α = 0.6 and 0.8, TN = 0.48 and 0.54, respectively.

It should be noted that there is a prominent difference
between the two cases. The susceptibility diverges in the
former, while it does not in the latter. A magnified detail of
m and χ around the 3-FR phase for α = 0.6 is depicted in
Fig. 4. The susceptibility diverges at Tc2 between the PD and
the 3-FR phases and shows a finite jump at Tc1 between the

χ

Δχ

Tc1 Tc2

FIG. 4. Magnified detail of m (blue line) and χ (black line) around
the 3-FR region for α = 0.6, in which Tc1 � 0.2371 is the transition
point between the 2-FR and the 3-FR phases, and Tc2 � 0.2395 is that
between the 3-FR and the PD phases. χ diverges at Tc2 and shows a
finite jump at Tc1.

3-FR and the 2-FR phases. A jump of the susceptibility at Tc1

has not been seen so far.
In the latter case, although the 2-FR phase has nonzero

magnetization at low temperatures, the magnetization of the
2-FR is 0 at the transition point, at which the sublattice
magnetizations are given as (mA, − mA/2, − mA/2). The
sublattice magnetization appears as mA ∼ √

t around TN,
where t ≡ TN−T

TN
, while the critical amplitude of

√
t (the

leading term) for uniform magnetization (m = mA + mB +
mC) becomes 0. This suppression of magnetization growth
causes nondivergence of the magnetic susceptibility χ .

B. Finite-size effects of a triangular antiferromagnet
with long-range interactions

1. Method

We investigate finite-size effects of model (2) on the phase
transition. For this purpose, we apply importance-sampling
Metropolis Monte Carlo simulations. In order to characterize
the phase, we introduce the following three order parameters.

First, we define the mean-square value of magnetization as

m2 = 1

N2

〈(
N∑
i

σi

)2〉
, (14)

where 〈 〉 denotes the thermal average.
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θ=π θ=0

θ=π/3θ=2π/3

θ=4π/3 θ=5π/3

FIG. 5. Six plaquette states of the ferrimagnetic state. Six angles,
θ = 0, π

3 , 2π

3 , π , 4π

3 , and 5π

3 , are allocated for the plaquette states.
Six plaquette states for the PD phase are given in the directions of the
dotted lines.

Second, we define the order parameter to detect the breaking
of Z6 symmetry,

M2 = 1

N2
p

〈[{ Np∑
m=1

cos θm

}2

+
{ Np∑

m=1

sin θm

}2]〉
, (15)

where


M = (Mx,My) =
⎛
⎝ 1

Np

Np∑
m=1

cos θm,
1

Np

Np∑
m=1

sin θm

⎞
⎠. (16)

Here θm is the angle of the vector allocated for plaquette m and
is given by θm = 2π

6 k, where k takes k = 0,1, . . . 5 (Fig. 5).
Np is the number of triangular plaquettes, i.e., Np = N/3.

Third, to identify the PD phase, we define the following
order parameter:

M6 = 〈Re[(Mx + iMy)6]〉. (17)

The PD phase is a mixed phase of two 2-FR phases and the
difference in the angles of the 2-FR phases in the six-clock
modes (Fig. 5) is π/3.

If the PD phase is realized, M6 should be negative, M6 <

0, while if the 2-FR phase is realized, M6 should be positive.
Thus we can distinguish the two orders. In later discussion we
compare the behavior between M6 = (M2)3 and M6 at the
same power.

Magnetic susceptibility is defined as

χ = 1

NT

⎡
⎣〈( N∑

i

σi

)2〉
−
〈

N∑
i

σi

〉2
⎤
⎦. (18)

2. Results

We plot in Figs. 6(a) and 6(b) the temperature dependences
of m2 and χ , respectively, for α = 0.6 (case I) for several
system sizes: N = L × L, where L is the linear dimension of
the system. The temperature dependences of M6 ≡ (M2)3 and
M6 are also shown in Fig. 6(c).

In the period 0.24 � T � TN, m2 = 0 and M6 < 0 and
thus the phase of this region is identified as PD. Then we
find the 3-FR region, where m2 increases rapidly from 0, and
also a divergence of χ around T = 0.24, which is identified
as the transition point between the PD and the 3-FR phases
estimated in the MF theory. These indicate that the properties
of finite-size systems in case I can be expected from the MF
results shown in Figs. 3 and 4.

Next we show the temperature dependences of m2 and χ

for α = 0.8 (case II close to the critical case) and α = 0.9
(case II) in Fig 7. As shown in Fig. 3, for α > αC the MF
analysis shows no divergence of the magnetic susceptibility
at the transition point between the 2-FR and the D phases.
There, χ is a continuous function of T and the transition
point is given at TN = 0.54 and TN = 0.57 for α = 0.8 and
α = 0.9, respectively. However, as shown in Fig. 7, χ shows
divergencelike behavior around T = 0.45 for α = 0.8 and T =
0.50 for α = 0.9.

Although the LRTIAFF model is expected to show the
properties obtained in the MF analysis, we found a peculiar

χm
2

6M

6M

FIG. 6. MC profiles for α = 0.6. Temperature dependences of (a) m2 and (b) χ for different system sizes. Crosses denote L = 72; triangles,
L = 108; circles, L = 144; and diamonds, L = 192. (c) Temperature dependences of M6 (black diamonds) and M6 (red circles) for L = 192.
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χ
χχ

χ

m
m

FIG. 7. For α = 0.8, temperature dependences of (a) m2 and (b) χ and (c) magnified view around the divergencelike enhancement region of
χ for different system sizes. Crosses denote L = 72; triangles, L = 10; circles, L = 144; and diamonds, L = 192. Comparison of χ between
the thermodynamic limit (i.e., the MF result; solid line) and finite-size systems is given in (c). For α = 0.9, temperature dependences of (d) m2

and (e) χ and (f) magnified view around the divergencelike enhancement region of χ with a comparison with the MF result (solid line). Arrows
denote the critical temperatures TN = 0.54 and 0.57 for α = 0.8 and α = 0.9, respectively, in the thermodynamic limit (the MF theory).

difference between the MF analysis and the MC method.
Because the LRTIAFF model should give the MF properties in
the thermodynamic limit, the difference should be attributed
to the finite-size effect. Comparisons are shown in Figs. 7(c)
and 7(f).

To find the origin of this contradiction, we study the
temperature dependences of M6 ≡ (M2)3 and M6 for case
II (α = 0.8 and α = 0.9) (see Fig. 8). We may expect that M6

and M6 will appear simultaneously around TN = 0.54 and
0.57 for α = 0.8 and 0.9, respectively, and show a monotonic
increase below these temperatures. In Fig. 8, however, in both
cases we find that while M6 appears around the expected
temperature,M6 appears at a much lower temperature. That is,
it seems that M6 = 0 in the range 0.45 � T � TN for α = 0.8
and in the range 0.5 � T � TN for α = 0.9.

With decreasing temperature, the breaking of Z6 symmetry
takes place at TN, where M6 appears, but no specific order in
the representation of the 6SC mode appears, i.e.,M6 = 0, over
a range of temperatures. This may indicate the existence of a
kind of masslesslike region in the notation of the 6SC state.
Because the sublattice magnetization is already developed
(M6 > 0), we consider that in this range of temperatures,
both the 2-FR order and the PD order appear. Then, the
contribution of the 2-FR order (i.e., M6 > 0) and that of the
PD order (M6 < 0) cancel each other, and as a result M6 = 0
is realized.

Here we study the cause of the divergencelike enhancement
of χ for case II connecting the disappearance of M6. In the

(a) (b)

(c) (d)

FIG. 8. Temperature dependences of M6 (black diamonds) and
M6 (red circles) for (a) α = 0.8 and (c) α = 0.9. The system
size is L = 192. Magnified views of M6 and M6 around TN

for (a) and (c) are given in (b) and (d), respectively. Arrows
denote the critical temperatures TN = 0.54 and 0.57 for α = 0.8
and α = 0.9, respectively, in the thermodynamic limit (the MF
theory).
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ΔΔ

)b()a(

FIG. 9. Temperature dependence of �F/N for (a) α = 0.8 and (b) α = 0.9. Insets: Temperature dependence of F/N for 2-FR (thin red
lines) and PD (thick black lines) phases.

MF analysis for case II, the 2-FR phase appears and the free
energy of the 2-FR phase is lower than that of the PD phase.
The susceptibility was calculated at the minimum point of the
free energy, which is finite as shown in Fig. 3. However, the
observation using the MC method indicates that the emergence
probabilities of the 2-PR and PD phases are close, i.e., the free
energies of the phases are close.

In Fig. 9, we plot the difference in the MF free energies
between the PD and the 2-FR phases for the cases of both
α = 0.8 and α = 0.9,

�F/N ≡ 1

N
(FPD − F2-FR), (19)

where N (=L2) is the system size. �F values are monotonic
decreasing functions of T . It should be noted that the
difference is 0 at TN because the modes (mA, − mA,0) and
(mA, − mA/2, − mA/2) degenerate.

For α = 0.8, the difference in susceptibility between the
MF and the MC results [Fig. 7(c)] was found around T = 0.45
for L = 192. �F/N at around T = 0.45 is about 10−5, and
for a system of L = 2 × 102 and N = 4 × 104,

�F = �F/N × N � 4 × 10−1, (20)

which is about the order of the temperature. Thus, the
probability of the PD phase is not negligible for this system
size, although it becomes 0 in the thermodynamic limit (N →
∞). In the period 0.45 � T � TN, due to this quasidegeneracy,
the two phases contribute, and a masslesslike situation is
realized.

It is expected that for larger α in case II, the stability of
the 2-FR phase around TN is stronger and �F/N becomes
larger. Indeed this tendency is shown in Fig. 9, but even for
α = 0.9, �F/N is small enough to cause the quasidegeneracy
and the same consideration holds, i.e., the degenerate region
is 0.5 � T � TN, which gives �F/N � 10−5.

Upon lowering the temperature the difference in the free
energy �F/N becomes larger. When the difference is the same
order as the temperature, the degenerate states are resolved and
the 2-FR state becomes dominant.

As for the divergence of χ we propose the following picture.
In the degenerate region, we define pFR (pPD) as the probability
of realizing the 2-FR (PD) phase in the MC simulation, where

pFR + pPD = 1, and the magnetization for the 2-FR (PD) phase
is given by mFR ≡ 〈∑N

i σi〉FR (mPD ≡ 〈∑N
i σi〉PD).

We have the following estimation up to the order of N2.
Because mPD = 0,

〈(
N∑
i

σi

)2〉
∼ pFRN2m2

FR + O(N ) (21)

and 〈
N∑
i

σi

〉2

= (pFRNmFR)2. (22)

Thus we have

χ = 1

N

〈(∑N
i σi

)2〉− 〈∑N
i σi

〉2
T

∼ N
m2

FR(pFR − p2
FR)

T
+ O(1). (23)

Before the temperature approaches the energy gap ∼10−5 in
cooling, mFR � 0 and thus χ = O(1). When the 2-FR phase is
dominant in the cases α = 0.8 and 0.9 (case II), i.e., mFR �= 0
and 1/2 < pFR < 1, we expect χ ∼ O(N ), which explains
the observation of MC simulation. Namely a divergencelike
enhancement of χ is observed at temperatures with the same
order as the energy gap. At lower temperatures, the state is in
the FR phase and pFR � 1 and χ will be O(1) again.

Thus we conclude that the LRTIAFF model has a peculiar
free energy structure in which the 2-FR and PD phases
are nearly degenerate in the vicinity of TN, which causes a
divergencelike enhancement of the magnetic susceptibility χ

by a finite-size effect but it is robust even at large sizes, i.e.,
L � O(102).

III. GENERALIZED SIX-STATE CLOCK MODEL WITH
LONG-RANGE INTERACTIONS

In this section we study a more general model with Z6

symmetry with a set of six states:

Si = 0,1, . . . 5. (24)
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FIG. 10. (a) Energy diagram of the generalized six-state clock model. (b) Six clock modes (vectors) of the generalized six-state clock
model. The angle θ = 2πS

6 is allocated for each state S = 0, . . . ,5.

The Hamiltonian of the symmetric Z6 model (i.e., not chiral)
is given by the following general form [Fig. 10(a)]:

HG6 =
∑
〈i,j〉

(ε0δSi ,Sj
+ ε1δSi ,Sj ±1 + ε2δSi ,Sj ±2 + ε3δSi ,Sj ±3),

(25)

where δSi ,Sj
is defined as δ = 1 if Si = Sj (mod 6) and 0

otherwise. The model can be expressed by the generalized
six-state clock model,

H′
G6 =

∑
〈i,j〉

(−J0 − J1 cos(θi − θj )

−J2 cos2(θi − θj ) − J3 cos3(θi − θj )), (26)

where θi denotes the angle of the clock models [Fig. 10(b)]:

θi = 2πSi

6
. (27)

These two models are converted to each other by the linear
transformation⎛

⎜⎝
ε0

ε1

ε2

ε3

⎞
⎟⎠ =

⎛
⎜⎝

−1 −1 −1 −1
−1 −1/2 −1/4 −1/8
−1 1/2 −1/4 1/8
−1 1 −1 1

⎞
⎟⎠
⎛
⎜⎝

J0

J1

J2

J3

⎞
⎟⎠. (28)

We define

X = ε1 − ε0

ε3 − ε0
and Y = ε3 − ε2

ε3 − ε0
(29)

[Fig. 10(a)] as essential parameters to identify the pattern of
phase transitions (see the following sections). When X = Y =
1/4 for Eq. (25) or J1 �= 0 and J2 = J3 = 0 for Eq. (26), it
corresponds to the six-state clock model.

Hereafter we study the long-range interacting model for
Eq. (25) or, equivalently, for Eq. (26), in which the sum runs
over all the pairs (〈ij 〉 is replaced by i < j ) and the parameters
are normalized by N , i.e., εi → εi

N
. . . and Ji → Ji

N
. . . (i = 0,

1, 2, and 3). We call these two equivalent expressions the
long-range generalized six-state clock (LRG6SC) model.

A. Thermodynamic limit of the long-range generalized six-state
clock model

In this subsection we build SCF equations for the LRG6SC
model in the thermodynamic limit. The SCF equations for
model (25) are derived as follows. For this purpose, we apply
the idea of the Bragg-Williams approximation to the model.
The MF energy for model (25) is given by

EG6,MF = 1

2
Nz

5∑
i=0

5∑
j=0

ESi,Sj
P (Si)P (Sj ), (30)

where ESi,Sj
is the energy between site i and site j , i.e.,

ESi,Sj
= ε0δSi ,Sj

+ ε1δSi ,Sj ±1 + ε2δSi ,Sj ±2 + ε3δSi ,Sj ±3, (31)

and P (Si) is the probability for state Si . The entropy of the
system is

SMF = −NkB

5∑
Si=0

P (Si) ln P (Si). (32)

Thus the MF free energy is given by

FG6,MF = EG6,MF − T SMF. (33)

We derive SCF equations under the condition that∑5
Si=0 P (Si) = 1. With the method of the Lagrange multiplier,

we minimize the following quantity:

f ≡ FG6,MF − λ

⎛
⎝ 5∑

Si=0

P (Si) − 1

⎞
⎠. (34)

The condition for the extreme value on P (Si) (Si = 0, . . . ,5)
is given by ∂f

∂P (Si )
= 0 for Si = 0, . . . ,5 and ∂f

∂λ
= 0.

Eliminating λ dependence in the equations, we have five
SCF equations and one condition,

z

⎛
⎝ ∑

k=0,1,...,5

El,kP (k) −
∑

k=0,1,...,5

E0,kP (k)

⎞
⎠

+ kBT (ln P (l) − ln P (0)) = 0 (35)
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for l = 1, 2, 3, 4, and 5, and

5∑
k=0

P (k) = 1. (36)

Here let us relate the LRTIAFF model, (2), and the LRG6SC
model, (25) [or (26)]. As shown in Fig. 1, the plaquette
state with three spins (σ A, σ B, σ C) in the LRTIAFF model
corresponds to an angle θ (= 2πS

6 ) (S takes 0, . . . , or 5) at
the superlattice denoted by shaded triangles in Fig. 1. In the
present paper, we restrict X = Y , which is regarded as a natural
extension of the LRTIAFF model, (2), from the following
consideration. Let the ground state (GS) of model (2) be the
complete 2-FR state with state (σ A,σ B,σ C) = (↓ , ↓ , ↑), i.e.,
θ = 0 as depicted in Fig. 1.

If one plaquette state changes to (↓, ↑, ↑), i.e., θ = π/3, the
energy of the NN interactions (J1) does not change because of
the degeneracy due to the frustration. However, the energy of
the NNN interactions (J2) increases by

E1 − E0 = J2

N/3
×
(

N

3
− 1

)
× 2 � 2J2, (37)

where E0 is the GS energy and E1 is the energy for θ = π/3.
If the plaquette state further changes to the state θ = 2π/3,
i.e., (↓, ↑, ↓), the excitation energy from the GS is

E2 − E0 = J2

N/3
×
(

N

3
−1

)
× 4 + |J1|

N/3
×
(

2N

3
−2

)
×2

� 2(2|J1| + 2J2). (38)

The excitation energy for state θ = π (↑, ↑, ↓) is

E3 − E0 = J2

N/3
×
(

N

3
− 1

)
× 6 + |J1|

N/3
×
(

2N

3
− 2

)
× 2

� 2(2|J1| + 3J2). (39)

We find E1 − E0 = E3 − E2, and thus we have ε1 − ε0 =
ε3 − ε2. That is, X = Y for the LRG6SC model.

Now we study the ordering process of the model. Equa-
tions (35) and (36) are solved numerically by the Newton-
Raphson method. The phases which appear in the LRTIAFF
model can be classified into the following solutions of the
LRG6SC model.

(a) The 2-FR phase is given at P (0) < P (1) = P (5) <

P (2) = P (4) < P (3).
(b) The 3-FR phase is given at P (0) < P (1) < P (5) <

P (2) < P (4) < P (3) or P (0) < P (5) < P (1) < P (4) <

P (2) < P (3).
(c) The PD phase is given at P (0) = P (1) < P (2) =

P (5) < P (3) = P (4).
(d) The D phase is given at P (0) = P (1) = P (2) =

P (3) = P (4) = P (5).
The cyclic permutation of {P (i)} for these relations causes

the same classification.
We define the order parameters to characterize the ordered

state,

m̃ = P (0) + P (2) + P (4) − P (1) − P (3) − P (5), (40)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

2~M
m~

FIG. 11. Typical MF solutions P (0), . . . ,P (5) for the generalized
six-state clock model for (a) X = 0.15, (b) X = 0.25, (c) X = 0.5,
and (d) X = 0.55 and corresponding m̃ (blue line) and M̃2 (green
line) for (e) X = 0.15, (f) X = 0.25, (g) X = 0.5, and (h) X = 0.55.

which is regarded as “magnetization” in the analogy between
Si [Fig. 10(b)] in the LRG6SC model and the plaquette state
(Fig. 5) in the LRTIAFF model.

To study the breaking of Z6 symmetry, we also define


̃M =
∑

q=0,...,5

p(q) 
vq, (41)

where 
vq is a unit vector for the arrow in Fig. 9(b). The
susceptibility is defined as χ̃ = dm̃

dh
|h=0, where the MF energy

under a field is given by EG6,MF − hm̃.
In Fig. 11, we show the temperature dependences of typical

solutions P (i) and ordering processes m̃ and M̃2 for various
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values of X. They are classified into four kinds of transition
patterns in the period 0 < X < 1. The region 0 < X < 0.5 for
the LRG6SC model corresponds to 0 < α for the LRTIAFF
model, and αC corresponds to XC = 0.2 (Appendix B).

For X = 0.15 < XC, phase transitions successively occur
from the D phase to the PD phase, to the 3-FR phase, and
then to the 2-FR phase as shown in Figs. 11(a) and 11(e).
This region corresponds to case I. For X = 0.25 > XC, the
D phase directly changes to the 2-FR phase as shown in
Figs. 11(b) and 11(f). This region corresponds to case II. We
found qualitatively the same nature as the finite-size effect
discussed for the LRTIAFF model. The details are given in
Appendix A.

At X = 0.5, discontinuous transitions for m̃ and M̃ occur
at the same transition point. Here ε1 = ε2, and thus the energy
structure [Fig. 10(a)] shows one stable, four degenerate, and
one highest energy states. This degeneracy causes the system
to be an effective five-state Potts model. The q-state Potts
model with q � 3 shows a first-order phase transition in the
dimension d � 3, and it holds in the MF model, and we
found that the present model with X = 0.5 shows a first-order
transition [61] [Figs. 11(c) and 11(g)]. Here the ordered state
corresponds to the solution

P (0) < P (1) = P (2) = P (4) = P (5) < P (3).

For larger values of X, e.g., X = 0.55, we find that the
transition point (call edT2) of m̃ is higher than that (T1) of M̃

[Figs. 11(d) and 11(h)], where

P (0) = P (2) = P (4) < P (1) = P (3) = P (5)

for T1 < T < T2, and

P (0) < P (2) = P (4) < P (1) = P (5) < P (3)

for T < T1. The cyclic permutation of {P (i)} for these relations
causes the same classification.

Here, we may characterize the successive phase transitions
by the following picture: with decreasing temperature the Z2

symmetry of m̃ is broken first and then the breaking of Z3

symmetry follows. The former process gives a second-order
phase transition as the Ising model in the MF theory and the
latter process causes a first-order phase transition as the three-
state Potts model in the MF theory.

IV. DISCUSSION AND SUMMARY

We studied the finite-size effect of the long-range inter-
action model of the triangular Ising antiferromagnet with
next-nearest-neighbor ferromagnetic interaction (LRTIAFF
model). In the MF analysis corresponding to the thermody-
namic limit, the susceptibility is a continuous function and
does not show divergence at all temperatures for α > αC.
In contrast, we found a divergencelike enhancement of the
susceptibility for α > αC around the transition point between
the D and the 2-FR phases in the MC simulation of finite-size
systems. We investigated the origin of this divergencelike
behavior in the MC study and found that it is due to a
peculiar degeneracy of the free energies of the PD and 2-FR
phases. This degeneracy is not resolved in rather large systems
[L ∼ O(102)]. There, because of the small difference in the

free energies, the probability of the PD phase is not negli-
gible and the configuration migrates between the 2-FR and
the PD phases. The former has a finite magnetization, while
the latter has zero. With decreasing temperature, when the
2-FR phase becomes dominant, the susceptibility can be O(N ),
which gives a divergencelike enhancement of the magnetic
susceptibility. There the 2-FR phase appears as a sudden
change, which looks like a first-order phase transition.

We also explored a general model of the cyclic Z6

symmetry, which is expressed by the generalized six-state
clock model, Eq. (25). We studied the phase transitions of
the long-range generalized six-state clock (LRG6SC) model.
The LRG6SC model covers a wider region of the models
of Z6 symmetry and phenomena similar to the LRTIAFF
model are observed in part of the phase diagram. That is,
for 0 < X < Xc = 0.20, the 2-FR, 3-FR, PD, and D phases
appear, which corresponds to case I for the LRTIAFF model,
and for Xc < X < 0.5, the transition between the 2-FR and
the D phases takes place, which corresponds to case II for the
LRTIAFF model. The characteristics of the finite-size effect in
the LRTIAFF model were also found in the LRG6SC model.

At X = 0.5, a Potts-type first-order transition occurs, in
which both m̃ and M̃ show discontinuous jumps at the same
temperature, and for 0.5 < X < 1, the breaking Z3 symmetry
follows that of Z2, which causes a first-order transition for m̃

and M̃ at a lower temperature and a second-order transition
for m̃ at a higher temperature.

The phase transitions of the layered TIAFF model have been
explained from the viewpoint of the RG of the 6SC model [62]
making use of the Hamiltonian

H = −J
∑
〈ij〉

cos(θi − θj ) − λ6

∑
i

cos(6θi), (42)

where 0 � θi < 2π . Here the positive λ6 gives sixfold
anisotropy for θi = 2πk/6, k = 0,1, . . . 5, which corresponds
to the 2-FR state. It has been pointed out that the three-
dimensional 6SC model exhibits behavior similar to that of the
3DXY model at relatively high temperatures but it is relevant
over the whole low-temperature phase below the critical point
of the 3DXY universality [62].

This situation was explained by a renormalization-group
picture [25]. Along the coarse-graining process, λ6 first
decreases, which suggests that the system behaves as the
3DXY model, but it increases for larger scales, which means
that the system is in an ordered phase with sixfold anisotropy.
This dangerously irrelevant nature [63,64] is characteristic.

Similar RG flow diagrams were proposed for the layered
TIAFF model without [21] and with [24] the NNN interaction,
where the successive phase transitions (D → PD → 2-FR)
have been explained by the change in the sign of λ6. This
picture holds in the 3D6SC model and the layered TIAFF
model, which are short-range interaction models. In the
present paper, however, long-range interaction models were
studied and some difference may exist. The situation of nearly
degenerate PD and 2-FR states around the critical point TN

is similar to that around the 3DXY fixed point in short-range
interaction models, but the RG flows around TN for long-
range interaction models may be different from those around
the 3DXY fixed point for short-range interaction models.
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χ~

(a) (b)

χ~

χ~

(c)

(d) (e) (f)

6~M

m2~

FIG. 12. (a) Temperature dependence of M̃6 = (M̃2)3 (black diamonds), M̃6 (red circles), and m̃2 (blue crosses) for X = 0.15 at L = 96.
(b) χ̃ for X = 0.15 at several system sizes. (c) Temperature dependence of M̃6, M̃6, and m̃2 for X = 0.25 at L = 96. (d) Magnified view of
M̃6, M̃6, and m̃2 around the transition temperature for X = 0.25 at L = 96. (e) χ̃ for X = 0.25 at several system sizes. (f) Comparison of χ̃

for X = 0.25 between the thermodynamic limit (the MF theory; solid line) and finite systems.

The 3-FR phase should appear in the low-temperature region
of the RG diagram of the long-range interaction models.
Furthermore, the anomalous finite-size effect is seen in χ and
χ̃ for the order parameters m [Eq. (14)] and m̃ [Eq. (A1)]
only in case II. (The susceptibilities for M [Eq. (15)] and
M̃ [Eq. (A2)] diverge at TN in cases I and II, which are not
shown.) This aspect may be related to the fact that the PD
phase has no magnetization and the ordering of the PD phase
does not cause the enhancement of m. RG studies to explain
this detail including the difference and similarity between
the short-range and the long-range interaction models are a
challenging problem for the future.

As mentioned in Sec. I, elastic interactions may realize ef-
fective infinite long-range sublattice interactions studied here,
which is a very interesting and challenging future problem.
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APPENDIX A: FINITE-SIZE EFFECTS OF THE
LONG-RANGE GENERALIZED SIX-STATE

CLOCK MODEL

In this Appendix we investigate the finite-size effects of the
LRG6SC model by use of the MC method. In the present
model, the following quantities are defined as the order
parameters:

m̃2 = 1

N2

〈(
N∑

i=1

cos 3θi

)2〉
, (A1)

which is regarded as the mean square value of “magneti-
zation” (called magnetization hereafter). Corresponding to
Eqs. (15), (16), and (17), we define

M̃2 = 1

N2

〈{
N∑

i=1

cos θi

}2

+
{

N∑
i=1

sin θi

}2〉
, (A2)

where


̃M = (M̃x,M̃y) =
(

1

N

N∑
i=1

cos θi,
1

N

N∑
i=1

sin θi

)
, (A3)

and

M̃6 = 〈Re[(M̃x + iM̃y)6]〉. (A4)
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Δ

FIG. 13. Difference in the MF free energy density between the
PD and the 2-FR phases in the LRG6SC model with X = 0.25. Insets:
Free energy density of the PD phase (thick black line) and 2-FR phase
(thin red line).

Here N is the number of sites (N = L × L) in the triangular
lattice (Fig. 1). We also define the magnetic susceptibility,

χ̃ = 1

NT

⎡
⎣〈( N∑

i=1

cos 3θi

)2〉
−
〈

N∑
i=1

cos 3θi

〉2
⎤
⎦. (A5)

We plot the temperature dependence of M̃6, M̃6, and m̃2

for X = 0.15 at L = 96 in Fig. 12(a). Positive values of
M̃6 are found at low temperatures, up to around T = 0.05,
while negative values are found at higher temperatures, which
suggests that the former is the 2-FR or 3-FR phase, while
the latter is the PD phase. Figure 12(b) gives χ̃ for X = 0.15
in several system sizes. A divergence of χ̃ is seen at around
T = 0.05, which is the phase transition point between the PD
and the 3-FR phases. Thus, X = 0.15 belongs to case I.

We show the temperature dependence of M̃6, M̃6, and
m̃2 for X = 0.25 at L = 96 in Figs. 12(c) and 12(d) (its
magnification). The values of M̃6 in the ordered state are
positive, suggesting the 2-FR phase. However, χ̃ shows a
divergencelike enhancement at around T = 0.13. Comparing
χ̃ between the infinite system (MF theory) and finite systems in
Fig. 12(f), we find a difference similar to that in the LRTIAFF
model. Thus, X = 0.25 belongs to case II.

Similarly to the case of LRTIAFF, M̃6 appears at a
lower temperature than M̃6, which should be attributed to the

Δ

FIG. 14. Difference in the MF free energy density between the
PD and the 2-FR phases in the LRG6SC model for X = 0.200 and
X = 0.205. It leads to the critical value of X, i.e., Xc � 0.20.

masslesslike-region scenario. We analyze the MF free energy
structures of the PD and 2-FR phases in the same way as in the
text. The difference in free energy density between the PD and
the 2-FR phases, �F/N = (FPD − F2-FR)/N , for X = 0.25
is depicted in Fig. 13. The insets show FPD/N and F2-FR/N .
We find a small difference in �F/N when the temperature
approaches the transition point. For X = 0.25, �F/N is about
10−5 at around T = 0.13. For O(N ) � 104, �F � 10−1 and
it is the order of the temperature.

Thus before the temperature decreases around T = 0.13,
the free energies of both phases are regarded as the same
and the two phases practically degenerate. The divergencelike
enhancement of χ̃ occurs via the same mechanism as in the
LRTIAFF model.

APPENDIX B: CRITICAL VALUE OF X IN THE
LONG-RANGE GENERALIZED SIX-STATE CLOCK

MODEL

In the LRTIAFF model, α � 0.8 is the critical value for
separating two kinds of transition processes, i.e., cases I and
II. Here we study the corresponding critical value for X in
the LRG6SC model. We analyze �F/N between X = 0.15
and X = 0.25 for the critical X(Xc). In Fig. 14, �F/N is
plotted as a function of the temperature for X = 0.200 and
X = 0.205. The PD phase appears at X = 0.205 and it does
not at X = 0.200, and we find Xc � 0.20.
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