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Conversion between spin and charge currents with topological insulators

S. Zhang1 and A. Fert2
1Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
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Injection of a spin current into the surface or interface states of a topological insulator (TI) induces a charge
current (inverse Edelstein effect or IEE) and, inversely, a charge current flowing at the surface or interface states
of a TI generates a nonzero spin density (Edelstein Effect or EE) from which a spin current can be ejected into
an adjacent layer. The parameters characterizing the efficiency of these conversions between spin and charge
currents have been derived in recent experiments. By using a spinor distribution function for a momentum-spin
locked TI, we determine a number of spin transport properties of TI-based heterostructure and find that the spin
to charge conversion in IEE is controlled by the relaxation of an out-of equilibrium distribution in the TI states
while the charge to spin conversion in EE depends on the electron transmission rate at the interface of the TI.
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I. INTRODUCTION

The electronic states of the two-dimensional electron gas
(2DEG) at the surfaces or interfaces of the topological
insulators [1,2] are characterized by dispersion surfaces of
Dirac cone type and Fermi contours with helical locking of
the spin with the momentum by spin-orbit coupling, as shown
in Fig. 1(a) (for simplicity we will assume a simple circular
Fermi contour throughout the paper). This locking between
spin and momentum enables the conversion between spin and
charge currents by the Edelstein (EE) and inverse Edelstein
(IEE) effects [3–5], see Figs. 1(b)– 1(d). In EE a charge current
in the 2DEG, i.e., a shift of the Fermi contours in the direction
x of the electron motion, induces an overpopulation of spins
in the transverse (y) direction due to spin-momentum locking
and therefore is associated with a nonzero spin density (spin
accumulation). The spin accumulation can diffuse through an
interface into an adjacent conducting material, resulting in a
pure 3D spin current injected into this material, without a net
charge flow. In the inverse conversion by IEE the injection
of a spin current into the TI induces a charge current in the
2DEG at its surface or interface. As shown by a series of
recent experiments [6–10] using TI, the conversion between
spin and charge by EE and IEE is remarkably efficient
and very promising for the creation or detection of spin
currents in spintronic devices. In experiments of spin pumping,
for example, a spin current generated by the ferromagnetic
resonance of a magnetic layer is injected through a thin
metallic layer into the surface or interface state of a TI and
converted by IEE into a two-dimensional (2D) charge current.
Such conversions by IEE are characterized by the length λIEE

that was first introduced for Rashba interfaces [4,5] and defined
as the ratio between the induced 2D-charge current density Jc

and the injected 3D-spin current density Js . The IEE length
has been predicted [10] in a phenomenological model to be
expressed as

λIEE ≡
∣∣∣∣Jc

Js

∣∣∣∣ = vF τIEE, (1)

where vF is the Fermi velocity on the Dirac cone and τIEE

is defined as the relaxation time of an out-of-equilibrium
distribution of the topological 2D states (here we focus on

the absolute value of IEE; the directions of the induced
charge current relative to the spin current have been defined
and discussed in Ref. [10]). In the same way the conversion
between 2D charge current into 3D spin currents by EE can
be characterized by the parameter qEE (an inverse of length,
qICS in the notation of Kondou et al. [7]),

qEE ≡
∣∣∣∣Js

Jc

∣∣∣∣. (2)

Several theoretical approaches [5,12] have been developed
to address the spin-charge conversion by TI and focused on
the processional motion of electron spins if the spin direction
of the injected electrons is not perpendicular to the momentum
of the TI states. In this case, the injected electron is not
an eigenstate of the TI and the dephasing takes place for
the nonequilibrium electron spin injected in the TI. The
spin-charge conversion comes from a subtle and detailed
balance among spin injection, spin precession, and spin
relaxation.

In this paper, we provide a theory that determines the key
physical parameters controlling λIEE and qEE of Eqs. (1)
and (2). To display the most physically transparent picture
in the spin-to-charge conversion, we limit the calculation to
the simple case of predominant contribution of surface states
on a Dirac cone with helical in-plane locking. In general, some
mixture of surface and bulk states can take place around the
Fermi level when a metallic overlayer is in contact with the TI.
Consequently, the surface states are altered by the Fermi level
shift, band bending, and possible creation of additional surface
states. It has been shown that the spin-momentum locked
surface states could be completely destroyed by a magnetic
overlayer [13]. However our simplifying model is most useful
in addressing the most recent experimental results in which
the predominant contribution to spin-charge conversion can
be attributed to Dirac cone 2D states. We refer to the two
following examples: (a) Thin films of α-Sn present the Dirac
cone in a large gap of 1.2 eV for 44 atomic layers with the Dirac
point at about the middle of the gap (see Fig. 2 in Ref. [14]).
In contact with Ag and from ARPES measurements, the Dirac
cone is still observed and the Fermi level is at 0.65 meV
above the Dirac point, whereas the contact with Fe destroys
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FIG. 1. Schematically shown (a),(b) Dirac cone dispersion and
Fermi contour with spin-momentum locking of surface/interface
states of topological insulator. (c) Edelstein effect (EE): a charge
current Jc along −x generates a nonzero spin density along y (spin
accumulation). (d) Vertical injection of a spin current (wiggled lines
with spin polarization along y) generates a charge current along −x

[11].

the Dirac cone [10]. (b) For Bi2Se3 and (Bi,Sb)2Se3, it is
clearly demonstrated by Wang et al. [15] in which conditions
of a predominant 2D contribution can be obtained.

II. SPIN TO CHARGE CURRENT CONVERSION

We start with defining the wave function of the TI surface
states as ψp(ρ)χp, where p denotes the momentum at the 2D
surface, ρ = (x,y) is the position, ψp is the orbital part of the
wave function, and χp is the spin part which is perpendicular
to the p, i.e., σ · (ẑ × p̂)χp = χp, where σ is the Pauli matrix
vector, ẑ is the unit vector normal to the surface, and p̂ = p/p

is the unit vector for the direction of the momentum. Since the
spin quantization axis for a given p is ẑ × p̂, the Boltzmann
distribution must take the following spinor form,

ĝp = gc(p) + gs(p)σ · (ẑ × p̂), (3)

where gc and gs are spin-independent and spin-dependent
parts. We recall that, in ferromagnetic conductors, the spinor
is of the form σ · M where M is the local magnetization; while
for nonmagnetic metals (NM), the polarization is not given
a priori and one writes an unspecified spinor σ · A, where
the vector A could be any direction to be self-consistently
determined by boundary conditions. The spinor form given in
Eq. (3) is unique to the spin-momentum locked band structure.
We next determine the distribution function in Eq. (3) for a
bilayer made of a NM layer and the TI (as in the experiments

of Refs. [7,9]). The spinor Boltzmann equation reads,

dĝp

dt
=

∑
k

�kp(f̂k − ĝp) +
∑

p′
�pp′(ĝp′ − ĝp), (4)

where f̂k is the distribution function in the nonmagnetic metal,
�kp is the transition rate across the interface between the state
k in the NM and the state p in the TI, �pp′ is the (defect or
impurity) scattering probability between states p and p′ in the
TI. In the following, we determine the spin and momentum
dependence of these parameters in Eq. (4).

The transition probability �kp at the interface is

�kp = |〈ψkσ |V (r)|ψpχp〉|2δ(εk − εp), (5)

where ψkσ is the wave function of the NM layer, and V (r) is
the steplike interface potential. For the NM metal, the orbital
part of the wave function is independent of spin, i.e., ψkσ =
ψkχσ . If we further assume that the interface potential is spin
independent and the interface is rough enough so that the
momentum conservation across the interface does not apply,
the above scattering matrix takes the following simple form

�kp = [1 + σ · (ẑ × p̂)]/τt , (6)

where τt characterizes the tunneling time across the interface
(the inverse of the transition probability). Note that the
dependence of the spin and momentum in the transition
probability is solely from the spin-momentum locking of the
TI states: The probability is highest if the spin of the k state is
parallel to ẑ × p̂ and is zero if antiparallel.

The defect or impurity scattering rate between the states p
and p′ of the TI is

�pp′ = |〈ψp′χp′ |Vsc(ρ)|ψpχp〉|2δ(εp − εp′), (7)

where Vsc(ρ) is the scattering potential of the impurities or
defects. If the scattering potential is short ranged and spin
independent, the above scattering reduces to

�pp′ = (1 + p̂ · p̂′)/τp, (8)

where we have introduced a relaxation time τp to represent the
strength of the scattering within the TI band. The momentum
dependence again comes from the spin momentum locking.
If the momenta are antiparallel, p̂′ = −p̂, the scattering
amplitude vanishes—this is known as zero backscattering for
the TI. However, as long as they are not antiparallel, any
impurity scattering contains spin-flip processes.

Next we define the spin chemical potential μ ≡
(eNF )−1 ∑

k Trσ (σ f̂k), where e is the electron charge and NF

is the density of states of the NM at the Fermi level. Note
that the electron hopping from the NM to the TI occurs at
the interface, thus NF is the density state projected on the
2D surface, i.e., the unit of NF is the inverse of the energy
per area which is approximately the product of the 3d density
states and the interface layer thickness (lattice constant). By
using Eqs. (6) and (8), we find that, for the steady state solution
of Eq. (4), dĝp/dt = 0 can be obtained exactly,

ĝp = 2eτpNF

4τp + τt

μ · (ẑ × p̂)[1 + σ · (ẑ × p̂)]. (9)
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We can immediately evaluate the spin accumulation in the TI

δm =
∑

p

Trσ (μBσ ĝp) = μBτpNF

4τp + τt

μ, (10)

where μB is the Bohr magneton, and the charge current in the
TI is then

Jc =
∑

p

Trσ (evĝp) = e2τpvF NF

4τp + τt

(μ × ẑ), (11)

where e is the electron charge and vF is the Fermi velocity. Note
that the spin current in the TI is zero, i.e., Trσ

∑
p(σvĝp) = 0.

The spin current across the interface, on the other hand, can be
readily identified as the summation over the first term (times
the spin matrix) in Eq. (4),

Js =
∑
kp

Tr[eσ�kp(f̂k − ĝp)] = e2NF

4τp + τt

μ. (12)

Thus, the spin to charge conversion rate is

λIEE = |Jc|
|Js | = vF τp ≡ λmf , (13)

i.e., the IEE length is exactly the mean free path of the TI, which
has been proposed earlier in the interpretation of experiments,
see Eq. (1). At first, one might be surprised by this result
since the spin-independent defect or impurity scattering by
itself does not involve spin flip. However, the spin-momentum
locked TI band transfers any momentum scattering to spin
rotation. We also want to emphasize that the IEE length derived
here comes from scattering within the TI band, while the other
scatterings, particularly those due also to the hybridization of
the TI with bulk states (in the TI bulk as well as in the NM),
could significantly contribute the IEE length as well through
an additional contribution to τp.

Experimentally, the charge current can be directly measured
while the spin current entering the TI can be obtained via
the enhanced FMR linewidth broadening. To determine the
absolute values of charge/spin currents from Eqs. (11) and
(12), we consider a typical trilayer consisting of FM/NM/TI
where the FM stands for a conventional ferromagnet such as
NiFe. The spin pumping by the precession of the FM layer
leads to a spin current across the FM/NM interface [16],

Js = eGmix

π�

(
�

2
m × dm

dt
− eμ

)
, (14)

where Gmix is the mixing conductance of the FM/NM interface,
and m is the unit vector in the direction of the magnetization
of the FM layer. The chemical potential at the FM/NM would
exponentially decay when electrons diffuse across the NM
layer. However, if the thickness of the NM layer is much
smaller than the spin-diffusion length, we may simply assume
that the chemical potential maintains a constant throughout the
NM layer, and thus we may equate Eqs. (12) and (14) and find

Js = e

2π

(
1

Gmix
+ 1

Gt

+ 4

Gp

)−1

m × dm
dt

, (15)

where Gp = π�NF τ−1
p and Gt = π�NF τ−1

t .

III. SPIN TRANSFER TORQUE ON TI

Up until now, we have considered transition probabilities
among eigenstates of the NM and TI, i.e., the electron
spins injected into the TI layer change the nonequilibrium
occupation number without altering the electronic states of
the TI. However, if the electron spin injected into the TI is not
a spin eigenstate of the TI, a spin torque will be applied to
the spins of the TI. We recall the spin injection from a NM
layer to a ferromagnetic layer in which a spin torque on the
magnetization in the form of m × (m × Js) [17] could rotate
the magnetization and possibly create a dynamic procession
of the FM layer if the spin torque is strong enough. In the TI,
an electron spin with a given momentum p receives a torque
τ = s × (s × Js) so that the total torque satisfies

ds
dt

= −αγ0s × (ẑ × p̂) + s × (s × Js), (16)

where γ0 is the gyro magnetic ratio, and α is the spin-orbit
coupling strength of the TI (or the spin-orbit locking strength).
Since the spin chemical potential is very small compared to the
spin-orbit coupling (α) of the TI, the steady state ds/dt = 0
solution of Eq. (16), up to the first order in Js/α, is

δs ≡ s − ẑ × p̂ = Js

αγ0
× (ẑ × p̂). (17)

If Js is polarized in the plane of the layer, say Js = Js ŷ, an
out-of equilibrium spin comment δsz = (py/pF )(Js/αγ0) has
been induced due to the absorption of the spin current by the
TI; this spin component has also been obtained in Refs. [5,12].
The effect of this spin torque is negligibly small on the spin
dynamics of the TI because α is much larger than the spin
current induced torque—this is a sharp difference from the
spin injection to a FM in which the resulting spin torque is
competing with a much smaller energy scale (such as the
anisotropy and the applied magnetic field), and it could excite
magnetization switching and precessing [18].

One of the consequences of the above induced out-of-plane
component is an unusual spin Hall current [19]: a z-component
spin polarization and y direction of the electron flow Jz

y . Recall
the definition J z

y = ∑
p Tr(vyszĝp); we find J z

y = vF Js/αγ0

where we use sz given above and equilibrium distribution
function ĝ(0).

IV. CHARGE TO SPIN CURRENT CONVERSION

We now turn to the inverse effect: An applied charge current
in the TI produces a spin current in the NM layer. Consider a
bilayer TI/NM with a semi-infinite NM layer. The distribution
function at the interface of the NM layer f̂k satisfies

df̂k

dt
=

∑
p

�pk(ĝp − f̂k) − f̂k − (Î /2)Trf̂k

τsf

, (18)

where Î is the 2 × 2 unit matrix and τsf is the spin-flip
scattering time in the NM. For a given charge density in the
TI layer, Jc ≡ ∑

p Tr(evpgp) where gp ∝ px[1 + σ · (ẑ × p̂)],

we can readily obtain the f̂k, in the steady state case, the spin
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current across the NM/TI interface,

Js = 1

vF (τt + τsf )
ẑ × Jc. (19)

Thus, qEE ≡ |Js/Jc| = [vF (τt + τsf )]−1. The charge to spin
current inversion rate depends on the spin flip rate in the
NM metal and the transition rate at the NM/TI interface
but independent of the impurity scattering of the TI layer.
If τsf → ∞, i.e., no spin absorption in the NM layer, the
spin current flows back to the TI, leading to zero net spin
current. Similarly, when τt → ∞, i.e., no transition across
the interface, the spin current obviously disappears since the
interface blocks the electron flow. The relaxation time τp is
not involved in qEE but only in the resistivity of the 2DEG:
A long τp would generate proportionally large Jc and Js for
a given applied voltage. In some experiments [6,7], the spin
current is measured via the spin torque where a ferromagnetic
layer (FM) is placed on the other side of the NM layer. In this
case, if we assume that the NM layer is much thinner than the
spin diffusion length, the distribution in the NM layer is now
determined by

df̂k

dt
=

∑
p

�pk(ĝp − f̂k) − Gmix

π�NF

f̂k, (20)

where the last term represents the flow of the spin current
from the NM to the FM layer if the magnetization of the FM is
oriented perpendicularly to the spin current. Thus, we obtain

q−1
EE = π�NF vF

(
1

Gt

+ 1

Gmix

)
. (21)

If the spin current is not perpendicular to the FM, it will
penetrate into the FM to be partially relaxed inside the FM
and partially reflected (back flow), thus reducing the spin
current.

V. COMPARISON WITH EXPERIMENTS

Finally, we compare our theoretical predictions with exper-
imental results on the conversion between spin and charge
currents. For the conversion from spin to charge by IEE,
we first consider the example of spin pumping from an Fe
layer into the topological insulator α-Sn through a thin Ag
layer [10]. With spin-momentum locked 2D states at Ag/Sn
interfaces characterized by a quasicircular Fermi contour and
the Fermi velocity vF = 5.6 × 105 m/s, we can account for
the experimental value of λIEE = 2.1 nm by our Eq. (13) with
τp = 3.7 fs, as also found in Ref. [10]. This relatively short
relaxation time is in the same range as the IEE relaxation
time found in spin pumping experiments on Rashba 2DEGs,
where τp = 5 fs for Bi/Ag Rashba interfaces [4] and the
relaxation time derived from optical measurement on 2D
states at interfaces between metals [20]. It has been argued by
Rojas-Sanchez et al. [10] that such relatively short relaxation
times at interfaces with metals can be due to additional
relaxation mechanisms coming from the hybridization of the
2D states with metallic 3D states; this is consistent with the
much longer τp (in the range of picosecond) derived for the IEE
relaxation time of the 2DEG at the interface between the LAO
and STO insulating oxides [21]. Further experiments on TI

protected by insulating materials would be of interest to see if
the effective IEE time and the efficiency of the conversion can
be enhanced in heterostructures without TI/metal interfaces.

It is also interesting to compare the prediction of Eq. (15)
for the effective spin mixing conductance, G∗

mix ≡ (1/Gmix +
1/Gt + 1/Gp)−1, that can be derived from the broadening
of the FMR linewidth in experiments of spin pumping into
TI. It has been found experimentally that G∗

mix for spin
pumping from Fe through Ag into α-Sn (G∗

mix = 40/nm2),
as well as spin pumping into Bi2Se3 from CoFeB (G∗

mix =
12 − 260/nm2 [22]) or NiFe (G∗

mix = 42/nm2 [23]), is always
in the range of the spin mixing conductance in purely metallic
systems (Gmix = 40/nm2 at the Co/Pt interface [24]). Clearly,
both Gt and Gp should not be smaller than Gmix of FM/NM
systems in order to retain G∗

mix comparable to Gmix. As Gt

is the mixing conductance of NM/TI interface, it would be
comparable to Gmix if both interfaces have similar quality.
For Gp, we can estimate by using τp = 3.7f s and NF = 2

(eV Å
2
)−1 (for a free electron model of a metal as Ag),

yielding Gp = 100/nm2 which is indeed the same order
as Gmix.

For the conversion from charge to spin, the order of
magnitude of the experimental results is also consistent with
Eq. (21). Considering the results on the conversion from a spin
current in the (Bi1−xSbx)2Te3 series of TI to a spin current
injected in NiFe through Cu [7], if we also suppose that both
Gt at the TI/Cu interface and Gmix at the Cu/NiFe interface
are of the order of 100 nm−2 and assume the same value of NF

for Cu and Ag with vF around 3.7 × 105 m/s [7], one obtains
qEE ≈ 0.3 nm−1, not very far from the experimental results in
Ref. [7] between 0.4 and 1.1 nm−1 (except in the vicinity of
the Dirac point [7]).

VI. CONCLUSIONS

In summary we used the spinor distribution function
for momentum-spin locked states to derive the main pa-
rameters involved in spin-charge conversion by TI. In par-
ticular, we find that the spin to charge conversion is re-
lated to the relaxation of the topological states, whereas
the opposite conversion depends essentially on interface
parameters, in contrast with the description of similar con-
versions with spin Hall effect where a single parameter,
the spin Hall angle, characterizes both conversions. Our
results can be a useful guide for the exploitation of TI in
spintronics.
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