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Multiple low-energy excitation states in FeNi disks observed by broadband ferromagnetic
resonance measurement
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Magnetization excitation in micron sized FeNi disks with different diameters is studied by broadband
ferromagnetic resonance (FMR) measurement. Except the main FMR peak, additional adsorption peaks with
lower energies are observed. Both micromagnetic simulation and quantum spin wave calculation confirm that
the low-energy excitation states are attributed to backward volume magnetostatic (BVM) spin waves. The size
dependence of the low-energy states is systematically studied in 50-nm-thick Py disks with diameters larger than
500 nm, and the linewidth of the first BVM state is found to be obviously smaller than that of the FMR absorption
peak. Through a quantitative comparison with experimental results, the quantum spin wave calculation is proven
to be a reliable method to get the susceptibility and is much faster than the classical micromagnetic simulations.
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Understanding the elementary excitations in ferromagnets
with finite size is very important for exploring nanomagnetism
[1,2] and is also essential for designing new spintronics devices
[3,4]. In nano and micron sized ferromagnets, due to the
boundary condition, the quantized spin wave states can be
excited in addition to the “uniform” ferromagnetic resonance
(FMR) mode in the microwave frequency region [1,2,5–18].
A detailed understanding of the spectrum and the spatial wave
function of quantized spin excitation is crucial for fundamental
studies of magnetization dynamics. The main FMR peak
corresponds to the mode(s) with the largest coupling to the
external radio frequency (rf) field with the wave vector of
k ∼ 0. Because of the dipolar interaction, the backward volume
magnetostatic (BVM) mode with a small wave vector k parallel
to the in-plane magnetization M (k//M) has lower energy than
the k ∼ 0 mode. For k�M, both the Damon-Eshbach (DE)
mode (or the magnetic surface plasmon mode) [1,2] and the
regular spin wave mode are higher in energy. The DE mode
has been broadly and systematically discussed [6–13]. The
BVM mode is important in the fundamental understanding
of nonlinear spin-wave dynamics [19,20] and applications
[14,21,22], and there have been very interesting nonlinear spin
wave scattering (Brillouin light scattering [BLS]) [8–10], Kerr
microscopy [11], and microwave studies [12,14] on the BVM
mode. Yet there has been no direct quantitative comparison
between theory and experiment on the nature of the magnon
wave function. The BVM mode is not easy to be observed
clearly in experiments because its energy is close to that
of the main FMR peak. Another spin excitation called edge
mode also exists in the low-energy region besides the BVM,
and this additional excitation may lead to the complexity of
the spectrum [12,23]. The edge mode excitation is usually
localized in the edge area of the confined magnetic structure,
and recent studies [24–26] show that the edge mode will have
a significant effect on the magnetization dynamics when the
size of the ferromagnet is decreased to hundreds of nanometers.
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Thus, a detailed and systematic study of the excitation states in
the low-energy region is necessary for a further understanding
of magnetization dynamics in ferromagnets of finite size.

Spin wave excitations can be theoretically calculated by
classical micromagnetic simulations based on the Landau-
Lifshitz-Gilbert (LLG) equation [9–12,24–28], hybrid micro-
magnetic simulation based on dynamic matrix approaching
[16,29,30], and quantum treatment through the diagonalization
of the magnon Hamiltonian matrix [23]. While the spin wave
excitation energies calculated via classical micromagnetic
simulations or direct diagonalization of the dynamic matrix
[29] are the same as those from the quantum treatment, as
we explain below, the magnetic susceptibility from quantum
treatment is not the same as that from a classical calculation.
The susceptibility involves the expectation value of the
product of two noncommuting operators. Classical calcula-
tions approximate these by the product of two commuting
numbers. Micromagnetic simulation [9–12,24–28] tracks the
time evolution of the average magnetization and is quite
time consuming. Quantum treatment [23] can more efficiently
reconstruct all the normal modes and the wave function of
spin wave excitations since this method independently tracks
the time evolution. Through the wave function of spin wave
excitations, the frequency dependent magnetic susceptibility
can be computed and compared directly with that obtained in
FMR measurements, which has not been studied before.

In this paper, we studied the transmission spectrum of Py
(Ni80Fe20) disks with 50-nm thickness and different diameters
by the broadband FMR measured by vector network analyzer
(VNA), and a set of resonance peaks were observed besides the
FMR peak. By both micromagnetic simulation and quantum
spin wave calculation [23], these excitation states were
confirmed to be dominated by the BVM excitation. Our paper
shows that the spin wave calculation by quantum treatment
can enable a first-principle calculation for the frequency
dependent susceptibility, in good agreement with experimental
results, and is comparable in speed to classical dynamic matrix
treatments but two orders faster than ordinary micromag-
netic simulations. Furthermore, we find that the linewidth
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FIG. 1. (a) Sketch of sample geometry and measurement setup
of the microwave transmission spectrum. (b) Typical transmission
spectrums of disks with different diameters. Besides FMR, excitation
states in the high field region (�) as well as the low field region (�)
were observed. The inset is a typical scanning electron microscope
image of disks. (c) The ω-H dispersion of the FMR peak and the
BVM modes for the disks with d = 1 μm. The lines are the fitting
curve with the Kittle formula and Eq. (1) with different excitation
order n. (d) The offset field between the BVM peaks and the FMR
peaks as a function of the disk size. The microwave frequency f is
14 GHz. The solid and hollow symbols are the experimental data
and the calculated result by the quantum spin wave method, and the
dashed lines are theoretical simulations calculated using Eq. (1) with
n = 3, 5, and 7, respectively.

of the BVM state is obviously smaller than that of FMR
absorption.

For the FMR measurement, the co-planar waveguide
(CPW) was deposited on the SiO2 substrate via magnetron
sputtering of 200-nm Au; the width of the signal line is 50 μm,
and the gap between the signal line and the ground is 100μ m.
A 4 × 500 disk array was fabricated on the top of the signal
line of the CPW by e-beam lithography and standard lift-off
process. A 50-nm-thick Py (Ni80Fe20) film was deposited via
e-beam evaporation. All the Py disks in each sample have the
same diameter d and the same center-to-center distance D,
as indicated by the inset in Fig. 1(b). We then fabricated a
series of samples with different d and D. For the samples with
different disk size (d = 0.5,0.75,1,1.5,2 μm), D is always
equal to 2d if not specified. As discussed in Ref. [33], for D/d

larger than 2, the dipole interaction between disks has very
little influence on the magnetic dynamics. For the disks with
d = 1 μm, the samples with different D were fabricated to
confirm the validity of ignoring the dipole interaction between
disks. During the FMR measurement, the magnetic field was
applied in the film plane. A constant microwave is applied
through the CPW by the VNA, and the transmission spectrum
is measured by sweeping the magnetic field.

Figure 1(b) shows three typical transmission spectrums
of the disks with different diameters of 0.5 μm, 1 μm, and

1.5 μm; several absorption peaks can be observed in each
spectrum. The strongest adsorption peak corresponds to the
nearly uniform FMR peak, and the rest of the peaks are due to
the spin wave excitation or the edge mode. Two kinds of spin
wave modes can be excited with H applied in the plane; one
is the BVM mode, and the other is the DE mode or surface
mode [1,2,12]. The DE mode has higher energy than FMR and
should appear in the lower field region for a given microwave
frequency, while the BVM mode has lower energy and should
appear in the higher field region. In our samples, the adsorption
peaks in the low field region with higher energy than that of
the main FMR peak are very weak, thus here we only focus
on the low-energy excitation states.

Figure 1(c) shows the representative ω-H dispersions of
the adsorption peaks for the disk with d = 1 μm. The FMR
dispersion follows well the Kittel Formula [31]. Through
fitting, we can obtain the typical physical parameters such
as the effective magnetization M = 9.5 kOe and the gyromag-
netic ratio γ = 28.9 GHz/T of Py, and those parameters are
the same as those obtained from the uniform Py film. The
dispersion of low-energy states can be well approximated by
the BVM dispersion for bulk spin waves. The BVM is the
ordinary spin wave excitation mode with the wave vector
parallel to the magnetic field, and the dispersion in a two
dimensional film can be described as [2]

ω2 = ω2
0 + ω0ωM

(
1 − e−ktF

ktF

)
. (1)

Here ω0 = γH , ωM = γM , tF is the film thickness, k

is the wave vector which is equal to nπ/w with n as the
number of half-wave-length, and w as the confinement size.
In the disk systems, w refers to the disk diameter. According
to Eq. (1), due to the positive ktF value, the energy of the
BVM state should be lower than that of FMR. When ktF = 1,
Eq. (1) can be simplified as ω2 = ω2

0 + ω0ωM − ω0ωMktF /2.
Comparing with the Kittel formula, the offset between the
excitation field of BVM and the FMR field is determined
by ω0ωMktF /2. The field offset between the FMR and the
first BVM peak decreases with the disk size, consistent with
the spectra in Fig. 1(b). According to Eq. (2), this offset
field increases with the disk thickness. In our case, the disk
thickness of 50 nm is thicker than that in most former studies
[8–12,24–26] of the excitation in microsized systems. In our
samples, the field offset between the FMR and the first BVM
peak can be about 340 Oe with the microwave frequency
of 14 GHz, much larger than the linewidth (∼100 Oe) of
FMR, which makes it possible to clearly resolve the BVM
adsorption peaks, as shown in Fig. 1(b). It should be noted that
the collective absorption signals of up to the fourth order of
BVM modes can be observed, as shown in Fig. 1(d), and
this indicates that the microdisks in our samples are very
uniform with high quality. The dispersion of the lower energy
peaks in Fig. 1(c) can be well fitted by Eq. (1). Using the
parameters M and γ fitted from the main FMR dispersion
and fixing tF /w = 0.05, we can obtain n = 3.0 for the first
BVM, n = 5.2 for the second BVM, and n = 6.8 for the
third BVM. The good agreement of the fitting indicates that
Eq. (1) can well approximate the low-energy excitation in
the microsized disk. The fitted n is not an exact integer; this
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FIG. 2. (a) The dependence of excitation fields of FMR and BVM
modes on (a) the core-core distance and (b) the field angle. The disk
diameter is d = 1 μm, and the microwave frequency is f = 14 GHz.
The inset in (b) defines the field angle θH . (c) The FWHM of FMR and
BVM as a function of the frequency for the disks with d = 0.75 μm.
The inset of (c) shows the representative normalized FMR peak and
BVM peak with n = 3. The linewidth of the BVM mode is smaller
than that of FMR. (d) The measured damping constants of the FMR
peak and the BVM peak with n = 3 for the disks with different sizes.

is possibly attributed to the finite disk shape. w in Eq. (1)
should be the effective width and may be slightly different from
the diameter in the disk systems. Moreover, the edge defects
in magnetic microstructures can influence the magnetization
dynamics [32], which may influence the exact n value for each
BVM mode. Note that the fitted n for the second and third
BVM are close to the odd integer. The BVMs with the even n

number are difficult to be observed in the adsorption spectrum
because these states have nearly zero net magnetization and
are thus weakly coupled to the uniform external driving field.

To further confirm the validity of the application of the
BVM approximation, the size dependence of low-energy ex-
citation in micro disks was systematically studied. Figure 1(d)
shows the size dependence of the excitation field. The solid
dots are the experimental data, and the dashed lines are
calculated results for the BVM modes with n = 3, 5, 7,
respectively. The parameters used in the calculation are from
the fitting in Fig. 1(c). The experimental results follow the
BVM theoretical curves very well, proving that the BVM
excitation dominates the low-energy excitation observed in
the micro disks.

Figure 2(a) shows the excitation fields with the fixed disk
diameter d = 1 μm and different D. The excitation fields are
independent of D, indicating that the effect of long-range
dipole interaction between neighboring disks is negligible for
the disk with D/d larger than 2 [33]. Moreover, the excitation
fields are also independent of the field angle, as shown in
Fig. 2(b). The microwave excitation becomes weaker for the
external field rotating toward the perpendicular direction, i.e.,
ϕH = 90◦ so that the BVM peaks can be clearly resolved only
for ϕH < 60◦. The dipole interaction between disks should
vary with the magnetization orientation. So our experiments

prove that the dipole interaction between disks is negligibly
small and can be ignored, thus later we discuss only the
magnetization excitation of a single disk.

We found that the linewidths of the BVM peaks are clearly
smaller than that of the main FMR peak. This fact can be clearly
seen by the normalized BVM and FMR absorption peaks of the
disk with 1 μm diameter, as shown in the inset of Fig. 2(c). Here
only the first BVM and FMR excitation can be considered due
to the weak signal of the higher order BVM excitation. The full
width at half maximum (FWHM) �H can be written as �H0 +
2αω/γ in terms of phenomenological damping constants [34].
Here �H0 is the extrinsic damping, α is the damping constant,
and ω/2π is the microwave frequency. Figure 2(c) shows the
representative frequency-dependent FWHM of both the FMR
and the first BVM for the disks with d = 0.75 μm, and both
show a linear dependence. We can obtain the damping constant
α = 0.01 of FMR. This is the same as that in the Py films and
also is consistent with the literature values [24,35]. By simply
applying the same relation between FWHM and ω, we can
obtain the damping constant α = 0.0075 for the first BVM,
which is ∼25% smaller than that of FMR. Our measurement
indicates that the smaller damping of BVM is an intrinsic
property of the micromagnetic disk since such an effect can
be found in all the disks with different diameters, as shown in
Fig. 2(d).

The Gilbert damping of spin wave mode in metallic
ferromagnets has also attracted great attention. The damping
is usually proportional to the square of the wave number
[15,36]. The damping enhancement of spin waves can be
attributed to the intralayer spin current between nonuniform
magnetization [37]. However, de Loubens et al. [27] reported
a lower energy spin wave mode in a perpendicular magnetized
submicron-sized Py disk, which is a localized mode at the
center of film interfaces. This localized mode has lower
linewidth than that of the uniform mode and was attributed
to the higher k value spin wave excitation [27]. Here, for
the first time, our paper points out that the BVM mode has
lower damping than the uniform mode. The deduction of the
BVM mode is much larger than that of the localized mode in
the perpendicularly magnetized disk [27]. In fact, the BVM
excitation in the square disk has also been observed with
broadband FMR by Bailleul et al. [12], and the experimental
adsorption curves inside also presented a smaller linewidth of
BVM than that of FMR, which was not specifically pointed
out. For a finite system with no translation symmetry, magnon
states with different wave vectors but close in energy can
couple to the external driving field, and all contribute to the
different peaks. The slight difference in energies of these
states provide an additional contribution to the widths of the
peaks. Through quantum spin wave calculations described in
the following, we found that more states contribute to the
main peak than the BVM peaks, thus providing one source
for the difference in the widths. Our results suggest further
systematic studies to fully understand the mechanism of the
reduced damping of BVM in the confined structures.

To identify the spatial structure of the low-energy excitation
states, simulation using the program OOMMF is carried out
to study the spin precession [38]. During the simulation,
the parameters M, γ , and α are the fitted values from the
experimental data in Fig. 1(c). We did the simulation on
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FIG. 3. Simulation results of one disk with d = 1 μm by
OOMMF excited by an rf magnetic field with f = 14 GHz. (a) The
oscillation amplitude of dynamical magnetization mz as a function
of external field strength. (b) The spatial distribution of precession
amplitude and phase of each excitation state. The inset in (a) shows
the simulation geometry with the dc magnetic field applied along the
y axis and the rf magnetic field along the x axis.

the disk with 50-nm thickness and 1 μm diameter. The unit
cell was set as 2 × 2 × 50 nm3. The simulation with the
smaller unit cell of 2 × 2 × 10 nm3 has been tested, which
gives the same results. The microwave field h is applied in
plane with a frequency of 14 GHz and a field amplitude
of 1 Oe. The magnetic field H is applied in the plane but
perpendicular to h, as shown by the inset in Fig. 3(a). By
sweeping the magnetic field H, the out-of-plane magnetization
precession amplitude Mz as a function of H can be calculated.
Under the excitation condition, the magnetization in the disk
processes with Mze

−iωt = ∑
j mzj e

−i(ωt+ϕj ), here mzj and ϕj

are the oscillation amplitude of the out-of-plane magnetization
component and the precession phase in the j th unit cell,
respectively. Figure 3(a) shows the calculated Mz as a function
of H. Besides the main FMR excitation, excitation in the
lower field region as well as the high field region can be
observed. Figure 3(b) shows the spatial distributions of the
amplitude mzj and phase ϕj of the spin precession in the disk.
Usually the wave vector of the microwave excitation can be
determined by the spatial variation of the phase ϕj . In high
field excitation states, the wave vector of the spin wave aligns
along the magnetic field, and this is a key character of BVM
spin wave excitation [1,2]. The excitation amplitude becomes
weaker for the higher excitation order n, in agreement with the
experiment. In the first state, two nodes appear in the spatial
phase distribution, thus the first BVM contains three half-wave
lengths with n = 3. Besides BVM, contributions from the
edge mode excitations at the two poles can, in principle, be
observed; the excitation amplitude at the edge is obviously

stronger for the modes in the higher field. Since the edge
mode excitation is localized only in a small edge area, the
total microwave adsorption should be mostly induced by the
excitation inside the disk, thus the calculated mixing states
should be dominated by BVM excitation.

Spin wave excitation has been theoretically studied by
quantum treatment through diagonalization of the magnon
Hamiltonian matrix [23]; however, this theoretical method
has not been directly compared with the experimental results.
Here we also performed magnon calculations with quantum
treatment and compared them with the experimental results.
The transmission spectrum can be determined from the sus-
ceptibility given in terms of all the magnon eigenstates by [23]

χ (ω) = i

∫ t

−∞
dt ′eiω(t−t ′)〈[S(t),S(t′)]〉

=
∑

j

|〈j |S|0〉|2/(ω − ωj + iαω). (2)

Here 〈j | indicates the j th magnon wave function, |0〉
indicates the ground state with zero field, �ωj is the energy
of the j th magnon, and α is the damping constant. Here,
we should emphasize that this is a quantum spin wave
calculation since the susceptibility involves a product of two
noncommuting operators, i.e., 〈[S(t),S(t′)]〉, so it is not equal
to the classical expression obtained by replacing the spin
operators by the average value (such as by solving the classical
LLG equation). For example, the normalization of the magnon
wave function is determined by the commutator [Sx,Sy]
[Eq. (7) of [23]]. This condition is absent in the classical
treatment. Because the quantum spin wave calculation directly
addresses the elementary excitations, it is faster than the micro-
magnetic simulation by two orders of magnitude. This enables
an efficient first-principles calculation of the frequency depen-
dent susceptibility and the exploration of how the susceptibility
depends on experimental parameters such as the disk size. We
recapitulate the traditional quantum magnon calculation next.

With the method of Holstein and Primakoff [39], the
magnetization operator S (n) for the nth spin is expressed
as magnon creation and destruction operators a(n), a∗(n):

Sz(n) = (S/2)1/2(a(n) + a∗(n))

Sy(n) = i(S/2)1/2(a(n) + a∗(n)) (3)

Sx(n) = S − a(n)a∗(n).

The spin wave Hamiltonian is obtained by expressing
the energy of the system in terms of these operators. This
Hamiltonian is then rewritten with the Bouguliubov trans-
formation [23]. For uniform infinite size samples, the wave
vector is a good quantum number, and the Hamiltonian
is a 2 × 2 matrix, which can be easily diagonalized. For
a finite system, a direct numerical diagonalization of the
full spin wave Hamiltonian is carried out, as detailed in
Ref. [23]. In the numerical calculation, the magnetization M
was experimentally determined with 80 block spins along the
diameter used, which results in more than 5100 eigenstates for
the Py disk with d = 1 μm.

Figure 4(a) shows the calculated susceptibility and the
experimental adsorption spectrum with f = 14 GHz. In
the calculation, we used the experimental value of the
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FIG. 4. Results calculated by the quantum spin wave method for
the disk with d = 1 μm. (a) Comparison of the spectra between
experiment and calculation with a frequency of 14 GHz. (b) The
calculated χ ′′ as a function of the frequency and the field. The
solid dots are the experimental dispersions in Fig. 1(c)–1(e). Spatial
distribution of three typical high field eigenstates A, B, and C, as
marked in (b). States A and B are dominated by the BVM excitation,
and state C is dominated by the edge mode.

parameters such as disk diameter of 1 μm, thickness of
50 nm, magnetization M of 9.5 kOe, and damping constant
α of 0.01. The FMR peak and four high field excitation
peaks were calculated with the same excitation field as the
experimental results, but there are three additional excitation
peaks far away from the FMR peak in the calculation. Figure
4(b) shows the calculated susceptibility as a function of f

and H in the color contour. We also plot the experimental
peak positions in Fig. 4(b) for comparison. The calculated
results can reproduce all the observed peaks of FMR and
BVM. The excitation peaks closer to the FMR peak should
be dominated by the BVM mode, and this can be confirmed
by the spatial distribution of the dynamical magnetization.
Unlike the OOMMF output, which is the response from a
driving field and is an average over the different eigenstates
j given by

∑
j 〈Mz(j )〉/(ω − ωj + iαω), Figs. 4(c) and 4(d)

show the spatial distribution of the out-of-plane dynamical

magnetization component of the eigenstate A and B, respec-
tively. The spin excitation in both states spreads the entire disk
plane with the wave vector perpendicular to the field with weak
excitations in the edge area. Thus, the low-energy excitation
states close to FMR should be the BVM mode. Figure 4(e)
shows a representative dynamical magnetization distribution
of the eigenstate C at H − H0 = 1320 Oe, and the excited
magnetization localized only at the edge(s) with the typical
feature of the edge mode excitation; however, these edge
mode excitations were not observed in the experiment. The
edge mode is sensitive to the boundary condition of each disk;
however, in reality it is difficult to have all the disk boundaries
identical, thus the inhomogeneous boundaries of the disks may
broaden and weaken the edge mode absorption peaks, which
is in fact the integration of the adsorption of all the disks.
Moreover, the size dependent excitation field in the high field
region can also be calculated as the hollow indicators shown in
Fig. 1(d), and the calculated results are in good agreement with
the experiment. The coincidence between the calculation and
the experimental results confirms that the quantum spin wave
calculation can provide a direct quantitative comparison with
observed absorption spectrums by first-principle calculation of
susceptibility. Moreover, the quantum spin wave calculation is
more efficient for reconstructing all the normal modes due to
the method independently tracking the time evolution.

In summary, we systematically studied spin excitation states
in the high field region with low energy in 50-nm-thick Py
disks with diameters ranging from 0.5 μm to 2 μm. Both
micromagnetic simulation and quantum spin wave calculation
confirm that those states correspond to the BVM modes. Our
results indicate that the linewidth of the BVM state is obviously
smaller than that of FMR absorption. The good agreement
between quantum spin wave calculations and experimental
curves indicates that the quantum spin wave calculation is
an efficient first-principle calculation that can be applied
to analyze the absorption spectrums quantitatively. These
results will help further understanding and provide new insight
studying the magnetization dynamics in finite ferromagnets.
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