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Multiscale model approach for magnetization dynamics simulations
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Simulations of magnetization dynamics in a multiscale environment enable the rapid evaluation of the Landau-
Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is
required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to
large systems with spin structures that vary locally on small length scales. To implement this, the conventional
micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software
selectively simulates different regions of a ferromagnetic sample according to the spin structures located within
in order to employ a suitable discretization and use either a micromagnetic or an atomistic model. To demonstrate
the validity of the multiscale approach, we simulate the spin wave transmission across the regions simulated
with the two different models and different discretizations. We find that the interface between the regions is fully
transparent for spin waves with frequency lower than a certain threshold set by the coarse scale micromagnetic
model with no noticeable attenuation due to the interface between the models. As a comparison to exact analytical
theory, we show that in a system with a Dzyaloshinskii-Moriya interaction leading to spin spirals, the simulated
multiscale result is in good quantitative agreement with the analytical calculation.
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I. INTRODUCTION

To model magnetization dynamics, currently two
paradigms are commonly used in the field: the micromagnetic
model and the Heisenberg spin model. The micromagnetic
model [1] is ideal when simulating systems with linear
dimensions of the order of a few nanometers or larger; since
it is a continuous model that is discretized for computational
application, its reliability decreases dramatically when sim-
ulating magnetic structures exhibiting a large gradient that
cannot be resolved by the finite size cells. A textbook example
for this scenario is offered by Bloch points [2] (see Fig. 1);
domain walls and spin waves also belong to this category for
particular values of the material parameters.

The Heisenberg model [3–5] is a discrete description,
where with every atom in the lattice of the ferromagnet,
a magnetic moment is associated. Since this is a discrete
model, its capability to simulate any magnetic structure is
not limited by computational artifacts originating from the
discretization of a continuum model, which makes it distinct
from micromagnetism. On the other hand, the Heisenberg
model cannot be efficiently used to simulate systems larger
than a few nanometers due to the computational time in-
creasing faster than linearly with the number of atoms [6,7].
In the presented approach (Fig. 2), the entire system is
simulated using the micromagnetic model, while one or more
regions of it containing large gradient structures (e.g., Bloch
points) are simulated using the discrete Heisenberg model. The
main obstacle for the development of a combined multiscale
technique consists of devising accurate conditions to make the
interface between regions on two different scales magnetically
smooth, in order to prevent any interface related artifacts.

While in magnetization dynamics, adaptive mesh refine-
ment techniques [8,9] have been used, none of these employed
different models for different scales. One related approach has

been proposed, addressing the problem of interfaces between
layers of different magnetic materials [10–12]. However,
the lack of proper interface conditions, in particular, the
choice of applying a coarse scaled exchange field on the
magnetic moments along the interface in the fine scale region,
restricts the validity of this approach to systems with uniform
magnetization across the interface. While this shortcoming
has been later resolved in Refs. [13,14], these approaches
were devised to evaluate equilibrium configurations rather than
simulating dynamical systems.

One further related approach [15] employed the finite
element method. It should be noted, however, that while in
this case the atomic lattice in the Heisenberg model can be
rendered more accurately, the computational times cannot
be dramatically reduced, as shown for our finite difference
approach in Ref. [6], making this approach considerably
slower. One further multiscale approach [16], devised for a
different scale combination than the presented one, proposed
to use the micromagnetic model as the fine scale model and
the Maxwell equations as the coarse scale model; this is,
however, restricted to systems with slowly varying magne-
tization. Another work [17] uses special relativity to evaluate
a corrective term to the Landau-Lifshitz-Gilbert equation in the
case of domain wall motion. In continuum mechanics [18,19],
multiscale approaches are commonly applied to the investi-
gation of mechanical properties of materials, such as their
response to deformations and fractures. However, so far it is
unclear whether one can develop such a multiscale model
for magnetization dynamics that allows one to carry out
valid simulations of systems that cannot be modeled with the
currently available approaches.

In this paper we show the details of the multiscale approach,
with a particular focus on the interface conditions that we
developed to obtain a smooth interaction between regions
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FIG. 1. (a) Schematic of a magnetization structure with a mi-
cromagnetic singularity (Bloch point). The two gray domains are
separated by two Bloch walls (black). The Bloch walls have an
opposite sense of rotation and are separated by two Néel/Bloch lines
(blue). Between the two Néel/Bloch lines with opposite orientations,
a micromagnetic singularity (red) is formed. A magnification of the
red square is shown in (b). (c) A micromagnetic singularity also
occurs during the reversal of a magnetic vortex core [20,21]. These
diagrams were adapted from Ref. [22].

on different scales. Finally, demonstrations of the validity
for the approach are shown, revealing the transmission of
spin waves across the scale interface without attenuation, and
comparing the simulated ground state for structures exhibiting
Dzyaloshinskii-Moriya interaction to the analytical theory.

II. METHOD

The multiscale approach solves the Landau-Lifshitz-Gilbert
equation numerically for two different models: the coarse
grained micromagnetic model, which simulates the whole
sample, and the fine scale model, which is used for mag-
netic structures that cannot be accurately described by the
micromagnetic model, discretizing the magnetization field at
atomic resolution and simulating it in the intrinsically discrete
Heisenberg spin model. Our software executes in parallel two
independent solving routines, one for each model (it is in
principle possible to execute any number of fine scale solving
routines), performing one full computational step on the coarse
scale one, and then a short series of steps on the fine scale one
centered around the time coordinate of the coarse one (see
Fig. 3).

The main task towards the development of this technique
consisted in modeling the interaction between different re-
gions. This was achieved by applying, after each coarse scale
step, a set of magnetic fields designed to approximate the
effect of the nonlocal terms of the effective magnetic field
from one region on the other (see Fig. 4), namely, exchange
and stray field. These magnetic fields are designed as follows:
The exchange field, generated by the fine scale magnetic
moments closest to the interface (“interfacial moments”),
on their “neighboring” cells in the coarse scale (“interfacial
cells”) is evaluated by averaging all the interfacial moments
inside each coarse scale cell. The average vector is rescaled
by the volume Va of a cell in the atomic lattice, in order

FIG. 2. Schematic diagram showing the basis of the multiscale
model. (a) In this example each cell in the vortex core region is
simulated in the coarse scale. (b) depicts the multiscale simulation,
where a small region (central nine cells) is simulated using the
atomistic model, while the rest of the sample is simulated using
the micromagnetic model. The color code shows the out of plane
component of the magnetization in units of Ms .

to obtain the magnetization (A/m), rather than the magnetic
moment (A m2). A new finite difference mesh, with coarse
scale discretization, is created and the cells corresponding to
the internal surface of the fine scale region are filled with
the difference between the magnetization of the same cell
in the original coarse mesh and the new vectors. In this
way, the linearity of the exchange field with respect to the
magnetization is exploited to evaluate a correction to the field,
calculated in the micromagnetic formulation, generated by the
original coarse scale cells alone. The corrected exchange field,
exerted by the multiscale cell j on the micromagnetic cell i, is
calculated as

Hex(Mj ) = Hex(Mint,j − Mj ) + Hex(Mj ). (1)

Here, Mj denotes the magnetization in the cell j in the purely
micromagnetic simulation, while Mint,j is defined as

Mint,j = Ms

|μ|Nint

Nint∑
k

μk =
∑Nint

k μk

VaNint
, (2)

where the sum runs over all the magnetic moments μ located
along the interface on the side of cell j that is neighboring cell
i. This formula is only fully valid in the case of complete cells,
without additional or missing atoms. This effective field term
is evaluated in the micromagnetic model. Likewise, to evaluate
the exchange field generated by interfacial cells on interfacial

FIG. 3. Diagram showing the multiscale model in the time
domain: After each coarse computational time step, the corrections
to the effective field in the fine scale region, generated by the coarse
one, are evaluated, a short series of fine steps centered around the
latest coarse step, of length h, is executed, and then corrections to
the coarse scale effective field (generated by the Heisenberg fine scale
one) are evaluated.
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FIG. 4. The key players in the evaluation of the cross-scale
effective field terms: magnetic moments (red), micromagnetic cells
(black), interfacial moments and cells (highlighted in blue), ghost
moments, which are not part of the LLG solving routine (white). The
dashed lines show how the ghost moments, and, in particular, the one
marked in green, are evaluated as the bilinear interpolation of fine
scale moments and coarse scale magnetization.

moments, interpolation is employed in order to define a set
of new magnetic moments (“ghost moments” [8]) to act as
first neighbors to the interfacial ones. The exchange field
generated by the ghost moments is evaluated in the Heisenberg
spin model. A combination of fine scale moments and coarse
scale magnetization is used in the interpolation in order to
ensure a smooth transition in the magnetic pattern across the
interface. This means that each ghost moment results from
the interpolation of atomistic and aptly renormalized micro-
magnetic vectors. The interpolation can be linear, bilinear, or
quadrilinear according to the dimensionality of the coarse scale
mesh. The same techniques, based on the average of interfacial
magnetic moments, and the calculation of ghost moments
through interpolation across the interface, are employed when
evaluating antisymmetric exchange (Dzyaloshinskii-Moriya
interaction) across the scale interface.

The stray field contains all the long range contributions
to the effective fields. The implementation of this field
constitutes one of the main differences between the two
models. In both scales the demagnetization tensor formulation
was employed [23], as well as the calculation method based
on fast Fourier transform (FFT) for efficient calculation [6].
While for the coarse cells the demagnetization tensor describes
the interaction between two uniformly magnetized solid
rectangles, according to the calculations carried on by Newell
et al. [23], the demagnetization tensor used for two full
magnetic moments in the fine scale is defined as

1

4π

[
1

|ri − rj |3 − 3
(ri − rj ) ⊗ (ri − rj )

|ri − rj |5
]
, (3)

where ri and rj are the positions of two magnetic moments,
1 is the 3 × 3 identity matrix, and the symbol ⊗ denotes the
tensor product.

Similarly to the exchange field, the stray field is linear in the
magnetization vector and this property is exploited likewise.
The correction to the stray field generated in the micromagnetic
system by fine scale regions is evaluated using the averaged
value of magnetic moments in each cell.

In order to evaluate the complete demagnetization field
acting on the fine scale system, the coarse scale magnetization
structure is copied into a new mesh and the cells corresponding
to the fine scale region are filled with zero vectors. The stray
field generated by this system is evaluated. This technique is
employed in order for the field generated by the fine scale
region on itself not to be evaluated twice. Since the field has
the same discretization as the structure generating it, the result
is then interpolated, in order for it to have the discretization
of the fine scale mesh. The type of linear interpolation
depends, as for the ghost moments, on the dimensionality
of the mesh. This is the only case for an effective field
term evaluated micromagnetically to be applied on the fine
scale region. This approximation is made necessary by the
computational complexity of the algorithm calculating the
field, increasing with N log(N ), where N is the number of
cells. This dependence is due to the method employed for
calculating the demagnetization tensor based on FFT [6,7].

III. SIMULATIONS

Having implemented the approach, we run a series of tests
as a demonstration of the validity of our model. The simulated
system was a one-dimensional nanowire, 1.8 μm long with
a square 0.3 × 0.3 nm2 section. The fine scale domain was
90 nm long (Fig. 5), and the material parameters for this
system are those commonly used for permalloy, namely, Ms =
8 × 105 A/m, exchange constant A = 1.3 × 10−11 J/m, and
Gilbert damping constant α = 0.01 [24]. For the purpose of
efficiency and due to the constraints of the finite difference
method, upon which the original software is based, the crystal
in the atomistic region is considered to be ordered in a simple
cubic lattice with a lattice constant l = 0.3 nm, comparable to
the ones of iron and nickel.

Spin waves of different frequencies ω0 were excited by
applying an alternating transversal magnetic field Halt to a
short (3 nm long) section of the wire. The magnetization as
a function of time was measured on the atomistic moment
furthest from the region where Halt is applied [μj (t)], and on
the neighboring micromagnetic cell [Mi(t)], the transversal
component of the two arrays was normalized, and then
analyzed using FFT in order to find μj (ω) and Mi(ω). Peaks
with frequency corresponding to the frequency of Halt were
easily identifiable. The height of such peaks increased linearly
with the amplitude of Halt. The peaks μj (ω0) and Mi(ω0) were
squared and the transmission coefficient T across the interface
has been evaluated by calculating the ratio between the two:

T (ω0) = |μj (ω0)|2
|Mi(ω0)|2 . (4)

FIG. 5. Diagram showing the fine scale region of the nanowire
and its immediate surroundings. An oscillating magnetic field Halt is
applied to a section of the fine scale region to excite spin waves. The
amplitude of the spin wave is evaluated in the atomistic fine scale cell
j and the coarse scale cell i which is described micromagnetically.
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FIG. 6. Linear regression used to measure the relation between
the excited wave vector k and the excitation frequency ω.

For some values of the frequency, a purely atomistic
simulation was performed for comparison and with the aim of
obtaining the relation between the frequency and wavelength.
Using FFT in the space domain, the corresponding wave
number k was measured for each value of the excitation fre-
quency. In particular, such Fourier transforms were evaluated
at different time instants and then averaged. Once again peaks
were easily identifiable. By means of linear regression (see
Fig. 6) the dependence k2(ω) was measured and the wavelength
corresponding to each value of the excitation frequency was
calculated as λ(ω) = 2π/k(ω).

IV. RESULTS

Three sets of simulations were performed, with different
lengths of the micromagnetic cells, corresponding to 10, 20,
and 30 times l (0.3 nm). The data show ideal transmission
for frequency values smaller than a sharply defined cutoff
frequency. The same data, as a function of the wavelength,
show consistently that the transmission drops to zero at a cutoff
wavelength corresponding to a specific value of the coarse cell
size. This universal behavior can be considered as a limitation
of computational micromagnetism, which does not allow one
to simulate very short wavelength spin waves without refining
the mesh, introducing therefore a dramatic increase in the
computation time (Fig. 7).

Since we assume that the frequency cutoff is a consequence
of the coarse scale not being able to resolve waves with such a
high frequency, we simulated a similar system, this time with
the excitation being applied on the coarse scale region only.
Here, the waves propagate into and then out of the fine scale
region and the transmission is measured for waves leaving the
fine scale region (Fig. 8). The test was repeated using periodic
boundary conditions to make sure that the sharp cutoff was not
caused by the waves being reflected at the end of the wire. Both
tests were then repeated for different values of the exchange
constant.

In order to measure the cutoff frequencies, a linear regres-
sion was executed on all the transmission values between 0.1
and 0.9, and the intersection of this line with the transmission
value of 0.5 was defined as the cutoff frequency. We assume the

FIG. 7. The measured transmission for waves excited in the fine
scale region with open boundary conditions as a function of their
(a) frequency ω and (b) wavelength λ. A transmission of 1 (100%)
for a wide range of wavelengths demonstrates the numerical validity
of the model.

FIG. 8. The measured average transmission for waves of all
possible frequencies excited in the coarse scale region, before entering
the fine scale one, with closed and periodic boundary conditions
(BC) for different values of the exchange constant A. The data
shown are the result of an average over all the frequencies. Peaks
with frequency higher than 3.5 THz were not visible in the Fourier
transform, underlining the fact that the cutoff is a consequence of
the waves not being resolved for the chosen cell size. The observed
transmission of approximately 1 shows the validity of the method
with no artificial attenuation at the interface between the regions
where different models are used.
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FIG. 9. The measured cutoff frequency ωcut for waves excited in
the fine scale region with closed and periodic boundary conditions
(BC) for different values of the exchange constant A. A cutoff
frequency depending on the exchange constant demonstrates that
this phenomenon is strictly micromagnetic and is not introduced by
the multiscale approach.

cutoff to be a direct consequence of the exchange interaction
not being accurately evaluated in the micromagnetic model
when the angle in the magnetization between two neighboring
cells is too large. The dependence of the cutoff frequency on
the exchange constant supports this hypothesis (see Fig. 9).

FIG. 10. (a) The two components of the magnetization for a
multiscale DMI helix, showing continuity and consistency of the
period in the coarse and fine scale region. Below the direction of the
spin helix is schematically shown. (b) The wave number of the helix
increases linearly with the DMI constant and is consistent with the
expected value [26].

FIG. 11. Domain wall displacement after the application of a
unidirectional Gaussian-shaped magnetic field pulse with different
values of height and width as a function of the tracking distance. This
is the distance traveled by the domain wall before the fine scale region
is centered around it. We expect this parameter not to influence the
dynamics of the system and the data confirm this assumption.

V. DZYALOSHINSKII-MORIYA INTERACTION

To demonstrate the reliability of the method used to evaluate
effective fields across the interface by direct comparison
to analytical theory, a system exhibiting antisymmetric ex-
change [25,26] was simulated. The nanowire was similar in
shape to the one used to test spin wave transmission, with
the parameters Ms = 1.05 × 106 A/m and exchange constant
A = 11 × 1011 J/m. Different values of D = |Dij | were used.
The vector Dij scales the energy density of the Dzyaloshinskii-
Moriya interaction (DMI) as calculated in Ref. [26]:

eDMI = Dij · (μi × μj )/|μ|2.
The system was relaxed in a coarse scale simulation, then
a fine scale region was applied on a section of the wire,
and the system was relaxed again. The relaxed state (see
Fig. 10) showed continuity in the helix structure, typical of
systems exhibiting DMI, with a pitch in agreement with the
predicted [26] value of D/(4πA). The pitch was evaluated
from the Fourier transform in the space domain for the two
components of the helix, using the data points from both scales
and taking the peak value from the Fourier transform. The
components of M evidently have a perfectly sinusoidal shape
[see Fig. 10(a)].

VI. TRACKING

A tracking algorithm was devised in order to keep the fine
scale region as small as possible; it scans the fine scale region
for the position of the structure of interest (SOI), usually the
spin structure with large magnetization gradients, and shifts
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the fine scale region by an integer number of coarse scale
cells units, in order to always have the SOI close to its center.
When micromagnetic cells previously not part of the fine scale
region become included, interpolation is applied in order to fill
in the fine scale mesh with magnetic moments that accurately
reproduce the coarse scale magnetization and are continuous
within and across the scale interface.

To show that the fine scale area can be reliably moved,
a test was performed. This test simulated domain wall
motion in a nanostrip (3 μm × 33 nm × 0.3 nm) induced by a
unidirectional magnetic field. The material parameters of the
strip are the same as the nanowire from the previous test, with
the only exception being the Gilbert damping α = 0.1. The
domain wall is initially in the center of the fine scale region,
and when the distance from the starting position becomes
larger than a certain threshold (tracking distance), the whole
fine scale region is shifted, in order to keep it centered. The
test was repeated for different tracking distances to show that
this process does not influence the dynamics of the system
(Fig. 11).

VII. CONCLUSIONS

We have presented an innovative methodology to perform
magnetization dynamics simulations in the systems which
cannot be accurately simulated otherwise. Since some of
these systems describe phenomena, including vortex core
switching [20,27–30] and skyrmion nucleation [31,32], that
are considered to be important problems in spintronics, we
deem this methodology a key step to advance this field. In order
to improve the technique and establish multiscale simulations
as a valuable tool, its basic features have been described and
its limits have been tested.

The transmission data for the spin waves show that
information about magnetic structures in the fine region can
cross perfectly the scale interface, thus demonstrating the
reliability and numerical validity of our model. A thorough
analysis of the cutoff phenomenon found for spin wave
transmission shows that, in the presence of spin waves with a
short wavelength, the multiscale approach can be reliably used
under the condition that the waves do not leave the fine scale

region. Meanwhile, the traditional approach—a refinement
of the whole mesh—would increase the computational time
dramatically. The simulations including the DMI further
show that the method employed for evaluating cross-scale
interactions ensures continuity between the regions of different
scales and yields quantitative agreement with the analytical
theory. Moreover, the domain wall data indicate the reliability
of the tracking algorithm and its effectiveness as a method to
keep the size of the fine scale regions at a minimum and does
not introduce artifacts to the simulated results.

As a future direction, we propose to analyze the dynamics
of magnetic vortex core reversal, a phenomenon that requires
a similar approach in order to be accurately simulated [20].
Further research will include magnetic structures such as
skyrmions which are stabilized by DMI and where the nu-
cleation involves Bloch points. In the long term, there is room
for further improvements: Generalizing the approach beyond
simple cubic lattices in the fine scale region, optimization of
the computational routines, and extension of this approach to
antiferromagnets and nonzero temperatures are some of the
examples that will broaden the applicability even further.
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Adaptive large eddy simulation with moving grids, Theor.
Comput. Fluid Dyn. 27, 817 (2013).
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