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This paper presents the quantum mechanical type T -scattering operator approach to studying the forward
volume magnetostatic spin-wave multiple scattering by a finite ensemble of cylindrical magnetic inclusions in a
ferromagnetic thin film. The approach is applied to the problem of spin-wave excitation transfer along a linear
chain of inclusions. The substantial results are deriving the optical theorem for the T -scattering operator and, as a
consequence, deriving a formula for collective extinction cross section of inclusion ensemble, where only the first
inclusion of the chain is irradiated by an incident narrow spin-wave beam. From this formula it can be shown that
only irradiated inclusion makes a direct contribution in the collective extinction cross section of the total number
of inclusions. In this case the direct summarized contribution of all the other inclusions from the chain into the
spin-wave scattering is invisible; we call such phenomenon the dark mode. Applying a one-multipole and closest
neighbor coupling approximation, we reveal a regime of distant resonant transfer for spin-wave excitation along
the linear chain of an essentially big but finite number of particles with the dark mode. Because we also found
a resonant mechanism of filtering this mode from radiation losses, the revealed regime shows that at resonant
conditions the linear chain of magnetic inclusions can play the role of a spin-wave micro-waveguide, which
transfers a signal over a big distance in a form of the dark mode, where the controllable level of radiation losses
can tend to reach nearly zero values.
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I. INTRODUCTION

Investigations of various magnetic micro- and nanostruc-
tures as potential candidates for spintronics and magnetic logic
devices have became a hot topic recently [1–7]. In particular,
intensive studies of various magnetic structures are performed
in order to understand properties of perspective materials
for above mentioned applications. This, in turn, requires the
study of important physical phenomena related to spin-wave
dynamics in magnetic materials and especially in micro- and
nanostructured magnetic films. Spin-wave dynamics is very
often related to properties of spin-waves propagation in con-
fined magnetic structures or in arrays of magnetic dots, stripes,
etc. [8–11]. There are various types of magnetic periodic
structures, referred to as magnonic crystals (MC) [12,13]
which are suitable for the investigation of propagating in the
spin waves with the idea of an information processing and
logics. These MC can be arrays of holes (antidots) etched in
yttrium-iron-garnet (YIG) films [14,15], dynamic MC [16],
and other patterned films [17–19]. The main manifestation
of a magnetic film patterning in a spin-wave spectrum is the
appearance of wave band structure within the wave spectrum.
The properties of the spin-wave band structure can be very
complicated and can be governed by variations of external
parameters, e.g., an external magnetic field and particularly
by a metallization of the structure [20,21]. However, in many
of the cited works investigations of interaction of waves with
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single inhomogeneity in periodic structures are usually left
behind consideration. Basically, only the collective influence
of magnetic structure at the propagating wave properties is
taken into account. The problem of spin-wave scattering by an
infinite set of magnetic or nonmagnetic inclusions (cylindrical
pillars) embedded in a ferromagnetic thin film (matrix) was
considered recently [22]. It was shown that under certain
conditions spin-wave edge modes are excited around these
inclusions that have nonreciprocal character of propagation
with respect to external magnetic field saturating the ferro-
magnetic matrix and inclusions. Furthermore, investigations
of spin-wave edge modes became very popular topic due to
the prediction of their existence in various magnetic nanostruc-
tures such as ferromagnetic islands and/or circular magnetic
thin rings or circular disks, or semi-infinite arrays of dipole
coupled magnetic nanopillars [23–27]. Most probably this
interest exists due to the analogy with the existence of electrical
current edge states in systems with quantum Hall effect [2].
As it has been mentioned, investigations of a spin-wave
propagation in MC or other periodic magnetic structures were
performed when these structures were considered as an infinite
set of periodic perturbations located along the spin-wave
propagation path. On the other hand, it is interesting to study
and important to understand how spin waves are scattered
by a finite array of perturbations located in a ferromagnetic
matrix along the propagation path. In particular, such study has
been performed for electromagnetic waves within the visible
frequency range [28]. Due to the fact that low-dimensional
clusters of microsized nonresonating dielectric particles can
possess a specific space group resonance [29,30], an or-
dered array of similar resonant particles can support bound
modes with an extremely high quality factor. In our recent
paper [31] a general theory was developed of forward volume
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magnetostatic spin-wave (FVMSWs) multiple scattering by a
finite two-dimensional (2D) ensemble of cylindrical magnetic
inclusions in a ferromagnetic matrix metallized from both
sides. As it turned out, such a finite number of magnetic
inclusions arranged periodically along a circle can have
spin-wave eigenmodes and can perform as a specific micro
spin-wave resonator with a high value of the quality factor. This
micro resonator can be considered as an element of a magnonic
circuit device. Another element of a magnonic circuit device,
which can play the role of a micro spin-wave waveguide, is
the linear finite array (chain) of magnetic inclusions embedded
into the ferromagnetic matrix. The physical properties of this
specific micro spin-wave waveguide is the subject of our
current paper.

The first problem in the study of the subject is to show
that spin-wave excitation can be transferred along a linear
chain over a big distance. The second one is the need to
show that the model of discrete waveguide for spin waves
can give the possibility to transfer information with as low
losses as possible. The first physical problem arising in the
study of the spin-wave excitation transfer along a linear chain
of magnetic inclusions is solved in the current paper easily. In
doing so we apply to the set of self-consistent equations [31] for
spin-wave multiple scattering partial amplitudes an iterative
method, using as a starting point one-multipole scattering
and closest neighbor wave interaction approach. In this way
we obtain physically transparent analytical expressions for
scattering partial amplitudes of the spin-wave excitation trans-
fer along a linear chain of inclusions, similar to those noted
by Rayleigh [32] in his discrete model of string transverse
oscillations and known in the theory [33] of electrical filter
circuits as combinations of capacitors, inductors, and resistors.
With the aid of these analytical expressions in the current
paper we show that the spin-wave excitation can have resonant
transfer over a big distance along a linear chain with the big
number of magnetic inclusions. The second physical problem
is closely connected with the productive analytical method
evaluating the total amount of spin-wave radiation scattered by
inclusions. We solve this problem with an idea borrowed from
optics [34] about an extinction cross section characterizing the
incident spin-wave energy loss due to scattering and possible
absorption by the linear chain inclusions. We use this idea
in the study of the forward volume magnetostatic spin-wave
multiple scattering by magnetic inclusions embedded inside
the ferromagnetic matrix metallized from both sides. We solve
the magnetostatic Walker equation [35], that was used in
our recent paper [31], by applying the quantum mechanical
type T -scattering operator approach, following the quantum
mechanical case [36–38]. Our basic result is proving the optical
theorem for the T -scattering operator, which describes the
spin-wave multiple scattering by magnetic inclusions, and
deriving a formula for collective extinction cross section of
spin waves by a linear chain of inclusions. The derived formula
appears to be especially productive in the case when the
incident spin-wave beam irradiates only the first inclusion
of the chain. In this particular case the formula shows that
only directly irradiated inclusion makes a contribution in
collective extinction cross section despite the fact that the total
number of inclusions can be big; that makes the summarized
contribution of all other inclusions in the spin-wave scattering

to be invisible (so called the dark mode). It is valuable to note
that we find a resonant mechanism of filtering this mode from
radiation losses, transforming thereby the finite linear chain of
magnetic inclusions into the waveguide for spin waves, where
a controllable level of radiation losses can reach nearly zero
values.

The paper consists of two main parts, Secs. II and III.
Section II is devoted to general theory of the T -scattering
operator method for FVMSWs and includes eight subsections.
In subsections A and B Hermiticity property of Walker
equation is verified and the T -scattering operator for this
equation is introduced. In addition to subsection B the optical
theorem for T -scattering operator is proven. In subsection C
we transit from a three-dimensional (3D) problem to a two-
dimensional (2D) problem for magnetostatic potentials of spin
waves by using the expansion along transversal eigenmodes
of homogeneous matrix. The extinction and scattering cross
sections are also defined in this subsection. In subsection D the
defined extinction and scattering cross sections are presented
in terms of spin-wave scattering amplitude similar to optics.
The spin-wave scattering amplitude is written in terms of
dynamic magnetization displacement current excited inside an
inclusion by spin-wave scattering. In subsection E an analogy
to scattering Watson composition rule for the T -scattering
operators of particles is formulated in the case of magnetic
inclusion ensemble. Subsection F includes most principal
theoretical results concerning extinction cross section for the
case of incident narrow spin-wave beam. Namely in this
subsection the formula for collective extinction cross section
is obtained, which leads to a notion of specific spin-wave dark
mode. In subsection G we introduce the self-consistent spin-
wave partial scattering amplitudes and find their connection
with dynamic magnetization displacement currents excited
inside inclusions by spin-wave scattering. Section III aims
to apply the general results of the preceding Section II to
study spin-wave excitation distant transfer with a dark mode
along a linear chain of magnetic inclusions and includes
three subsections. In subsection III A the closest neighbor
interaction approximation is applied to obtain the analytical
solution of the set of equations for partial multiple scattering
amplitudes describing spin-wave excitation transfer along a
linear chain of magnetic inclusions. Subsection III B analyzes
resonant values of inclusions coupling parameter which are
most interesting from the point of view of distant spin-wave
excitation transfer. Subsection III C translates the resonant
values of coupling parameter found in the preceding subsection
on spin-wave frequencies using Landay-Lifshitz dispersion
equations for tensor magnetic susceptibilities of ferromagnetic
matrix and magnetic inclusions. Section IV concludes the
paper. Appendix A consists of some details with respect to
incident narrow spin-wave beam.

II. BASIC PROPERTIES OF T -SCATTERING OPERATOR
FOR FVMSW

A. Hermiticity of Walker equation for FVMSW inside
ferromagnetic matrix with inclusions

We consider a problem of FVMSW propagation in the
ferromagnetic thin film (matrix) containing the finite 2D array
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FIG. 1. The ferromagnetic film with linear chain of cylindrical
ferromagnetic inclusions.

of magnetic nonintersected cylindrical inclusions (Fig. 1),
considering the film’s and inclusions’ surfaces z = 0 and z = d

to be metallized. We start as in Ref. [31] with the Maxwell
equations in the magnetostatic approximation ∇�b = 0 and
∇ × �h = 0 for magnetic induction �b and magnetic field �h
vectors for the spin wave. The magnetic field can be written in
terms of magnetostatic potential � according to �h = −∇�.

The magnetic induction vector is defined by the relation �b =
↔
μ�h where the antisymmetric tensor (dyadic)

↔
μ of magnetic

susceptibility [35] has a form

↔
μ =

⎡
⎣ μ0 iμa 0

−iμa μ0 0
0 0 1

⎤
⎦. (1)

The components μ0 and μa in Eq. (1) are evaluated according
to the Landay-Lifshitz theory and defined by spin-wave
angular frequency ω, the external uniform magnetic field Hext

applied along the z axis to the matrix with different values of
saturation magnetizations M0

s and M1
s inside the homogeneous

part of the film and inclusions, respectively. Ignoring the
thermal dissipations [35], we can consider mentioned diagonal
and off diagonal components of magnetic susceptibility dyadic
to be real value functions of spatial variables x,y,z inside the
volume of the film 0 < z < d so that the dyadic of magnetic
susceptibility in Eq. (1) is a Hermitian matrix that is invariable

to conjugation
↔
μ

+ = ↔
μ. Substitution of the dyadic Eq. (1) in

the equation for magnetic induction gives in magnetostatic
approximation the Walker equation for our problem

L� = ∂x(μ0∂x�) + ∂y(μ0∂y�)

+ i[∂x(μa∂y�) − ∂y(μa∂x�)] + ∂2
z � = 0. (2)

One can verify that the Walker operator L defined by Eq. (2) is
Hermitian operator L+ = L on functions �(x,y,z) defined in-
side the matrix with boundary conditions ∂z�(x,y,z)|z=0,d =
0 and a scalar product

(�1,�2) =
∫ ∫

dxdy

∫ d

0
dz�∗

1 (x,y,z)�2(x,y,z). (3)

Next we suppose that the magnetic susceptibility dyadic
↔
μ(x,y) has values

↔
μ

0
and

↔
μ

1
inside the matrix and inclu-

sions, respectively, denoting δ
↔
μ(x,y) = ↔

μ(x,y) − ↔
μ

0
the de-

viation of ferromagnetic matrix magnetic susceptibility with
inclusions from magnetic susceptibility of the homogeneous
matrix. The Walker operator we write as sum L = L0 + L1

of unperturbed operator L0 = L|↔
μ→

↔
μ0

and perturbation L1 =

L|↔
μ→δ

↔
μ

. The unperturbed operator describes the magnetostatic
spin-wave propagation inside the homogeneous matrix, and
perturbation takes into account the spin-wave scattering
by inclusions. We write (1/μ0

0)L1� = −U (x,y)� and call
U (x,y) the magnetostatic scattering operator of spin waves.
This operator is Hermitian U+ = U . Now the Walker Eq. (2)
takes a form(

∂2
x + ∂2

y

)
� + 1

μ0
0

∂2
z � − U� = j (x,y,z), (4)

where a source term j (x,y,z) will be introduced additionally.
Note that both the scattering operator and the magnetic
susceptibility deviation δ

↔
μ(x,y) do have zero values outside

the inclusions’ volume.

B. T -scattering operator and optical theorem

We denote the Green function G0(�r,�r ′), where the vector
�r = (x,y,z) is a point in 3D coordinate space. The Green
function for unperturbed Walker Eq. (4) satisfies the equation(

∂2
x + ∂2

y + 1

μ0
0

∂2
z

)
G0(�r,�r ′) = δ(�r − �r ′),

∂zG0(�r,�r ′)|z=0,d = 0. (5)

The solution to differential Walker Eq. (4) is reduced to integral
equation

�(�r) = �0(�r) +
∫

G0(�r,�r ′)U (�r ′)�(�r ′)d�r ′, (6)

where the inhomogeneous term on the right hand side (RHS)
is the magnetic potential of the incident spin wave

�0(�r) =
∫

G0(�r,�r ′)j (�r ′)d�r ′. (7)

The T -scattering operator T (�r,�r ′) for magnetostatic spin
waves is introduced by writing the solution to integral Eq. (6)
in the form

�(�r) = �0(�r) +
∫

G0(�r,�r ′)T (�r ′,�r ′′)�0(�r ′′)d�r ′′ (8)

and satisfies the integral Lippmann-Schwinger (LS) equation

T (�r,�r ′) = U (�r)δ(�r − �r ′) + U (�r)
∫

G0(�r,�r ′′)T (�r ′′,�r ′)d�r ′′.

(9)

The operator T (�r,�r ′) is dependent on both its arguments and
has nonzero values only inside the inclusions.

On the base of Eqs. (6) and (8) it is useful to introduce a
quantity

P (�r) = U (�r)�(�r) =
∫

T (�r,�r ′)�(�r ′)d�r ′ (10)

that has a physical meaning of dynamic magnetization
displacement current excited inside inclusions by spin-wave
scattering. In terms of this current the magnetic field potential
scattered by inclusions �sc(�r) is written from Eqs. (6) and (8)
as

�sc(�r) =
∫

G0(�r,�r ′)P (�r ′)d�r ′. (11)
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Because of the scattering potential U hermiticity one can
derive from LS Eq. (9) the optical theorem for T -scattering
operator in the form

T (�r,�r ′) − T ∗(�r ′,�r) =
∫

d�r ′′
∫

[G0(�r ′′,�r ′′′) − G∗
0(�r ′′′,�r ′′)]

× T ∗(�r ′′,�r)T (�r ′′′,�r ′)d�r ′′′. (12)

This is a fundamental result of the current paper.

C. Expansion along matrix transversal eigenmodes

Now we consider vector �r in cylindrical coordinates
( �ρ,z), by translating 2D Cartesian coordinates (x,y) into
polar coordinates (ρ,φ). With this transformation we intro-
duce a complete and orthogonal set �n(z),n = 0,1,2, . . . of
homogeneous film (matrix) transversal eigenmodes defined
by

�n(z) = bn cos
πnz

d
, b0 = 1√

d
,bn =

√
2

d
,n = 1,2, . . .

(13)

One can verify that all quantities in Eqs. (5)–(12) can be
easily expanded along the set of transversal eigenmodes of
Eq. (13). For example the 3D unperturbed Green function
G0(�r,�r ′) satisfying the differential Eq. (5) can be expanded as

G0(�r,�r ′) =
∞∑

n=0

G(0)
n ( �ρ − �ρ ′)�n(z)�n(z′), (14)

where 2D unperturbed Green function G(0)
n ( �ρ) is evaluated

directly in the form

G(0)
n ( �ρ) = 1

4i
H

(1)
0

(
k0
rnρ

)
. (15)

On the RHS of this equation H (1)
m (u) denotes the Hankel

function of the first kind and order m = 0, and k0
rn =√

−1/μ0
0(πn/d) is a component of the spin-wave wave vector

along the (x,y) plane inside the homogeneous matrix for
the nth transversal mode. Equation (11) for the magnetic
field potential �sc(�r) scattered by inclusions in terms of 2D
quantities takes the form

�scn( �ρ) =
∫

G(0)
n ( �ρ − �ρ ′)Pn( �ρ ′)d �ρ ′, (16)

where a 2D current Pn( �ρ) is obtained by transformation of the
second equation from Eqs. (10) and is written as

Pn( �ρ) =
∫

Tn( �ρ, �ρ ′)�0n( �ρ ′)d �ρ ′. (17)

On the RHS of Eq. (17) Tn( �ρ, �ρ ′) denotes the 2D scattering
operator which is connected with the 3D scattering operator
T (�r,�r ′) by transformation similar to one in Eq. (14). The
quantity �0n( �ρ) appears in expansion of the magnetic potential
of the incident spin wave in Eq. (7) along transversal
eigenmodes.

Applying this expansion along transversal eigenmodes to
the optical theorem Eq. (12) gives

1

2i
[Tn( �ρ, �ρ ′) − T ∗

n ( �ρ ′, �ρ)]

= − 1

8π

∫
2π

T ∗
n

(
k0
rn�s, �ρ

)
T ∗

n

(
k0
rn�s, �ρ ′)d�s. (18)

On the RHS of this equation for 2D scattering operator
Tn( �ρ, �ρ ′) a 2D Fourier transform is used

Tn(�k, �ρ ′) =
∫

e−i�k �ρTn( �ρ, �ρ ′)d �ρ, (19)

where �s denotes a 2D unit vector. With Fourier transformation
Pn(�k) of the current Pn( �ρ) one can rewrite the optical theorem
Eq. (18) as follows:

Im

[∫
�∗

0n( �ρ)Pn( �ρ)d �ρ
]

= − 1

8π

∫
2π

∣∣Pn

(
k0
rn�s

)∣∣2
d�s. (20)

Obtained relation is a basic optical theorem for magnetostatic
spin waves under consideration. It is useful to rewrite this
relation in a form

Cext = Csc, (21)

where Cext and Csc are cross sections of extinction and
scattering, respectively, for spin-wave scattering by inclusions.
These values are defined by relations

Cext = − 1

k0
rn

Im

[∫
�∗

0n( �ρ)Pn( �ρ)d �ρ
]
, (22)

Csc = 1

8πk0
rn

∫ ∣∣Pn

(
k0
rn�s

)∣∣2
d�s. (23)

In the next sections we show that definitions in Eqs. (22)
and (23) coordinate with notions of extinction and scattering
cross sections similar to optics [34] at the study of 2D scattering
of light when the cross sections have dimensions of a length.

D. Spin-wave scattering amplitude

To clarify the physical meaning of the optical theorem
of Eqs. (20)–(23) one can consider the spin-wave magnetic
field potential �scn(ρ) Eq. (16) scattered by single inclusion
centered at 2D point �R1 = 0 (Fig. 2) for observation point �ρ
placed in the far wave zone of an inclusion.

Applying the asymptotics for Hankel function [39] with big
argument’s value we obtain

�scn( �ρ)|ρ→∞ ≈ e−iπ/4

√
2

πk0
rnρ

eik0
rnρT (�s),

T (�s) = 1

4i
Pn

(
k0
rn�s

)
. (24)

Similarly to optics’ methods [34] the quantity T (�s) can be
called the scattering amplitude in the direction with unit
vector �s = �ρ/ρ. For the special case of plane spin-wave
incident magnetic potential �0n(ρ) = eik0

rns0 propagating in the
direction of unit vector �s0 the optical theorem in Eq. (20) is
rewritten as

ReT (�s0) = − 1

2π

∫
2π

|T (�s)|2d�s. (25)
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FIG. 2. The sketch showing two ferromagnetic inclusions with
their local coordinate systems relative to the laboratory’s coordinate
system.

That is a traditional form of the optical theorem in optics [34].
To be consistent with this tradition, the extinction and
scattering cross sections of spin waves in Eqs. (22) and (23)
are written in a usual form

Cext = − 4

k0
rn

Re[T (�s0)],Csc = 2

πk0
rn

∫
2π

|T (�s)|2d�s. (26)

In this subsection we considered the optical theorem in
Eqs. (20)–(23) for the case of plane incident spin-wave
scattering by a single inclusion. The general optical theorem
takes the most interesting form when the plane wave and
especially narrow incident spin-wave beam is scattered by an
ensemble of inclusions.

E. Watson composition rule for T -scattering operators

Consider the case of N inclusions centered in points with
2D coordinates �Rj (j = 1,2, . . .) (Fig. 2). The 2D T -scattering
operator for an ensemble of N inclusions is evaluated with the
help of the Watson composition rule [37] as follows

Tn( �ρ, �ρ ′) =
N∑

j=1

T (j )
n ( �ρ, �ρ ′), (27)

where the self-consistent 2D T -scattering operators T
(j )
n ( �ρ, �ρ ′)

satisfy the set of equations

T (j )
n ( �ρ, �ρ ′) = T (0)

n ( �ρ − �Rj , �ρ ′ − �Rj )

+
∫

d �ρ ′′
∫

d �ρ ′′′T (0)
n ( �ρ − �Rj , �ρ ′′ − �Rj )

×G(0)
n ( �ρ ′′ − �ρ ′′′)

N∑
j �=j ′=1

T (j ′)
n ( �ρ ′′′, �ρ ′). (28)

On the RHS of this set T (0)
n ( �ρ − �Rj , �ρ ′ − �Rj ) denotes the 2D

T -scattering operator of a single inclusion centered in �Rj . The
Eqs. (28) set shows, in particular, that a self-consistent 2D
T -scattering operator T

(j )
n ( �ρ, �ρ ′) of a j th inclusion is confined

in dependence on its first argument ρ inside the j th inclusion.
According to Eq. (17) the 2D current Pn( �ρ) in the case of N

inclusions takes a form of the sum

Pn( �ρ) =
N∑

j=1

P (j )
n ( �ρ),

(29)

P (j )
n ( �ρ) =

∫
T (j )

n ( �ρ, �ρ ′)�0n( �ρ ′)d �ρ ′,

where P
(j )
n ( �ρ) is a self-consistent current excited inside a j th

inclusion. The scattered spine-wave field in Eq. (16) takes the
form of the sum of self-consistent fields �

(j )
scn( �ρ) scattered by

different inclusions

�scn( �ρ) =
N∑

j=1

�(j )
scn( �ρ),

�(j )
scn( �ρ) =

∫
G(0)

n ( �ρ − �ρ ′)P (j )
n ( �ρ ′)d �ρ ′. (30)

Transferring the point �ρ in the far wave zone of all N inclusions
and writing P

(j )
n ( �ρ) = P̂

(j )
n ( �ρ − �Rj ) one obtains similarly with

the case in Eq. (24) of single inclusion asymptotics

�(j )
scn( �ρ)|ρ→∞ ≈ e−iπ/4

√
2

πk0
rnρ

eik0
rnρT (j )(�s),

(31)

T (j )(�s) = 1

4i
e−ik0

rn�s �ρP̂ (j )
n

(
k0
rn�s

)
,

where 2D Fourier transform P̂
(j )
n (k0

rn�s) is evaluated similarly
with Eq. (19). Now the general optical theorem in Eqs. (20)–
(23) takes for the case of incident plane spin-wave scattering
by ensemble of inclusions the form similar to a single inclusion
case in Eqs. (25) and (26), with putting

T (�s) =
N∑

j=1

T (j )(�s). (32)

As we see in the case of incident plane spin-wave scattering
by an inclusion ensemble the general optical theorem of
Eqs. (20)–(23) takes a traditional in optics form considering
2D light scattering. But in the case of incident narrow beam
spin-wave scattering our general optical theorem gives in some
sense an unexpected and important result for distant spin-wave
excitation transfer along a linear chain of inclusions in the form
of an invisible or dark mode.

F. Incident narrow beam spin-wave scattering

In this part we consider propagation of the incident spin-
wave narrow beam that irradiates mostly the first inclusion and
is scattered by the linear chain of inclusions. The geometry of
this case is depicted in Fig. 1, where the linear chain is located
along the x axis and the incident wave is propagating along
the direction of the unit vector �s0 = ŷ of the y axis irradiating
the first inclusion j = 1 located in the �R1 = 0 point of the film
(details concerning such wave beam propagation presented in
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Appendix A). In this case we have

∫
�∗

0n( �ρ)Pn( �ρ)d �ρ ≡
∫

�∗
0n( �ρ)

N∑
j=1

P̂ (j )
n ( �ρ − �Rj )d �ρ

≈
∫

�∗
0n( �ρ)P̂ (1)

n ( �ρ)d �ρ ≈ P̂ (j )
n

(
k0
rn�s0

)
.

(33)

The last evaluation in Eqs. (33) was presented because the
incident beam �0n(ρ) has the approximate form of a plane
wave inside the first inclusion. Substituting this last evaluation
in Eq. (22) for a general definition of extinction cross section
gives

Cext ≈ − 1

k0
rn

ImP̂ (1)
n

(
k0
rn�s0

) = − 4

k0
rn

ReT (1)(�s0), (34)

where the scattering amplitude T (1)(�s0) is defined in Eqs. (31).
The major property of Eq. (34) is that the extinction cross
section of the linear chain in the case of an incident narrow
spin-wave beam irradiating only the first inclusion formally
coincides with the extinction cross section in Eq. (26) for
a single inclusion. Thus only irradiated inclusion makes a
direct contribution in collective extinction cross section despite
the total number of inclusions in the linear chain that makes
the direct summarized contribution of all other inclusions in
spin-wave scattering almost invisible; we call this the dark
mode.

G. Self-consistent spin-wave multiple scattering partial
amplitudes

In the case of an incident spin-wave multiple scattering by
ensemble of N inclusions the total scattered spin-wave field
potential �scn( �ρ) is represented as the sum of N self-consistent
field potentials �

(j )
scn( �ρ) scattered by different inclusions. One

way to write out self-consistent fields scattering by different
inclusions is in terms of self-consistent spin-wave multiple
scattering partial amplitudes Bjm [31].

Spin-wave potential scattered by j th inclusion is written in
the form

�(j )
scn(ρj ,φj ) =

∞∑
m=−∞

BjmH (1)
m

(
k0
rnρj

)
eimφj . (35)

This formula is written in the local coordinate system of the
j th inclusion (Fig. 2), with vector �ρj = �ρ − �Rj . Transferring
the point �ρ in the far wave zone of all N inclusions one can
obtain for the Eq. (35) a far wave zone asymptotic similar
to the one in Eqs. (31). The comparison enables one to get
relations

∞∑
m=−∞

Bjmeim(φj −π/2) = 1

4i
P̂ (j )

n

(
k0
rn�s

)
. (36)

This is the relation between multiple scattering partial ampli-
tudes Bjm and 2D Fourier transformation P̂

(j )
n (k0

rn�s) of currents
excited inside inclusions. Equations (36) enable us to rewrite
formulas for the extinction and the scattering cross sections for
spin waves in terms of multiple scattering partial amplitudes.

In particular, the formula in Eq. (34) takes a form

Cext = − 1

k0
rn

Re
∞∑

m=−∞
B1m. (37)

Corresponding expression for scattering cross section is given
by

Csc = 2

πk0
rn

∫
2π

∣∣∣∣∣∣
N∑

j=1

eik0
rn�s �Rj

∞∑
m=−∞

Bjmeim(φj −π/2)

∣∣∣∣∣∣
2

d�s (38)

and should coincide by value with Eq. (37) due to the extinction
theorem Cext = Csc. Multiple scattering partial amplitudes
satisfy the set of equations that was derived in previous
work [31] under the condition of a plane spin-wave incidence.
For the case of narrow beam spin-wave incidence similar sets
of equations can be derived from the Watson composition rule
of Eq. (28)

Bjm = B(j )
m + B

(j )
m

Âjm

N∑
j �=j ′=1

∞∑
l=−∞

G
jj ′
m−lBj ′l , (39)

with matrix kernel

G
jj ′
m−l = Hl−m

(
k0
r Rjj ′

)
ei(l−m)arg �Rjj ′ , (40)

where argRjj ′ denotes the angle between the vector Rjj ′ and
the x axis. The quantity B

(j )
m denotes the scattering partial

amplitude of the j th single isolated inclusion. The ratio
B

(j )
m /Âjm = T

(j )
m in Eq. (39) defines the scattering matrix

T
(j )
m of the j th single inclusion and depends only on the

inclusion’s parameters. The quantities Âjm are coefficients
for the expansion along Bessel functions of the incident
spin-wave beam in local coordinate system of the j th inclusion.
In this case we are considering only the excitation of the
first inclusion, therefore Âjm = 0 for j �= 1 (Appendix A).
The scattering matrix of a single inclusion is evaluated in
papers [22,31] and can be obtained by solution of the integral
Lippmann-Schwinger Eq. (9).

This subsection concludes the consideration of general
properties of T -scattering operator for multiple magneto-
static spin-wave scattering by magnetic inclusions inside
the ferromagnetic matrix. In Sec. III the general properties
of T -scattering operator are applied to the problem of the
spin-wave excitation transfer along a linear chain of magnetic
inclusions. In this case the principal role will play the formula
in Eq. (37) for the extinction cross section of a linear chain
when an incident narrow spin-wave beam irradiates only the
first inclusion.

III. SPIN-WAVE EXCITATION TRANSFER BY THE DARK
MODE ALONG A LINEAR CHAIN OF MAGNETIC

INCLUSIONS

A. Closest neighbor interaction approximation

The set of Eqs. (39) and (40) for the partial multiple
scattering amplitudes in one-multipole approximation, where
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m is fixed, after normalization Bjm = T
(j )
m B̂jm takes the form

B̂jm −
N∑

j �=j ′=1

a
(m)
jj ′ B̂j ′m = Âjm, a

(m)
jj ′ = H0(krRjj ′)T (j ′)

m .

(41)

In Eqs. (41) the quantity a
(m)
jj ′ denotes the coupling parameter

of inclusions numbered j and j ′, with Rjj ′ being the distance
between their centers. The scattering matrix T

(j )
m of the single

inclusion is independent from inclusion’s number j if all
inclusions have identical geometrical and material properties.
Further we use another normalization of partial multiple

scattering amplitudes ˆ̂Bjm = B̂jm/Â1m. The extinction cross
section from Eq. (37) in one-multipole approximation takes a
form

Cext = − 1

k0
rn

Re(TmÂ1m
ˆ̂B1m). (42)

Defining the extinction cross section of single inclusion as
C(1)ext = −(4/k0

rn)ReTm and putting Â1m ≈ 1 we present the
ratio Cext/C(1)ext in a form

Cext

C(1)ext
= ReFN − ImTm

ReTm

ImFN, (43)

where the collective extinction factor FN is defined by

FN = ˆ̂B1m. (44)

In order to solve Eqs. (41) analytically we apply the
closest neighbor interaction approximation putting ajj ′ ≈ 0 if
|j − j ′| > 1. With such approximation the matrix of Eq. (41)
set becomes the Jacobi matrix [40] and one can use the
Rayleigh’s like solution [32] (the index m is omitted)

ˆ̂Bj = 2(−1)j−1 cos θ
sin[(N + 1 − j )θ ]

sin[(N + 1)θ ]
,

cos θ = − 1

2a12
. (45)

In Eq. (45) a complex value θ = θ ′ + iθ ′′ satisfies the second
equation in Eq. (45), which has the meaning of a dispersion
equation. It is interesting to remark that a solution similar
to Eqs. (45) one can find in the theory of electrical filter
circuits [33]. Substituting the first Eq. (45) in Eq. (44) gives
the expression for collective extinction factor FN

FN = 2 cos θ
sin Nθ

sin(N + 1)θ
. (46)

B. Resonant values of coupling parameter

Now we address the investigation of the distant transfer
of spin-wave excitation along the linear chain of coupled
magnetic inclusions. The most important point appears to be
the resonant case when the imaginary part of the coupling
parameter a12 = a′

12 + ia′′
12 becomes equal to zero

a′′
12 = 0. (47)

As study shows, under this condition it is possible to determine
separate cases of small 2|a′

12| < 1 and big 2|a′
12| � 1 values

of the real part of the coupling parameter a′
12 in the dispersion

Eq. (45).
In these two cases solutions of the dispersion Eq. (45) are

θ ′ = 0, cosh θ ′′ = 1

2|a′
12|

(a′′
12 = 0,−1 < 2a′

12 < 0), (48)

and

θ ′′ = 0, cos θ ′ = − 1

2a′
12

(a′′
12 = 0,2a′

12 < −1). (49)

According to Eq. (48) the imaginary part θ ′′ of complex
variable θ changes in a semi-infinite interval 0 � θ ′′ < ∞,
and according to Eq. (49) the value θ ′ changes in an interval
0 � θ ′ < π/2. If resonant conditions a′′

12 = 0 and a′
12 →

−0.5 ± 0 are met, then both values satisfy conditions θ ′′ → 0
and θ ′ → 0 in both Eqs. (48) and (49). Therefore, Eqs. (45)
and (46) lead to the same limiting formulas

ˆ̂Bj → (−1)j−12

(
1 − j

N + 1

)
,

FN → 2

(
1 − 1

N + 1

)
,θ → 0. (50)

On the other hand, if condition θ ′′ �= 0 or even θ ′′ → ∞ is
satisfied, then Eqs. (45) and (46) give

ˆ̂Bj → (−1)j−1e−(j−1)θ ′′
,FN → 1. (51)

The limiting formulas of Eq. (50) describe the case of
the distant resonant transfer of spin-wave excitation along
the linear chain of coupled inclusions at resonant value
of the coupling parameter a′

12 → −0.5, which has a linear
dependence of excitation decrease on the number of particles.
The collective extinction factor according to Eqs. (50) is
equal to approximately FN ≈ 2 for N 
 1; the fact that
FN �= 1 shows some indirect effect of particles influence
with numbers j > 1 on the collective extinction factor via

influence on self-consistent scattering amplitude ˆ̂B1 in the first
inclusion. The formulas of Eq. (51) describe a short transfer
of spin-wave excitation along the chain, with exponential

FIG. 3. Curves presenting the dependence of the resonant fre-
quency on the inclusion radius R at fixed ratio R12/R, when
a′′

12 = 0,a′
12 � −0.5.
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FIG. 4. Linear decay of scattering amplitudes along the linear chain of inclusions. �res = 1.007, θ ′′ = 4.4 10−6,R = 6.9 μm,R12 =
4R, k0

r R = 0.38.

decrease of excitation, and the collective extinction factor has
physically more understandable value FN → 1.

In Fig. 3 we present dependencies of normalized resonance
frequency �res = ωres/ωH on geometrical parameters R and
R12 (Fig. 1) of the linear chain when resonance conditions in
Eqs. (49) for coupling parameter are satisfied. As usually,
ωH denotes the ferromagnetic resonance frequency of the
ferromagnetic film. All curves in Fig. 3 are obtained by
numerical solution of the dispersion Eq. (45) under additional
condition θ ′′ → 0 in accordance with first Eqs. (49). All calcu-
lations where performed for the following material parameters:
external magnetic field Hext = 5kOe, saturation magnetization
of the film and inclusions ferromagnetic materials M0

s =
1620Oe and M1

s = 1740Oe, and film thickness d = 10 μm.
The left boundary linear curve in Fig. 3 is related to the

case (50) and presented in Fig. 4. Parameters presented by
this curve can be approximately described by the relation
(�res − 1)R12/R = const . Other data points in Fig. 3 outside
the curve, which represent data for linear decay of scattering
amplitudes, depict the case of distant transfer with conditions
from Eqs. (47) and (49). This case is represented by Fig. 6,
where scattering amplitudes and collective extinction factors
are described by general equations (45) and (46). Details
of oscillation type of transfer will be discussed in the next
subsection.

The calculation for the resonant case with small coupling
parameters 2|a′

12| < 1, a′′
12 = 0 shows that the condition θ ′′ →

0 cannot be met. This means that partial scattering amplitudes
will decrease exponentially [Eq. (51)], and the signal will
not transfer for a big distance as it is shown in Fig. 5. The
deviation in a behavior of the collective extinction factor FN

in Fig. 5 from its approximation in Eqs. (51) is explained by
not sufficiently big value of θ ′′ = 0.43.

C. Dark mode filtering from radiation losses

In the preceding subsection we considered the distant
resonant transfer of spin-wave excitation in the form of the
dark mode under resonant condition, when the value of the
imaginary part of the coupling parameter is equal to zero
Eq. (47) and obtained, in particular, formulas for the limiting
case in Eqs. (50) under an additional condition on the real
part of the coupling parameter in the form a′

12 → −0.5. As it
was stated, Eqs. (50) give for collective extinction factor the
approximate value FN ≈ 2. Here we will note that mentioned
resonant conditions enable one to get substantially less value
for the collective extinction factor. It is possible if we try to
tend to zero the sine function in the numerator of the ratio in
Eq. (46).

We turn to Eqs. (45) and (46) for self-consistent scattering

amplitudes ˆ̂Bj of inclusions and collective extinction factor

FIG. 5. Exponential decay of scattering amplitudes along the linear chain. �res = 1.004, θ ′′ = 0.43, R = 7 μm, R12 = 3R, k0
r R = 0.3.
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FIG. 6. Illustrations of the behavior of scattering amplitudes ˆ̂Bj of inclusions depending on the inclusion number j for the case N = 24
(a), N = 23 (b), and collective extinction factor FN (c) of a linear chain under condition of dark mode filtering from radiation losses.

FN , considering these equations under resonance conditions
in Eqs. (49) when a′′

12 = 0 and a′
12 = −0.5 − �a′

12, with
�a′

12 � 0 being a small positive quantity. In this case from
solution of the dispersion Eq. (45) we have θ ′′ = 0 and
θ ′ ≈ 2(�a′

12)1/2. The quantity �a′
12 is dependent on magnetic

and geometrical parameters of the chain. On the assumption
that we are able to choose these parameters in such a way that
the following filtering dark mode from the radiation losses
condition is fulfilled, we get

θ ′ = nπ

N
+ δθ ′,n = 1,2, . . . , (52)

where δθ ′ is the detuning factor. The substitution of Eq. (52)
in Eq. (46) gives

FN = 2

1 + �a′
12

sin Nδθ ′

sin
[

nπ
N

+ (N + 1)δθ ′] . (53)

As one can see at detuning values δθ ′ → 0 the collective
extinction factor value tends to zero FN → 0 and the dark
mode is filtered from radiation losses. Under this condition
the self-consistent scattering amplitudes of coupled inclusions
according to Eq. (45) take the form

ˆ̂Bj = (−1)j
2

1 + �a′
12

sin(j − 1) nπ
N

sin nπ
N

. (54)

In particular at n = 1 and N taking even values we obtain
several values

ˆ̂B2 = ˆ̂BN ≈ 2, ˆ̂B1+N/2 ≈ (−1)1+N/2 1

sin π
N

. (55)

Thus, under condition Eq. (52) of radiation losses filtering with
zero detuning the finite linear chain of magnetic inclusions
plays the role of a waveguide for spin wave without radiation
losses. The formulas in Eqs. (53) and (54) under conditions of
Eq. (52) of radiation losses filtering are illustrated in Fig. 6.

Analyzing Fig. 6 we need to note that the collective
extinction factor value at N = 23,47 becomes as big as
FN ≈ 103, that is caused by a small value of the sine function
in the denominator of the ratio in the Eq. (46) formula and
consequently leads to big values of scattering amplitudes
according to Eq. (45). On the other hand, one can see at
N = 24,48 Fig. 6(a) the extinction factor can have values

down to FN ≈ 10−3 due to the same properties of Eqs. (45)
and (46).

IV. CONCLUSION

We have developed the quantum mechanical type T -
scattering operator approach to study multiple scattering of
the forward volume magnetostatic spin wave by a finite
ensemble of inclusions in a ferromagnetic metallized thin
film. The approach is applied to the problem of spin-wave
excitation transfer along the linear chain of magnetic cylin-
drical inclusions. Substantial results of developed approach
are the deriving of an optical theorem for the T -scattering
operator and, as a consequence, the obtaining of a formula for
collective extinction cross section of the inclusion ensemble,
when only the first inclusion of the chain is irradiated by
the incident narrow spin-wave beam. This formula shows that
only directly irradiated inclusion makes a contribution in the
collective extinction cross section despite that the total number
of inclusions can be big; that makes the direct summarized
contribution of all other inclusions in spin-wave scattering
invisible (dark mode). Applying the developed T -scattering
operator approach to the problem of spin-wave excitation
distant transfer along a linear chain of magnetic inclusions we
found a resonant regime, when excitation propagation along a
linear chain is described by linear decreasing of excitation
depending on the number of inclusions. Corresponding to
this resonant regime collective extinction cross section is
approximately two times bigger than extinction cross section
of single irradiated inclusion in the long chain. Also we found a
resonant mechanism of filtering the dark mode from radiation
losses, that makes the linear chain of magnetic inclusions a
micro-waveguide for spin waves. This waveguide can transfer
information over a long distance in the form of the dark mode
with low radiation losses.
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APPENDIX: FORMING INCIDENT SPIN-WAVE BEAM

In subsection II F we considered the case when the incident
spin-wave narrow beam propagates along the direction of the
unit vector of the y axis and irradiates an inclusion in the film
and is scattered by the linear chain of inclusions aligned along
the x axis (see Fig. 2). This appendix shows that such a way of
incidence is most suitable to irradiate only one inclusion from
the chain.

We consider the incident 2D narrow spin-wave beam
propagation under some angle α to the x axis and aims to
irradiate the first inclusion j = 1 with center �R1 = 0 from
an ensemble of N inclusions (see Figs. 2 and 1). We form
the magnetostatic potential � inc( �ρ) of the incident beam as a
linear combination of plane waves ei�kr �ρ propagating with wave
vectors �kr = kr�s(α), where kr = k0

rn and �s(α) = (cos α, sin α)
is a 2D unit vector in the x,y plane under angles α to xj

axes of all local coordinate systems. These plane waves have
amplitudes f (α) with not zero values in small enough angular
interval �α near α. Further we write

� inc( �ρ) =
∫ α+�α

α−�α

dαf (α)ei�kr �ρ. (A1)

For the convenience the angular variable is changed to α =
α + α′, where α′ is small. The angular amplitude function
f (α′) is written in Gauss form

f (α′) = 1

α0
√

π
e−α′2/α2

0 , (A2)

where α0 is an angular half width of the spin-wave beam. Now
substitution of Eq. (A2) into Eq. (A1) and integration of the
result gives

� inc( �ρ1) ≈ eikr �s(α) �ρ1e−(�s⊥(α) �ρ1)2k2
r α

2
0/4. (A3)

Here on the RHS a unit vector �s⊥ = (− sin α, cos α) is
orthogonal to the unit vector �s(α). In particular the incident
spin-wave beam angular brightness α0 = 2/krR where R is
the radius of an inclusion, with that one can rewrite Eq. (A3)
in the local coordinate system of the first inclusion as

� inc( �ρ1) ≈ eikr �s(α) �ρ1e−(�s⊥(α) �ρ1)2/R2
. (A4)

The obtained formula describes a collimated spin-wave
beam in the form of a plane wave propagating with wave vector
kr�s(α) and spatially modulated in a direction perpendicular to
direction �s(α) of propagation. The spin-wave beam spatial
brightness is defined by the inclusion radius according to
Eq. (A4). We need to present the magnetic potential of
the incident spin-wave beam in the cylindrical coordinates
� inc(ρ1,φ) of the local coordinate system of the first inclusion.
With this aim we write �kr �ρ1 = krρ1 cos(φ1 − α) and use the
plane wave expansion [41] along Bessel functions Jm(u) as

follows

eikrρ1 cos(φ1−α) =
∞∑

m=−∞
imJm(krρ1)eim(φ1−α). (A5)

Substituting Eq. (A5) in the integrand of Eq. (A1) RHS and
performing integration with the amplitude function of Eq. (A2)
gives

� inc(ρ1,φ1) =
∞∑

m=−∞
Â1mJm(krρ1)eimφ1 , (A6)

where

Â1m = ime−imαe−m2/(k2
r R

2). (A7)

It is interesting to note that multipole index module |m| should
not be greater than the wave parameter of inclusion |m| � krR,
according to Eq. (A7).

We generalize Eqs. (A4), (A6), and (A7) for the magnetic
potential of the incident spin-wave beam presentation in the
arbitrary inclusion local coordinate system. The generalization
is performed using a geometrical relation �Rj − �R1 + �ρj = �ρ1

(Fig. 2). The substitution of the relation in Eq. (A4) gives

� inc( �ρj ) ≈ eikr �s(α)( �Rj +�ρj )e−(�s⊥(α)( �Rj +�ρj ))2/R2
. (A8)

In the case of an incident spin-wave beam propagating along
the y axis the angle α = π/2 and Eq. (A8) give

� inc( �ρj ) ≈ eikryj e−(Xj +xj )2/R2
. (A9)

Because |xj | � R inside the j th inclusion on the RHS of
Eq. (A9) becomes exponentially small at |Xj | 
 R the
incident spin-wave beam practically does not radiate the
j th inclusion. In the case of the incident spin-wave beam
propagating along the x axis with angle α = 0 and Eq. (A8)
takes a form

� inc( �ρj ) ≈ eikr (Xj +xj )e−y2
j /R2

. (A10)

According to this equation the incident beam irradiates all
inclusions. The Eqs. (A6) and (A7) are generalized for the
arbitrary inclusion local coordinate system as follows

� inc(ρj ,φj ) =
∞∑

m=−∞
ÂjmJm(krρj )eimφj , (A11)

where

Âjm = ime−imα+ikrXj cos αexp

[
−

(
m + krXj sin α

krR

)2
]
. (A12)

In the case of an incident spin-wave beam propagating
along the y axis (α = π/2) the module of an amplitude
in Eq. (A12) becomes exponentially small under conditions
|Xj | 
 R and |m| � krR. In the case of an incident spin-wave
beam propagating along the x axis (α = 0) the module of
an amplitude in Eq. (A12) is independent of the number of
inclusion.

[1] R. L. Stamps, S. Breitkreutz, J. Akerman, A. V. Chumak, Y.
Otani, G. E. W. Bauer, J.-U. Thiele, M. Bowen, S. A. Majetich,
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