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Spin transport in half-metallic ferromagnets
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We theoretically investigate spin transport in half-metallic ferromagnets at finite temperatures. The side-jump
and skew-scattering contributions to spin Hall conductivity are derived using the Kubo formula. The electron-
magnon interaction causes a finite density of states in the energy gap of the minority-spin band and induces spin
Hall conductivity. We show that spin Hall conductivity is proportional to T 3/2, with T being temperature, and is
sensitive to T . We propose that spin Hall conductivity may be a tool to study the minority-spin state.
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I. INTRODUCTION

Since the discovery of giant magnetoresistance in 1988,
much attention has been paid to the spin transport in the field
of spintronics [1,2]. In particular, a half-metallic ferromagnet,
where the conduction electrons are completely spin polarized,
is regarded as a candidate material for a spin injector in
magnetic memories [3–5]. Although a 100% spin-polarized
ferromagnetic metal has yet to be discovered, high spin
polarization has been observed in some Heusler alloys at room
temperature [5–8]—this makes these alloys an attractive option
for further applications.

The spin polarization of a half-metallic ferromagnet has
been investigated theoretically. De Groot et al. [9] showed
that the first principles calculation yields that 100% spin
polarization is realized with a minority-spin band gap. How-
ever, some theoretical investigations proposed that the spin
polarization should be suppressed by the electron-electron
correlation [10–14]. Unlike the spin polarization, however,
spin transport in half-metallic ferromagnets has yet to be
studied.

In this paper, we theoretically investigate spin transport with
an electron-electron correlation in half-metallic ferromagnets.
Specific attention is paid to the extrinsic spin Hall effect,
wherein a spin current flows perpendicular to an applied
electric field in the presence of spin-orbit scattering caused
by impurities [15,16]. Extrinsic spin Hall conductivity is
calculated with the Kubo formula and it is shown that at
finite temperatures, minority-spin electrons contribute to spin
Hall conductivity owing to thermally excited magnons. The
efficiency of the pure spin injections into a half-metallic
ferromagnet is also discussed. The temperature dependence
of spin Hall conductivity and spin polarization is compared,
and it is shown that while spin Hall conductivity drastically
increases with temperature, the spin polarization remains
mostly constant. This suggests that the observation of spin
Hall conductivity may become a method for studying the
minority-spin state in a half-metallic ferromagnet.

The outline of the paper is as follows. In Sec. II, a brief
review of the effect of the electron-electron correlation on
the density of states in a half-metallic ferromagnet is given.
In Sec. III, spin injection into a half-metallic ferromagnet in
lateral spin valve structures is discussed. In Sec. IV, extrinsic
spin Hall conductivity is derived. The temperature dependence
of spin Hall conductivity is discussed by comparing with that

of spin polarization. It is shown that spin Hall conductivity is
more sensitive to temperature than spin polarization. In Sec. V,
we summarize our results.

II. DENSITY OF STATES IN HALF-METALLIC
FERROMAGNETS

In this section, a brief review of the effect of the electron-
electron correlation on the density of states in a half-metallic
ferromagnet is given. Following Refs. [10–12,14], we start
with the Hubbard model to describe the electron-electron
correlation in a half-metallic ferromagnet,

HHub =
∑

k

∑
α

εkαc
†
kαckα + U

∑
i

c
†
i↑ci↑c

†
i↓ci↓, (1)

where c
†
kα and ckα are the electron creation and annihilation

operators with spin polarization α = ↑,↓, εkα is the kinetic
energy of electrons, and U is the on-site Coulomb repulsion.

The Hartree approximation in the Hubbard model (1) yields
that εkα for α = ↑,↓ is given by εk↑ = εk and εk↓ = εk + �,
where � = Un↑ is the exchange band splitting, with n↑
being the electron number density with α = ↑. Figure 1(a)
illustrates the spin-dependent density of states of a half-
metallic ferromagnet in the Hartree approximation, and it can
be seen from this figure that exchange band splitting � opens
a gap in the minority-spin band.

Theoretical studies have shown that the gap in the minority-
spin band closes owing to electron-electron correlation
[10–14]. Figure 1(c) shows the self-energy of the minority-
spin electrons describing electron-electron correlation
[10–12]. Absorbing the electron-hole scatterings into magnon
propagators, we obtain the spin-flip process owing to magnon
excitation, as shown in Fig. 1(d) [10,11]. The self-energy of
the minority-spin electrons, Im �

R,U
k↓ as shown in Fig. 1(b),

can then be given by

Im �
R,U
k↓ = −πU�

N

∑
q

(1 − fεk+q↑ + nωq )

× δ(εF − εk+q↑ − �ωq), (2)

where ωq = Dq2 is the magnon dispersion, with D being the
stiffness constant, while fε and nω describe the Fermi-Dirac
and the Bose-Einstein distribution functions, respectively.
The density of states of the minority-spin electrons N↓

ε at
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FIG. 1. (a) Schematic view of the spin-dependent density of states
of a half-metallic ferromagnet in the Hartree approximation. Here, �
is the exchange band splitting. (b) As shown by the dotted curve, the
gap closes owing to electron-electron correlation [12]. (c) Feynman
diagram of the self-energy of the minority-spin electrons in terms of
electron-electron scattering [10]. (d) Feynman diagram of the self-
energy of the minority-spin electrons in terms of electron-magnon
scattering [10]. The solid and wavy lines in (c) and (d) represent
the electron and magnon propagators, respectively, while the dashed
lines describe the Coulomb repulsion.

zero temperature, shown in Fig. 1(b), is given by N↓
ε =

1
n↑

∑
k′q(1 − fεk′↑ + nωq )δ(εk′ + �Dq2 − ε). After taking the

summation over k′ and q, the following is obtained:

N↓
ε = N↑

ε

(
ε − εF

�Dk2
F

) 3
2

. (3)

Here, N↑
ε is the density of states of the majority-spin

electrons, εF is the Fermi energy, and kF is the Fermi wave
number [12]. The (ε − εF)3/2 law in Eq. (3) arises from
the energy conservation associated with the majority-spin
electrons and magnons [12]. Note that the density of states
of the minority-spin electrons N↓

ε vanishes at the Fermi level.
At finite temperatures, the density of states of the minority-

spin electrons at the Fermi level becomes finite owing to the
thermally excited magnons [13,14] and is given by

N↓
εF

= 3

2
N↑

εF

(
kBT

�Dk2
F

) 3
2

γ0, (4)

where γ0 ≡ ∫ ∞
0 dxx1/2( 1

ex+1+ 1
ex−1 ) = (4 − √

2)
√

πζ (3/2)/4,
with ζ (3/2) = 2.612. The T 3/2 dependence of the density of
states N↓

εF
in Eq. (4) originates from the thermal excitation of

the magnons [14].

III. SPIN INJECTION INTO HALF-METALLIC
FERROMAGNETS

In this section, we consider the methods that can be used
to detect the spin Hall effect in a half-metallic ferromagnet.
To detect the spin Hall effect, a pure spin current needs
to be generated [15–22]. There are typically three methods
for generating pure spin current in metals: (a) by spin
pumping [17,23]; (b) by utilizing the spin Seebeck effect
in a magnetic bilayer system [18–20,24,25]; or (c) by spin
injection in a lateral spin valve structure [2,21,22,26,27]. In
spin pumping and spin Seebeck effect, pure spin current is
injected into a metal using a microwave and a temperature
gradient in an attached ferromagnet, while in the lateral
spin valve structure, pure spin current is generated from
spin accumulation in the metal. Now the metal in all three
cases is replaced by a half-metallic ferromagnet. In cases (a)
and (b), observed signals are determined by both spin Hall
conductivity in the half-metallic ferromagnet and interaction
at the interface, while in case (c), the signals are determined
only by spin Hall conductivity. Therefore, for simplicity, we
examine the lateral spin valve structure described by case
(c) in order to detect the spin Hall effect in a half-metallic
ferromagnet.

As shown in Eq. (3), at zero temperature, the 100%
spin-polarized electrons (↑ spin electron) flow so that the
propagation of the pure spin current is prohibited. At finite
temperatures, however, the minority-spin electrons can flow
and so a pure spin current is obtained, as shown in Eq. (4).

Figure 2 shows a schematic view of the lateral spin
valve structure for spin injection [2,21,22,26,27]. The pure

FIG. 2. Schematic view of a lateral spin valve structure for
spin injection [2,21,22,26,27]. A ferromagnetic wire (F) and a half-
metallic ferromagnetic wire (HMF) are connected by a nonmagnetic
metal (N) bridge in the z direction. A pure spin current js is generated
in N wire by the charge current je between F and N wires. The pure
spin current js flowing into N is absorbed into HMF wire in the x

direction. The absorbed spin current is then converted into charge
current owing to its spin-orbit interaction, and the electric voltage V

is obtained in the y direction. The magnetic field H0 is applied in the
z direction.
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spin current flowing into the nonmagnetic metal (N) wire is
absorbed into the half-metallic ferromagnetic (HMF) wire.
The absorbed spin current is then converted into charge current
owing to its spin-orbit interaction. The electric field EISHE is
proportional to the absorbed spin current js via the inverse
spin Hall effect [17,21,22],

EISHE = σ−1
SH js. (5)

Here, σSH is the spin Hall conductivity.
The absorbed spin current js in the lateral spin valve struc-

ture corresponds to the flow of the minority-spin electrons.
In the x direction, the absorbed spin current js is given
by jx

s = jx
↑ − jx

↓ . Owing to charge conservation, the charge
current jx

c = jx
↑ + jx

↓ in the x direction vanishes. The absorbed
spin current jx

s is then given by jx
s = −2jx

↓ . This is sufficient
for the contribution from the minority-spin elections to the
spin Hall conductivity to be considered relevant.

IV. SPIN HALL CONDUCTIVITY IN HALF-METALLIC
FERROMAGNETS

In this section, spin Hall conductivity in a half-metallic
ferromagnet is calculated by using the Kubo formula. Note that
the inverse spin Hall conductivity is derived from the Onsager’s
reciprocal relation [28]. Here, we focus on the extrinsic spin
Hall effect which arises from impurity scattering. We start with
the following Hamiltonian,

H = HHub + Himp. (6)

Here, Himp describes the impurity potential and is given by

Himp =
∑
kk′

∑
αβ

vk−k′ [δαβ + iηso(k × k′) · σ αβ]c†kαck′β, (7)

where vk−k′ is the Fourier transform of the impurity potential
vimp

∑
imp∈impurities δ(r − r imp) and ηso measuring the strength

of the spin-orbit interaction [27,29].
The retarded and advanced Green’s functions of the

minority-spin electrons without spin-orbit scattering are writ-

ten as G
R/A

kω↓ = (ω − εk↓ − �
R/A

k↓ )
−1

, where ω and �
R/A

kω↓ are the
frequency and the self-energy of the minority-spin electrons,
respectively.

In the extrinsic spin Hall effect in metals, side-jump and
skew-scattering mechanisms lead to contributions in spin Hall
conductivity [15,16,26,27,29,30]. The side-jump contribution
of the minority-spin electrons σ SJ

SH↓, as described by Tse
et al. [29], is shown in Fig. 3(a) and is given by

σ SJ
SH↓ = e2ηsonimpv

2
0

πm

∑
k1 k2

[
k2

1yG
R
k1↓GA

k1↓ Im GR
k2↓

]
, (8)

and the skew-scattering contribution of the minority-spin
electrons σ SS

SH↓ is shown in Fig. 3(b) and is given by

σ SS
SH↓ = e2

�
2ηsonimpv

3
0

2πm

×
∑

k1 k2 k3

[
k2

1xk
2
2yG

R
k1↓GA

k1↓GR
k2↓GA

k2↓ Im GR
k3↓

]
, (9)

where in both Eqs. (8) and (9) G
R/A

k↓ = (εF − εk↓ − �
R/A

k↓ )
−1

represents the retarded and advanced Green’s functions of the

×

×

FIG. 3. Diagrams for (a) the side-jump and (b) the skew-
scattering contributions to spin Hall conductivity [29]. The solid and
dashed-dotted lines represent the propagators of the minority-spin
electrons and the impurity potential, respectively. The spin current
Jsx and the charge current Jcy are denoted by a solid circle and a solid
square, respectively. The spin-orbit interaction is denoted by a cross.

minority-spin electrons at the Fermi level, while �
R/A

k↓ is the
self-energy of the minority-spin electrons at the Fermi level.
Note that σ SJ

SH↓ and σ SS
SH↓ are proportional to the summation of

Im GR
k3↓ over k in Eqs. (8) and (9). This indicates that σ SJ

SH↓ and
σ SS

SH↓ are sensitive to the density of states of the minority-spin
electrons N↓

εF
at the Fermi level.

By substituting the relations |GR
k↓|2 ≈ 1/�2 and Im GR

k↓ ≈
Im �R

k↓/�2 into Eqs. (8) and (9), respectively, where the
energy spectrum εk is approximated to the Fermi energy
and the exchange band splitting � is much larger than the
imaginary part of the self-energy Im �R

k↓, we obtain

σ SJ
SH↓ = −e2ηso�nimpv

2
0

πm�4

3n↑k2
F

5

∑
k2

Im �R
k2↓, (10)

and

σ SS
SH↓ = −e2

�
2ηso�

3nimpv
3
0

2πm2�6

(
3n↑k2

F

5

)2 ∑
k3

Im �R
k3↓, (11)

respectively. The isotropic Fermi surface when taking the
summation over k has been assumed as

∑
k1

k2
1y = (3n↑k2

F)/5.
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The summation of the self-energy
∑

k Im �R
k↓ is divided

into the following two parts:∑
k

Im �R
k↓ =

∑
k

(
Im �

R,U
k↓ + Im �

R,imp
k↓

)
. (12)

The first term on the right-hand side of Eq. (12) describes the
electron-magnon interaction shown in Sec. II. The summation
of Im �

R,U
k↓ over k is then taken as follows:

∑
k

Im �
R,U
k↓ = −3π�2

2
N↑

εF

(
kBT

�Dk2
F

) 3
2

γ0. (13)

The second term on the right-hand side of Eq. (12) describes
the impurity scattering Im �

R,imp
k↓ and is given by Im �

R,imp
k↓ =

2nimp�
−2 ∑

k′ v2
k−k′ Im �

R,U

k−k′,↓, where nimp is the impurity
density.

The summation of Im �
R,imp
k↓ over k is taken as follows:

∑
k

Im �
R,imp
k↓ = −π

�εF

n↑τ0
N↑

εF

(
kBT

�Dk2
F

) 3
2

γ0. (14)

Here, τ0 = �[2πnimpv
2
impN

↑
εF

]
−1

is the relaxation time of
majority-spin electrons.

Substituting Eqs. (13) and (14) into Eq. (12) affords the
self-energy as follows:

∑
k

Im �R
k↓ = −π

(
3

2
�2 + �εF

n↑τ0

)
N↑

εF

(
kBT

�Dk2
F

) 3
2

γ0. (15)

Substituting Eq. (15) into Eq. (10) provides the side-jump
contribution to the spin Hall conductivity σ SJ

SH↓ as follows:

σ SJ
SH↓ = 3

5π2
σ SJ

↑
�εF

�2τ0

(
kBT

�Dk2
F

)3/2(3

2
+ �εF

�2τ0n↑

)
γ0. (16)

Here, σ SJ
↑ = �σ↑η̃so/(2τ0εF) is the side-jump contribution of

the majority-spin electrons and σ↑ = n↑e2τ0/m,η̃so is the
dimensionless parameter measuring the strength of spin-orbit
interaction ηso as η̃so = ηso/k2

F.
Figure 4 shows the temperature dependence of the side-

jump contribution σ SJ
SH↓ and the spin polarization P =

(N↑
εF

− N↓
εF

)/(N↑
εF

+ N↓
εF

) [13,14]. Here, σ SJ
SH↓ is proportional

to T 3/2, which implies that the thermal excitation of magnons
leads to the spin Hall effect of the minority-spin electrons.
It can be seen in Fig. 4 that the spin Hall conductivity σ SJ

SH↓
drastically increases with temperature. On the other hand, the
spin polarization P is nearly constant, as the density of states
of the majority-spin electrons N↑

εF
is the dominant contribution

to P . This indicates that an observation of the spin Hall effect
may be a tool to study the electronic state of minority-spin
electrons.

Similarly, by substituting Eq. (15) into Eq. (11), the skew-
scattering contribution to spin Hall conductivity σ SS

SH↓ can be
obtained as

σ SS
SH↓ = 9

2π2
σ SS

↑

(
�εF

�2τ0

)2(
kBT

�Dk2
F

)3/2(3

2
+ �εF

�2τ0n↑

)
γ0,

(17)

FIG. 4. The temperature dependence of (a) the side-jump con-
tribution to spin Hall conductivity σ SJ

SH↓ (plotted as a red line)
and (b) the spin polarization P (plotted as a blue line) in a
half-metallic ferromagnet. Spin polarization is defined here as
P = (N↑

εF
− N↓

εF
)/(N↑

εF
+ N↓

εF
) [13,14]. The data of the side-jump

contribution are normalized by its value at T = 300 K.

where σ SS
↑ = 2πσ↑η̃soN

↑
εF

vimp/3 is the skew-scattering contri-
bution of the majority-spin electrons. Note that both σ SS

SH↓ and
σ SJ

SH↓ are proportional to T 3/2, with T being temperature in
Eqs. (16) and (17).

The ratio of the side-jump and skew-scattering contribu-
tions to spin Hall conductivity can also be demonstrated. The
ratio is as follows:

σ SJ
SH↓

σ SS
SH↓

= 5

(
�

εF

)2 1

vimpN
↑
εF

. (18)

In comparison with the ratio in normal metals [27], σ SJ
SH/σ SS

SH =
(3/4π )(�/εFτ0)(vimpNF)−1, where NF is the density of states
of normal metals. Equation (18) depends on exchange band
splitting � as � is much larger than the imaginary part of
the self-energy Im �R

k↓, which corresponds to �/τ0 in normal
metals.

Now we discuss the dependence of spin Hall conductivity
on the material parameters of a typical half-metallic
ferromagnet, chromium dioxide (CrO2) [31,32]. First,
we focus on the ratio of the spin Hall conductivity of
minority-spin electrons to that of majority-spin electrons
for side-jump (σ SJ

SH↓/σ SJ
↑ ) and skew-scattering (σ SS

SH↓/σ SS
↑ )

mechanisms. Since the factor (�εF/�
2τ0n↑) in Eqs. (16)

and (17) is much smaller than 3
2 in CrO2, we have

(σ SJ
SH↓/σ SJ

↑ ) ≈ (9/10π2)γ0(kBT/�Dk2
F)

3/2
(�εF/�

2τ0) and

(σ SS
SH↓/σ SS

↑ ) ≈ (27/4π2)γ0(kBT/�Dk2
F)

3/2
(�εF/�

2τ0)2 for
side-jump and skew-scattering mechanisms, respectively.
Using the relation εFτ0 = kFl/2, with l being the
mean free path of half-metallic ferromagnets, we
obtain (σ SJ

SH↓/σ SJ
↑ ) = cSJ(T/TM)3/2[(�/�τ0)2(kFl)] and

(σ SS
SH↓/σ SS

↑ ) = cSS(T/TM)3/2[(�/�τ0)2(kFl)]2, where
cSJ = (9/20π2)γ0 = 0.14, cSS = (27/40π2)γ0 = 0.21,
and TM ≡ �Dk2

F/kB. Next, we focus on the ratio of the
side-jump and skew-scattering contributions to spin Hall
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conductivity (σ SJ
SH↓/σ SS

SH↓). Since vimpN
↑
εF

≈ 1 (e.g., shown
in Ref. [2]), Eq. (18) is approximated as (σ SJ

SH↓/σ SS
SH↓) ≈

5(�/εF)2 = 5(�τ0/εFτ0)2 = 5[(2�τ0)/(�kFl)]2. In the
case of CrO2 [31,32], where � = 1.4 eV, �D = 150
meV Å

2
, kF = 0.93 Å

−1
, τ0 = 2.8 × 10−13 s, and l = 700 Å,

we estimate [(�/τ0�)2(kFl)] = 1.9 × 10−3, TM = 1.5 × 103

K, and [(2�τ0)/(�kFl)] = 1.8. Then we obtain (σ SJ
SH↓/σ SJ

↑ ) ≈
2.6 × 10−4 × (T/1500)3/2, (σ SS

SH↓/σ SS
↑ ) ≈ 7.5 × 10−7 ×

(T/1500)3/2, and (σ SJ
SH↓/σ SS

SH↓) ≈ 17.

V. CONCLUSION

We have theoretically investigated spin transport with
electron-electron correlation in a half-metallic ferromagnet.
The side-jump and skew-scattering contributions to spin Hall
conductivity have been derived by using the Kubo formula.

Our theory explicitly manifests that the spin current is injected
into a half-metallic ferromagnet at a finite temperature. The
T 3/2 dependence of spin Hall conductivity for minority-spin
electrons originates from the thermal excitation of magnons,
i.e., the electron-electron correlation. Spin Hall conductivity
is comparatively more sensitive to temperature than spin
polarization. We propose that spin Hall conductivity may
be a tool to study the minority-spin state in a half-metallic
ferromagnet.
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