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Criticality revealed through quench dynamics in the Lipkin-Meshkov-Glick model
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We examine the dynamics after a sudden quench in the magnetic field of the Lipkin-Meshkov-Glick model.
Starting from the ground state and by employing the time-dependent fidelity, we see manifestly different dynamics
are present if the system is quenched through the critical point. Furthermore, we show that the average work shows
no sensitivity to the quantum phase transition; however, the free energy and irreversible work show markedly
different rates of change in each phase. Finally, we assess the spectral function showing the fundamental
excitations that dictate the dynamics of the postquenched system, further highlighting the qualitative differences
between the dynamics in the two phases.
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I. INTRODUCTION

Phase transitions are an interesting trait of physical systems.
In particular, when dealing with quantum many-body setups
it is curious that a well defined microscopic description can
lead to nontrivial and singular behaviors in the thermodynamic
limit. The study of the equilibrium properties of such systems
is well established in, for example, exactly solvable one-
dimensional spin chains [1]. With the help of several tools
from quantum information, notably quantum correlations, the
implications of the presence of quantum phase transitions
(QPTs) have been explored [2].

Beyond the static properties, there is a growing interest
in studying the dynamics of many-body quantum systems.
This is further catalyzed by the increasing interest in under-
standing the thermodynamic properties of genuinely quantum
systems [3]. Despite the significantly more involved nature
of studying dynamics, remarkable progress has been made
in elucidating the behavior of important quantities, e.g.,
(irreversible) work, entropy production, and residual energy,
when a many-body system is evolved through its critical point.
The most frequent evolution considered is that of a “sudden
quench” of the order parameter [4–9] (however, finite time
protocols have also been addressed [10]). Focusing on such
a sudden change allows us to capture the salient features of
the ensuing nonequilibrium dynamics, while leaving the study
of more qualitative differences to a more involved temporal
analysis. Typically, the sudden change to the Hamiltonian
kicks the system out of equilibrium and can lead to interesting
consequences. Notably, for the Ising model the dynamics of
a sudden quench have been explored and it has been shown
that the irreversible entropy production provides signals of
the presence of the equilibrium QPT [5], and also can be
used to explain emergent phenomena such as the vanishing
gap between ground and first excited energy levels in the
thermodynamic limit [6]. Recently, the irreversible work was
shown to faithfully capture the critical features even for
so-called impurity QPTs [8].

In this work we add to this endeavor by studying the
Lipkin-Meshkiv-Glick model [11]. The model has attracted
substantial interest as it serves as the paradigmatic example
of an infinite range interacting system. It can be solved
in the thermodynamic limit and exhibits a complex phase
diagram [12,13]. We will be interested in exploring how

clear signatures of the equilibrium QPT is manifest in the
dynamics when the model is quenched through its critical
point. We remark that the evolution of this model through
its QPT has been studied previously in Ref. [9] wherein the
equal time-order parameter correlation function was examined
and Ref. [10] where the adiabatic dynamics were explored.
Our study is set apart from these as it seeks to establish
a rigorous link between the thermodynamic quantities such
as work and free energy, with the presence of the known
QPT. By exploiting the time-dependent fidelity we show that
the dynamics are manifestly different when the quench is
restricted to a particular phase compared to when the system
is quenched through the critical point. More interestingly, we
explicitly show that while the average work performed on the
system due to the quench is blind to the QPT, the free energy,
and therefore the irreversible work, appears acutely sensitive,
showing markedly different rates of change. Finally, we use
the spectral function to further understand the fundamental
excitations governing the dynamics of the system.

The remainder of the paper is organized as follows. In Sec. II
we present the model and introduce the quantities that will be of
interest to our analysis. In Sec. III we explore these quantities
for quenching the system across the critical point and show
that the time-dependent fidelity exhibits interesting features
that reveal the critical nature of the system as well as showing
that the irreversible work neatly reveals the QPT. Section IV
assesses the spectral function for various quenches. Finally, in
Sec. V we present our conclusions and some discussions on
our results.

II. THE MODEL AND FIGURES OF MERIT

We consider the ferromagnetic spin-1/2 Lipkin-Meshkov-
Glick (LMG) model in a transverse field,

H = − 1

N

⎛
⎝∑

i<j

σ i
x ⊗ σ j

x + γ σ i
y ⊗ σ j

y

⎞
⎠ − h

∑
i

σ i
z , (1)

with σx,y,z the Pauli spin operators, h the magnetic field
strength, and γ the anisotropy parameter (which we set to
zero for simplicity in our simulations; however, we remark that
qualitatively similar results can be obtained for any 0 � γ < 1;
cf. the Appendix). By considering the collective spin operators
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FIG. 1. Energy difference between the ground state and the first
five excited states for N = 400 plotted against magnetic field strength
h. Inset: Second derivative of the ground state energy per site for
N = 100 (red) to 700 (magenta) in steps of 100.

Sα = ∑
i σ

i
α/2 with α = {x,y,z}, up to a constant energy shift,

the model can be written as

H = − 2

N

(
S2

x + γ S2
y

) − 2hSz. (2)

In the following we work in the basis of maximum angular
momentum (which is a constant of motion) and using the
eigenstates of Sz we can diagonalize Eq. (2) to find the
complete spectrum (see, e.g., Refs. [12,13] for further details).
In Fig. 1 we show the energy difference between the five
lowest excited states and the ground state against h. We see
when h > 1 each energy level is distinct. As h is decreased
the gap between the first excited state and the ground state
closes, and similarly the energy gap between subsequent pairs
of excited states also closes. However, an important remark,
only when N → ∞ does the gap vanish and all eigenstates
become doubly degenerate. Hence, for any finite size there
is a small difference between the ground and first excited
states [10].

The inset in Fig. 1 shows the second derivative with respect
to h of the ground state energy (per site) for system sizes
ranging from N = 100 to N = 700. We see the emergence
of a discontinuity appearing, thus signaling the known second
order QPT at h = 1 [12]. We are interested in studying the
dynamics when the ground state of one phase is evolved
using the propagator of another. In what follows we will
assume the system is initialized in the ground state of Eq. (2)
corresponding to h = hi . At time t = 0, we quench the field
strength hi → hf and we evolve the initial state according to
the new Hamiltonian Hf , so that

|ψ(t)〉 = e−iHf t |ψ(0)〉. (3)

Using this we can readily evaluate the time-dependent overlap

O = 〈ψ(0)|ψ(t)〉. (4)

This quantity will be central to our analysis as it allows us to
access several important quantities that indicate that signatures
of the equilibrium QPT are clearly manifest in the system’s
evolution.

A particularly important quantity will be the time-
dependent fidelity (TDF)

L = |O|2, (5)

which quantifies how different the evolved state is compared to
the initial one (we remark this quantity is sometimes referred to
as the Loschmidt echo in the literature). The TDF has already
proven to be a useful tool in studying critical dynamics [4].
Additionally, we can determine the average work due to the
sudden quench [7,14]

〈W 〉 =
∑

j

(
E

f

j − Ei
0

)∣∣〈ψi
0|ψf

j

〉∣∣2
, (6)

where E
f

j and |ψf

j > are the j th eigenenergy and eigenstate
of the postquench Hamiltonian, and Ei

0 and |ψi
0> are ground

state energy and ground state for the initial Hamiltonian.
The sudden nature of the quench drives the system out of
equilibrium, and thus introduces a degree of irreversibility of
the process. We can quantitatively define the irreversible work
as [8,14,15]

〈Wirr〉 = 〈W 〉 − �F, (7)

where �F is the free energy difference. By considering closed
dynamics, and since we assume our system begins in the
ground state of the initial Hamiltonian, �F is simply given by
the difference between the post- and prequench ground state
energies, i.e., �F = E

f

0 − Ei
0.

III. QUENCH DYNAMICS ACROSS A QUANTUM
CRITICAL POINT

A. From the paramagnetic to the ferromagnetic phase

We begin analyzing the case of quenching from the
paramagnetic phase, setting hi = 1.5. In this regime there
is a significant energy difference between the ground state
and the first excited state (cf. Fig. 1). In Fig. 2 we show the
TDF for N = 400 and the thick black curve corresponds to
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FIG. 2. Time-dependent fidelity for a quench from hi = 1.5 to
hf ∈ [0.6,1.4] with N = 400. The dashed curves are for hf > 1
with hf = 1.4 (topmost, blue) and hf = 1.2 (purple). The lowest
two dotted curves are for hf < 1 with hf = 0.8 (red) and hf = 0.6
(bottommost orange). The solid black curve is for hf = 1.
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FIG. 3. Main panel: minimum value of TDF achieved for t ∈
(0,10) quenching the field from hi = 1.5 to hf . Each curve from left
to right corresponds to an increasing size of N = 100 (dotted, red),
200 (dash-dotted, orange), 300 (dashed, blue), and 400 (solid, black).
Upper left inset: Zoomed in cross section of the main panel. Lower
right inset: Finite size scaling for the first value of field at which the
Lmin = 0.

hf = 1. The dashed curves above this are for quenches that
evolve the initial state taking a value of hf that is still in
the paramagnetic phase. We clearly see the regular oscillatory
behavior persists even when quenching close to the critical
point. When we evolve the state using hf < 1 (lower dotted
curves) we see the dynamics loses the clean periodic behavior,
and dynamically the TDF no longer reaches unity. Additionally
there is a significant decrease in the values of L, even in some
cases reaching exactly 0 indicating that the evolved state is
orthogonal to the initial state.

The precise value at which the TDF reaches zero is
examined in Fig. 3. We determine the minimum value of TDF
observed,Lmin, within the same time window for Fig. 2 against
hf . Clearly, when the quench is small, e.g., hf ∈ (1.2,1.4) the
minimum value of TDF is still quite large. As the strength
of the quench is increased we find this minimum value
decreases. Interestingly, Lmin = 0 only when hf < 1. We see
an oscillatory behavior appearing; however, the amplitude of
the oscillations is decreasing as the system size is increased.
Furthermore, the first value of hf where Lmin = 0, denoted
h0, shifts closer to 1 as we increase the system size. Through
a finite size scaling with a quadratic fit, the lower right
inset shows that this accurately determines the critical point.
Such a result is remarkable as it clearly indicates that the
equilibrium QPT can be witnessed by the occurrence of
dynamical orthogonality.

A final peculiarity appears in studying Lmin; for N > 200
a kink appears close to the critical point as shown in the upper
left inset of Fig. 3. However, as the system size is increased,
this feature appears to move further from the critical value.

From Fig. 2 it is clear that for small quenches the system
dynamically comes close to the initial state; however, for larger
quenches this is no longer the case, indicating that a degree
of irreversibility has been introduced into the system [16]. In
Fig. 4(a) we examine the average work done, 〈W 〉, against hf .
We find 〈W 〉 is linearly dependent on the value of hf ; the larger
the quench hi → hf , the more work is done. In panels (b) and
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FIG. 4. (a) Average work, (b) Free energy. (c) Irreversible work
for a quench from hi = 1.5 to hf . The insets of panels (b) and (c) are
the first derivative of the functions. In all panels N = 400.

(c) we show the free energy and average irreversible work,
respectively. Again, the free energy increases as we increase
the size of the quench. However, in the inset we examine
its rate of change, and we see for hf > 1 this rate is linear,
and there is a sudden change near hf ∼ 1. While it is not
surprising that the free energy exhibits a nontrivial behavior
as we go through the critical point in light of the fact that it
is defined in terms of the ground state energy, the fact that
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both 〈W 〉 and �F are of the same order of magnitude leads
to a trade-off between the two quantities. This has interesting
consequences for the irreversibility of the process captured
by 〈Wirr〉. Panel (c) shows that when the quench is small and
confined to the same phase as the initial state, 〈Wirr〉 = 0,
indicating that the process is fully reversible, as confirmed by
the behavior of the TDF which achieves values of unity during
the dynamics. For large quenches, when the system is evolved
according to a Hamiltonian in the ferromagnetic phase the
average irreversible work becomes nonzero, and the degree of
irreversibility grows as the magnitude of the quench increases.

B. From the ferromagnetic to the paramagnetic phase

We next consider the complementary case of beginning in
the ferromagnetic phase, setting hi = 0.5, and quenching to
increasingly larger values of hf . This scenario is markedly
different from that of the previous section as the ground state
is now nearly degenerate, i.e., there is an exponentially (in N )
vanishing gap between the ground state and the first excited
state (cf. Fig. 1). Therefore, by quenching the field strength
and kicking the system out of equilibrium, it quickly becomes
excited and occupies higher order states. In Fig. 5 we see this
effect clearly; contrary to the previous section, we see even
for moderately small quenches (hf � 0.6) the TDF reaches
zero, indicating the evolved state is orthogonal. We further
remark, the larger the system the smaller the quench required to
achieve dynamical orthogonality; again this is a consequence
of the fact that the energy gap between the ground and first
excited states decreases with increasing N . Thus we cannot
use the presence of orthogonality to witness signatures of the
QPT in the dynamics. However, there is a clear qualitative
difference appearing when the quench is near to or above the
critical point. For quenches to hf � 1.0 the TDF evolves into
fully orthogonal states for a period, before exhibiting short
time revivals. The height of these peaks is steadily decreasing
in the considered time window, and the width of the revivals
broadens. This indicates a sizable increase in the irreversibility
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FIG. 5. Time-dependent fidelity for a quench from hi = 0.5 to
hf ∈ [0.6,1.4] with N = 400. The dashed curves are for hf < 1
with hf = 0.6 (blue) and hf = 0.8 (purple). The dotted curves are
for hf > 1 with hf = 1.2 (red) and hf = 1.4 (leftmost, orange). The
solid black curve is for hf = 1.
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FIG. 6. (a) Average work. (b) Free energy. (c) Irreversible work
for a quench from hi = 0.5 to hf . The insets of panels (b) and (c) are
the first derivative of the functions. In all panels N = 400.

of the process when quenches into the paramagnetic phase are
considered.

We confirm this behavior in Fig. 6. Panel (a) shows that
the work is a linear function of the magnitude of the quench.
However, the free energy and the irreversibility show the same
qualitative behavior as shown in the previous section. Focusing
on the average irreversible work, due to the vanishingly small
gap between the ground and first excited states, we see even
small quenches are accompanied by a degree of irreversibility,
the rate of which grows as the magnitude of the quench is
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increased. However, beyond the critical point we find the
irreversibility grows linearly with the size of the quench.

IV. ANALYSIS BASED ON THE SPECTRAL FUNCTION

Finally we assess the behavior of the spectral function (SF)

A(ω) = 2Re
∫

eiωtOdt. (8)

This gives insight into the fundamental excitations that are
governing the evolution, and therefore serves as an informative
tool in understanding the dynamics of the system [17]. In Fig. 7
we show the SFs for several quenches, both when the quench
remains in the same initial phase, and when it is across the
critical point. We restrict ourselves to N = 50 for simplicity,
although qualitatively similar results hold for larger systems.

In panel (a) we assume the system begins in the param-
agnetic phase fixing hi = 1.5. For no quench, i.e., hf = 1.5,
the SF is a single peak exactly at the ground state energy.
For small quenches staying within the paramagnetic phase we
see the dynamics continues to be dictated only by the ground
state, and this helps us understand why the process is fully
reversible. As we approach the critical point a second peak
appears, corresponding to the second excited state of the final
Hamiltonian. When hf ∼ 1 this second peak becomes more
prominent. Quenching into the ferromagnetic phase, we see
significantly more levels enter into the dynamics of the system.
Interestingly, although the ground state still contributes to
the dynamics, higher excited states play a significantly more
dominant role and this results in dynamical orthogonality. We
remark, the model naturally has two distinct subspaces. Since
our initial state is in the even excitation subspace, only the
even states play a role in the dynamics.

In Fig. 7(b) we show the complementary analysis starting
from the ferromagnetic phase hi = 0.5 and quenching to larger
values of the field. Again for reference, we see when no quench
is performed, the SF is a single peak exactly at the ground state
energy. However, now even for small quenches, hf = 0.6,
due to the significantly more dense energy spectrum in this
phase, more (even excitation) levels play a role in dictating
the dynamics of the system, and therefore the system almost
immediately witnesses dynamic orthogonality. This in turns
allows us to understand the significantly larger irreversibility
of the process when quenching from the ferromagnetic into
the paramagnetic phase. However, similar to the previous case,

when the quench remains in the same phase, i.e., hf � 1 in
this case, the ground state is still dominant. Quenching (near)
to the critical point we see the SF spreads. For hf deep in the
paramagnetic phase the SF is very spread, and again since we
have quenched through the QPT, we see higher excited states
play the most dominant role in the dynamics.

V. DISCUSSIONS AND CONCLUSIONS

We have examined the dynamics arising by quenching the
parameters of the many-body interacting LMG model. Starting
from the ground state in a particular phase, and using the time-
dependent fidelity, we have shown that manifestly different
dynamics occur when the quench is restricted to the same
initial phase compared to a quench through the critical point.
By employing tools from quantum thermodynamics we have
shown that the average work maintains a linear relationship
with the magnitude of the quench, regardless if it is through the
QPT or not. In contrast, the free energy and irreversible work
are acutely sensitive to this difference. We find that quenching
through the QPT leads to significant increases in the degree of
irreversibility. This result can also help in understanding why
controlling such many-body systems is so difficult through
their QPTs [18–20], as it is this irreversibility that needs to
be controlled. Starting from the paramagnetic phase, where
there is a sizable energy gap between the ground and first
excited states, we have shown the occurrence of dynamical
orthogonality serves as a remarkable witness of criticality in
the model. Furthermore, by examining the spectral function we
have shown that when the quench is through the critical point,
the fundamental excitations that govern the dynamics are no
longer dictated primarily by the ground state, but in fact higher
excited states play the most prominent role. It is important
to remark that our analysis is restricted to zero temperature
and a natural question arises regarding the situation for finite
temperatures. In the case of a quench from the paramagnetic to
the ferromagnetic phase, the presence of the energy gap means
that for reasonably small temperatures (i.e., temperatures that
fail to provide enough thermal energy to excite the first excited
state) the results remain largely unaffected. Conversely, when
quenching from the ferromagnetic phase, due to the vanishing
energy gap even small temperatures lead to the first excited
state becoming populated and thus can significantly change the
dynamics. Our results highlight the interesting role the static
properties of a many-body system can play in its dynamics.

)b()a(

-80 -70 -60 -50 -40 -30 -20
0

0.2

0.4

0.6

0.8

|A(ω)|

ω

N = 50
hi = 1.5

hf = 1.5

hf = 1.0

hf = 0.6

hf = 0.5
hf = 1.1

hf = 0.9
hf = 1.3

-80 -70 -60 -50 -40 -30 -20
0

0.2

0.4

0.6

0.8

|A(ω)|

ω

N = 50

hf = 1.5 hf = 1.0

hf = 0.6

hf = 0.5

hi = 0.5

FIG. 7. Spectral function, Eq. (8), for N = 50. (a) Starting in the paramagnetic phase with hi = 1.5 we examine the spectral function for
several decreasing values of hf . (b) Spectral function for several quenches to hf starting from the ferromagnetic phase with hi = 0.5.
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Indeed, such a role has recently been explored in Refs. [21–25]
where, for the Ising model and also long-range interacting spin
models (including the LMG model), so-called “dynamical
quantum phase transitions” have been characterized. Our
results add further evidence that equilibrium QPTs are clearly
manifest in nonequilibrium processes. Finally we remark that
we expect similar features to appear for other one-dimensional
spin systems such as the Ising model; however, we leave this
for a future study.
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APPENDIX: FINITE ANISOTROPY

Here we examine a finite value for the anisotropy parameter
γ showing that qualitatively the results in the main text are
unaffected. We choose γ = 0.5 and restrict ourselves to the
case of quenching from the paramagnetic to the ferromagnetic
phase for brevity. In Fig. 8 we show the TDF [panel (a)]
and its corresponding dynamical minimum [panel (b)], which
are complementary to the results shown in Figs. 2 and 3
of the main text. For finite γ the TDF exhibits the same change
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FIG. 8. Finite anisotropy, γ = 0.5: (a) Time-dependent fidelity
for a quench from hi = 1.5 to hf ∈ [0.6,1.4] with N = 300. The
dashed curves are for hf > 1 with hf = 1.4 (topmost, blue) and hf =
1.2 (purple). The lowest two dotted curves are for hf < 1 with hf =
0.8 (red) and hf = 0.6 (bottommost orange). The solid black curve
is for hf = 1. (b) Main panel: minimum value of TDF achieved for
t ∈ (0,12) quenching the field from hi = 1.5 to hf . Each curve from
left to right corresponds to an increasing size of N = 100 (dotted, red),
200 (dash-dotted, orange), and 300 (dashed, blue). Inset: Zoomed in
cross section of the main panel.

in behavior when the quench is through the critical point.
However, by changing γ we are altering the energy of the
system, and therefore this will be evidenced by a change in
the frequency of the TDF. We clearly see this effect in panel
(a) as the time at which the first minimum is achieved is larger
than in the γ = 0 case. When the quench is restricted to a
single phase the clean periodic behavior is maintained, while
for values of h < 1 this feature is lost and we find that the
system can become dynamically orthogonal. Interestingly, the
“kink” in Lmin is also still present.
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[20] H. Saberi, T. Opatrný, K. Mølmer, and A. del Campo, Adiabatic
tracking of quantum many-body dynamics, Phys. Rev. A 90,
060301(R) (2014).

[21] M. Heyl, A. Polkovnikov, and S. Kehrein, Dynamical Quantum
Phase Transitions in the Transverse-Field Ising Model, Phys.
Rev. Lett. 110, 135704 (2013).

[22] M. Heyl, Dynamical Quantum Phase Transitions in Systems
with Broken-Symmetry Phases, Phys. Rev. Lett. 113, 205701
(2014).

[23] M. Heyl, Scaling and Universality at Dynamical Quantum Phase
Transitions, Phys. Rev. Lett. 115, 140602 (2015).

[24] M. Heyl, Quenching a Quantum Critical State by the Order
Parameter: Dynamical Quantum Phase Transitions and Quan-
tum Speed Limits, arXiv:1608.06659.

[25] B. Zunkovic, M. Heyl, M. Knap, and A. Silva, Dynamical
quantum phase transitions in Sspin chains with long-range
interactions: Merging different concepts of non-equilibrium
criticality, arXiv:1609.08482.

184403-7

https://doi.org/10.1103/PhysRevE.78.021106
https://doi.org/10.1103/PhysRevE.78.021106
https://doi.org/10.1103/PhysRevE.78.021106
https://doi.org/10.1103/PhysRevE.78.021106
https://doi.org/10.1103/PhysRevB.71.224420
https://doi.org/10.1103/PhysRevB.71.224420
https://doi.org/10.1103/PhysRevB.71.224420
https://doi.org/10.1103/PhysRevB.71.224420
https://doi.org/10.1103/PhysRevB.74.104118
https://doi.org/10.1103/PhysRevB.74.104118
https://doi.org/10.1103/PhysRevB.74.104118
https://doi.org/10.1103/PhysRevB.74.104118
https://doi.org/10.1103/PhysRevA.90.013617
https://doi.org/10.1103/PhysRevA.90.013617
https://doi.org/10.1103/PhysRevA.90.013617
https://doi.org/10.1103/PhysRevA.90.013617
https://doi.org/10.1088/1367-2630/18/10/103035
https://doi.org/10.1088/1367-2630/18/10/103035
https://doi.org/10.1088/1367-2630/18/10/103035
https://doi.org/10.1088/1367-2630/18/10/103035
https://doi.org/10.1103/PhysRevLett.107.140404
https://doi.org/10.1103/PhysRevLett.107.140404
https://doi.org/10.1103/PhysRevLett.107.140404
https://doi.org/10.1103/PhysRevLett.107.140404
https://doi.org/10.1103/PhysRevLett.115.190601
https://doi.org/10.1103/PhysRevLett.115.190601
https://doi.org/10.1103/PhysRevLett.115.190601
https://doi.org/10.1103/PhysRevLett.115.190601
https://doi.org/10.1103/PhysRevA.81.022113
https://doi.org/10.1103/PhysRevA.81.022113
https://doi.org/10.1103/PhysRevA.81.022113
https://doi.org/10.1103/PhysRevA.81.022113
http://arxiv.org/abs/arXiv:1608.03038
https://doi.org/10.1103/PhysRevLett.109.115703
https://doi.org/10.1103/PhysRevLett.109.115703
https://doi.org/10.1103/PhysRevLett.109.115703
https://doi.org/10.1103/PhysRevLett.109.115703
https://doi.org/10.1103/PhysRevLett.114.177206
https://doi.org/10.1103/PhysRevLett.114.177206
https://doi.org/10.1103/PhysRevLett.114.177206
https://doi.org/10.1103/PhysRevLett.114.177206
https://doi.org/10.1103/PhysRevA.90.060301
https://doi.org/10.1103/PhysRevA.90.060301
https://doi.org/10.1103/PhysRevA.90.060301
https://doi.org/10.1103/PhysRevA.90.060301
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevLett.113.205701
https://doi.org/10.1103/PhysRevLett.113.205701
https://doi.org/10.1103/PhysRevLett.113.205701
https://doi.org/10.1103/PhysRevLett.113.205701
https://doi.org/10.1103/PhysRevLett.115.140602
https://doi.org/10.1103/PhysRevLett.115.140602
https://doi.org/10.1103/PhysRevLett.115.140602
https://doi.org/10.1103/PhysRevLett.115.140602
http://arxiv.org/abs/arXiv:1608.06659
http://arxiv.org/abs/arXiv:1609.08482



