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Perpendicular magnetic anisotropy of two-dimensional Rashba ferromagnets
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We compute the magnetocrystalline anisotropy energy within two-dimensional Rashba models. For a
ferromagnetic free-electron Rashba model, the magnetic anisotropy is exactly zero regardless of the strength
of the Rashba coupling, unless only the lowest band is occupied. For this latter case, the model predicts in-plane
anisotropy. For a more realistic Rashba model with finite band width, the magnetic anisotropy evolves from
in-plane to perpendicular and back to in-plane as bands are progressively filled. This evolution agrees with
first-principles calculations on the interfacial anisotropy, suggesting that the Rashba model captures energetics
leading to anisotropy originating from the interface provided that the model takes account of the finite Brillouin
zone. The results show that the electron density modulation by doping or an external voltage is more important
for voltage-controlled magnetic anisotropy than the modulation of the Rashba parameter.
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I. INTRODUCTION

Recent developments in the design of spintronic devices
favor perpendicular magnetization, increasing the interest in
materials with perpendicular magnetic anisotropy [1–4]. One
advantage is that devices with the same thermal stability can be
switched more easily if the magnetization is perpendicular than
if it is in plane [4–9]. Since magnetostatic interactions favor
in-plane magnetization for a thin film geometry, perpendicular
magnetic anisotropy requires materials and interfaces that
have strong magnetocrystalline anisotropy. Numerous com-
putational studies [10–17] show the importance of interfaces
on magnetocrystalline anisotropy. The theory developed by
Bruno [18,19], which provides an insightful explanation of
the surface magnetocrystalline anisotropy and its correlation
with orbital moment [20], has been confirmed by experi-
ments [21,22]. The cases for which the Bruno’s theory does not
apply [23] require a case by case study through first-principles
calculations, making it difficult to get much insight.

Some insight into perpendicular magnetic anisotropy can be
gained by studying it within a simple model. One such model
is the two-dimensional Rashba model [24]. A two-dimensional
Rashba model includes only minimal terms imposed by
symmetry breaking. As extensive theoretical studies have
shown, a two-dimensional Rashba model can capture most of
the qualitative physics of spin-orbit coupling with broken in-
version symmetry, such as the intrinsic spin Hall effect [25,26],
the intrinsic anomalous Hall effect [27], the fieldlike spin-orbit
torque [28,29], the dampinglike spin-orbit torque [30–33], the
Dzyaloshinskii-Moriya interaction [34–37], chiral spin motive
forces [38,39], and corrections to the magnetic damping [38],
each of which has received attention because of its relevance
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for efficient device applications. Despite the extensive studies,
exploring magnetocrystalline anisotropy within the simple
model is still limited. Magnetocrystalline anisotropy derived
from a two-dimensional Rashba model may clarify the corre-
lations between it and various physical quantities listed above.

There are recent theoretical and experimental studies on
the possible correlation between the magnetic anisotropy and
the Rashba spin-orbit coupling strength. The theories [40,41]
report a simple proportionality relation between perpendicular
magnetic anisotropy and square of the Rashba spin-orbit
coupling strength and argued its connection to the voltage-
controlled magnetic anisotropy [16,42–46]. However, these
experiments require further interpretation. Nistor et al. [47]
report the positive correlation between the Rashba spin-orbit
coupling strength and the perpendicular magnetic anisotropy
while Kim et al. [48] report an enhanced perpendicular mag-
netic anisotropy accompanied by a reduced Dzyaloshinskii-
Moriya interaction in case of Ir/Co. Considering that the
Dzyaloshinskii-Moriya interaction and the Rashba spin-orbit
coupling are correlated according to Ref. [37], the perpendic-
ular magnetic anisotropy and the Rashba spin-orbit coupling
vary opposite ways in the latter experiment. These inconsistent
observations imply that the correlation is, even if it exists,
not a simple proportionality. In such conceptually confusing
situations, simple models, like that in this work, may provide
insight into such complicated behavior.

In this paper, we compute the magnetocrystalline
anisotropy within a two-dimensional Rashba model in order
to explore the correlation between the magnetocryatalline
anisotropy and the Rashba spin-orbit coupling. We start
from Rashba models added to different kinetic dispersions
(Sec. II) and demonstrate the following core results. First,
a two-dimensional ferromagnetic Rashba model with a free
electron dispersion results in exactly zero anisotropy once the
Fermi level is above a certain threshold value (Sec. III A).
This behavior suggests that the simple model is not suitable
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for studying the magnetic anisotropic energy in that regime.
Second, simple modifications of the model do give a finite
magnetocrystalline anisotropy proportional to the square of the
Rashba parameter (Sec. III B). We illustrate with tight-binding
Hamiltonians that a Rashba system acquires perpendicular
magnetic anisotropy for wide parameter ranges once the Bril-
louin zone and energy band width being finite in size is taken
into account in the model. This demonstrates that the absence
of magnetic anisotropy is a peculiar feature of the former
free-electron Rashba model and we discuss the similarity
of this behavior to the intrinsic spin Hall conductivity [26].
Third, we show that the magnetocrystalline anisotropy of the
modified Rashba models strongly depends on the band filling
(Sec. III B). The system has in-plane magnetic anisotropy
for low band filling. As the electronic states are occupied,
the anisotropy evolves from in-plane to perpendicular and
back to in-plane for high electron density. This suggests
that it may be possible to see such behavior in systems in
which the interfacial charge density can be modified, for
example through a gate voltage. This also provides a way to
reconcile mutually contradictory experimental results [47,48]
since different band filling can result in opposite behaviors of
the magnetocrystalline anisotropy. We make further remarks
in Sec. III C and summarize the paper in Sec. IV. We present
the analytic details in Appendix.

II. MODEL AND FORMALISM

We first present the model and formalism for a quadratic
dispersion and then generalize the model to a tight-binding
dispersion. In this paper, we call a Rashba model with a
quadratic dispersion a “free-electron Rashba model” and call a
Rashba model with a tight-binding dispersion a “tight-binding
Rashba model.” All the models include ferromagnetism in the
same manner.

A ferromagnetic free-electron Rashba model is described
by the following Hamiltonian:

H = p2

2me

+ Jσ · m + αR

�
(σ × p) · ẑ, (1)

where p is the momentum operator of itinerant electrons,
me is the effective electron mass, J > 0 is the exchange
energy between conduction electrons and the magnetization,
σ is the vector of the Pauli spin matrices, αR is the Rashba
parameter, ẑ is the interface normal direction perpendicular
to the two-dimensional space, and m is a unit vector along
the direction of magnetization. The terms in Eq. (1) reflect
the quadratic kinetic energy, the exchange interaction, and
the Rashba spin-orbit coupling, respectively. The second and
third terms originate, respectively, from the time-reversal
symmetry breaking (magnetism) and the space-inversion
symmetry breaking (interface). Thus the Rashba model is
a minimal model taking account of the symmetry breaking
features of the system. There are various types of Rashba
models depending on the momentum dependence of spin-orbit
coupling Hamiltonian [49]. We confine the scope of the paper
to the linear Rashba model that is linear in p [the last term in
Eq. (1)] and is the most widely used form. We emphasize that
the Rashba model is mainly useful for its pedagogical value
rather than its ability to make quantitative predictions for real

materials [50,51]. In Ref. [51], the authors find that while it is
possible to extract an effective Rashba parameter for realistic
interfaces, it was not possible to connect this parameter
to the calculated magnetocrystalline anisotropy. Still, even
though the simple Rashba model may have only limited direct
connection to the electronic structure of most interfaces of
interest, it does provide a qualitative understanding of their
physical properties.

Diagonalization of Eq. (1) gives the single particle energy
spectrum of the free-electron Rashba model. For a homoge-
neous magnetic texture, H commutes with p, thus k = p/� is
a good quantum number. In terms of k, diagonalization of the
2 × 2 Hamiltonian gives the energy eigenvalues E±(kx,ky) of
H for spin majority and minority bands, where + and − refer
to minority and majority bands, respectively,

E±(kx,ky) = �
2k2

2me

±
√

J 2 + 2JαR(kymx − kxmy) + α2
Rk2,

(2)

where k = |k|. Since the system has rotational symmetry
around ẑ axis [52], we assume my = 0 from now on.

The total electron energy is given by summing up single
particle energies at all electronic states below the Fermi level.
To do this, we define N±(E), the number of minority/majority
electrons per unit area that satisfies E±(kx,ky) � E. The
geometrical meaning of N±(E) is the area enclosed by the
constant energy contour E±(kx,ky) = E (Fig. 1). With this
definition, the density of states for each band is given by
dN±/dE. Therefore the expression of the total energy per
unit area is given by

Etot(EF ) =
∫ EF

E−
min

E
dN−
dE

dE + η

∫ EF

E+
min

E
dN+
dE

dE, (3)

where E±
min is the band bottom energy of each band, below

which N±(E) = 0. η = 0 if EF < E+
min so that there is no

occupied minority state, and η = 1 otherwise. Such a factor

ky

kx

E-(kx,ky)=E

E+(kx,ky)=E
(2π)2N+(E)

FIG. 1. Geometrical meaning of N+(E), the number of minority
electrons per unit area that satisfies E+(kx,ky) � E. N+(E) is given
by the area enclosed by the constant energy contour of E+(kx,ky) =
E. N−(E), the number of majority electrons per unit area that satisfies
E−(kx,ky) � E, has the similar meaning (not shown in the figure).
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is absent for the first term because we only consider the
Fermi level EF above E−

min. Otherwise, the magnetocrystalline
anisotropy is trivially zero since there is no occupied state. The
total energy density depends on the direction of magnetization
in general. We then compute the magnetocrystalline anisotropy
by the difference of the total energy density for perpendicular
and in-plane magnetizations; �E = Etot|m=x̂ − Etot|m=ẑ.

To compute �E from Eq. (3), the Fermi levels for m = x̂
and m = ẑ need to be specified. Since the energy dispersion
[Eq. (2)] is in general dependent on m, the Fermi level also
changes as a function of m, because the total electron density
does not change for an isolated magnetic system. Thus we
fix the total electron density as a constraint. To fix the total
electron density as a constraint, we define the total electron
density below energy E:

Ne(E) = N−(E) + ηN+(E). (4)

The domain of E is E � E−
min so that Ne(E) � 0. Since Ne(E)

is a strictly increasing function of E in the domain, it has an
inverse function in Ne � 0. We denote the inverse function
by εF (Ne). εF has the same physical meaning as the Fermi
level EF for a given electron density Ne. However, we use the
different symbols to emphasize that εF is given by a function
of the electron density while EF is just a given constant. With
this definitions, the magnetocrystalline anisotropy is given by

�E(Ne) = Etot(εF (Ne))|m=x̂ − Etot(εF (Ne))|m=ẑ. (5)

This is the central equation of the formalism to compute the
magnetocrystalline anisotropy.

We now compute the magnetic anisotropy for a tight-
binding Rashba model. To construct a tight-binding Hamil-
tonian, we discretize Eq. (1) [53,54]. In the main text, we
use a tight-binding Hamiltonian for a two-dimensional square
lattice as an example. The construction and the results of a
tight-binding Hamiltonian for a two-dimensional hexagonal
lattice (equivalently a triangular lattice) are presented in
Appendix A. For simplicity, we use a two-band tight-binding
Hamiltonian including spin degrees of freedom only, but
ignoring all orbital degrees of freedom. The tight-binding
Hamiltonian we construct here is given by

H = HK + HJ + HR, (6a)

where HK , HJ , and HR are the discretized versions of
the kinetic energy, the exchange energy, and the Rashba
Hamiltonian, respectively. HK is constructed by the hopping
terms to the nearest-neightbor sites:

HK =− �
2

2mea2

∑
pqσ

(C†
p+1,q,σ Cp,q,σ +C

†
p,q+1,σ Cp,q,σ ) + H.c.,

(6b)

where a is the lattice constant, p and q are the site indicies,
and Cp,q,σ is the electron annihilation operator at site (x,y) =
(pa,qa) with spin σ . h.c. refers to hermitian conjugate of all
the terms in front of it. Each term in the summand corresponds
to hopping to x and y directions, respectively. The hopping
parameter −(�2/2mea

2) is determined by matching the energy
dispersion with the free electron dispersion �

2k2/2me in the
continuum limit a → 0. HJ is constructed by on-site energy

that mixes the spin degree of freedom,

HJ = J
∑

pqσσ ′
[C†

p,q,σ (σ )σ,σ ′Cp,q,σ ′ ] · m, (6c)

where (σ )σ,σ ′ is the matrix element of the Pauli matrices.
HR is constructed as following. We impose a hopping term
from a site to a neighboring site, along a direction û.
Since û corresponds to the electron momentum direction,
the term acquires a spin Pauli matrix (σ × û) · ẑ. Then, a
hopping term along the y direction acquiring σx is given by
itC

†
p,q+1,σ ′ (σx)σ,σ ′Cp,q,σ , where t is a real hopping parameter.

After considering all the neighboring hopping terms satisfying
the hermiticity condition, we determine the hopping parameter
by taking continuum limit up toO(a2) and matching the energy
dispersion with Eq. (2). In this way, we end up with

HR = i
αR

2a

∑
pqσσ ′

[C†
p,q+1,σ (σx)σ,σ ′Cp,q,σ

−C
†
p+1,q,σ (σy)σ,σ ′Cp,q,σ ] + H.c. (6d)

For more details of determining the hopping parameters, see
the example in Appendix A for a two-dimensional hexagonal
lattice.

Now we use the same formalism [Eq. (5)]. We use the
discrete translational symmetry of the lattice to use the Bloch
theorem and compute the energy dispersion relation as a
function of the crystal momentum. One difference is that
the Brillouin zone and the bandwidth for a tight-binding
Hamiltonian are finite (Fig. 2), while these are infinite for
the free electron model Eq. (1). Therefore the domain of
the integration in Eq. (3) is not only limited by the Fermi
contour, but also limited by the Brillouin zone boundary. We
show in Sec. III B that the finite bandwidth is a crucial feature
for emergence of perpendicular magnetic anisotropy for wide
ranges of parameters.

Γ

ky

kx

M

π/a

π/a

-π/a

-π/a

FIG. 2. Brillouin zone of Eq. (6). We denote the � and M points
for later purpose.
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III. MAGNETOCRYSTALLINE ANISOTROPY

A. Free-electron Rashba model

Although the free electron model we present above [Eq. (1)]
has a simple form, it still requires complicated mathematics
to assess the magnetocrystalline anisotropy predicted by the
model since a constant energy contour given by Eq. (2) is
a quartic curve. In this section, we first discuss results of a
perturbative analysis, which assumes αR to be small and keeps
terms only up to O(α2

R). In this regime, a constant energy
contour is a quadratic curve which allows the magnetocrys-
talline anisotropy to be calculated analytically. The analytic
results shall give useful insight into the model. We then go
beyond the perturbative regime and discuss exact results in
the nonperturbative regime with arbitrary αR . In particular, we
check if the conclusions from the perturbative analysis remain
valid in the nonperturbative regime.

1. Perturbation theory: insights into the model

As we show in Appendix. B 1, expanding Eq. (2) up to
O(α2

R), we obtain a quadratic equation with respect to (kx,ky).
The contour E±(kx,ky) = E forms an ellipse, by which the
area enclosed is exactly computable. Since N±(E) is exactly
given in a simple way, calculating Eq. (3) is straightforward. In
this perturbative regime, the relation between electron number
density and the Fermi level Eq. (4) is linearly given so inverting
Ne(E) is also straightforward. Then, the magnetic anisotropy
�E(Ne) [Eq. (5)] is evaluated after simple algebra.

There are two different regimes; EF < E+
min and EF �

E+
min. For the first case, there are no minority electrons. For this

case, η = 0 in Eq. (3). In the second case, the minority band
is also occupied. For this case, η = 1 in Eq. (3). We examine
the cases one by one.

When only majority band is occupied (η = 0), the magne-
tocrystalline anisotropy [Eq. (5)] is

�E(Ne) = −Nemeα
2
R

2�2

(
1 − Ne

N−(E+
min)

)
(majority only).

(7)

Here, N−(E+
min) is the electron density when the Fermi level

touches the bottom of the minority band. The result shows
that the magnetocrystalline anisotropy is at least quadratic
in αR . Below we show this is a result of symmetry that the
magnetocrystalline anisotropy should be an even function of
αR . Equation (7) is valid only when there is no minority
electrons 0 < Ne < N−(E+

min). We show in Appendix B 1
that N−(E+

min) = Jme/π�
2 + O(α2

R), which is independent of
m [55]. Since Ne < N−(E+

min), Eq. (7) predicts the magne-
tocryatalline anisotropy to be negative. The sign corresponds
to in-plane magnetic anisotropy, which is counter to the naı̈ve
expectation that the Rashba spin-orbit coupling generates the
perpendicular magnetic anisotropy. However, this observation
does not contradict experimental observations showing per-
pendicular magnetic anisotropy since experimental results are
usually obtained when both bands are occupied.

Next, we examine the second regime where both bands are
occupied (η = 1). Strikingly, the same formalism leads us to

�E(Ne) = 0 (both bands occupied), (8)

regardless of Ne. There is no magnetocrystalline anisotropy for
this case. An intuitive way to understand this striking behavior
is observing the absence of angular dependence of Ne as a
function of the Fermi level. In Appendix B 1, we show that,
once both bands are occupied,

(2π )2Ne(EF ) = 4πme

(
meα

2
R + EF �

2
)

�4
, (9)

which has no m dependence. Therefore, when we increase
the number of electrons slightly by dNe, the contribution
to the additional magnetocrystalline anisotropy is EF dNe =
[(π�

2Ne/me) − (meα
2
R/�

2)]dNe. Since this is independent
of the direction of magnetization, adding electrons does not
change the magnetocrystalline anisotropy at all. By noting that
Eq. (7) vanishes Ne = N−(E+

min), we end up with Eq. (8).
There is a recent theory [40] which predicts perpendicular

magnetic anisotropy with the free-electron Rashba model. In
that work, the magnetocrystalline anisotropy is expressed by a
characteristic energy denoted by T . Here we show that T takes
a value within that model such that the anisotropy is strictly
zero.

To summarize this section, by using a perturbative ap-
proach, we make the following observations. First, the free-
electron Rashba model model gives the magnetocrystalline
anisotropy that is at least quadratic in αR . Second, the model
does not give perpendicular magnetic anisotropy. Third, the
magnetocrystalline anisotropy vanishes unless only a single
band is occupied. We summarize the result in Fig. 3.

2. Beyond perturbation: extension of validity

So far, we examined the properties of the free-electron
Rashba model in the perturbative regime. The perturbative

E(kx,ky)EF

ky

Minority band

No MCA

No MCA

Majority band

IMA∝αR
2

FIG. 3. Summary of the results of the magnetocrystalline
anisotropy (MCA) from the ferromagnetic free-electron Rashba
model. The lower band and the upper band are, respectively, majority
and minority band. The horizonal and vertical displacements of each
band are, respectively, due to Rashba spin-orbit coupling and the
exchange splitting. The diagram shows behaviors of the magnetocrys-
talline anisotropy for each region. The calculated magnetocrystalline
anisotropy shows in-plane magnetic anisotropy (IMA) when electrons
in the ground state occupy only the majority band, and the magnetic
anisotropy energy is at least quadratic in the Rashba parameter αR .
On the other hand, the magnetocrystalline anisotropy vanishes once
both bands are partially occupied in the ground state.
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-7
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-1

Total Electron Density (nm-2)

M
C

A 
/ α

R
(e

V
-1
nm

-4
)

2 αR (eV·nm)
0.01
0.05
0.10
0.50
1.00

FIG. 4. Numerical computation of the magnetocryatalline
anisotropy (MCA) divided by α2

R within the free-electron Rashba
model. The results show in-plane magnetic anisotropy for wide
range of the Rashba parameter and zero anisotropy after a certain
threshold within the numerical error. Note that the magnetocrystalline
anisotropy is proportional to α2

R for small Rashba parameters,
confirming the result of our perturbation approach. We use J = 1 eV
for the simulation.

approach allows gaining insight into the model easily but it
works only for small αR . In this section, we go beyond the
perturbative regime to see if the conclusions we made in the
previous section change when αR is not small. We prove that
the qualitative results from the perturbative analysis remain
valid for large αR as well.

First we prove that the magnetocrystalline anisotropy is at
least quadratic in αR . For this, we consider the sign reversal of
αR . This does not affect the energy eigenvalue spectrum of the
Hamiltonian at all since the energy eigenvalue satisfies the
property, E(kx,ky ; αR) = E(−kx, − ky ; −αR) [see Eq. (2)].
Since the total energy density cannot change by a rotational
transformation, it should be invariant under αR → −αR .
Therefore the magnetocrystalline anisotropy may be expanded
as a power series of α2

R with the leading order term proportional
to α2

R [56]. When αR becomes larger, higher order terms in
α2

R can contribute. In Fig. 4, we numerically compute the
magnetocrystalline anisotropy divided by α2

R . We see that the
first three curves almost overlap with each other. However,
when αR becomes larger so αRkF is comparable to J , the
magnetocryatalline anisotropy divided by α2

R varies as αR

changes, implying the breakdown of the perturbative result
[Eq. (7)].

Although the perturbation theory breaks down quantita-
tively, qualitative features remain the same for a wide range
of αR . In particular, Fig. 4 shows that the magnetocrystalline
anisotropy predicted by the free-electron Rashba model is neg-
ative (in-plane magnetic anisotropy) for low electron density
and vanishes (within the numerical error of our calculation)
once the total electron density goes above threshold value.
Perpendicular magnetic anisotropy is never generated.

It turns out that Eq. (8) can be rigourously proven for
arbitrary αR . Due to its complexity, here we sketch the proof
only briefly. The detailed proof is presented in Appendix B 2.
The proof proceeds as follows. First, we consider a situation
where both bands are occupied for both m = x̂ and m = ẑ,
which occurs if and only if EF � J [57]. We then use the

Cauchy integral formalism for complex contour integrals to
show that Eq. (9) holds beyond the perturbative regime. As
discussed in the previous section, Eq. (9) implies that the
magnetocrystalline anisotropy is independent of the Fermi
level when EF � J . Next, we show that �E vanishes in the
large EF limit. When combined together these features prove
that �E should be exactly zero for EF � J , which is nothing
but Eq. (8).

Here we emphasize that although Eq. (8) holds for arbitrary
αR , it is very unstable with respect to the model variation
since it is crucially dependent on Ne being independent of
the magnetization m [Eq. (9)], which holds only for the
idealized free-electron Rashba model [Eq. (1)]. Various types
of modification of the Rashba model which make it more
realistic can break this independence and result in the violation
of Eq. (8). Possible deformations include the change of
dispersion from strictly quadratic and truncation of the infinite
band width to finite width. In the next section, we consider
a tight-binding Rashba model, which is more realistic than
the idealized free-electron Rashba model in the sense that the
former has finite band width, whereas the latter has infinite
band width. This model shows that Eq. (8) is indeed violated
and perpendicular magnetic anisotropy emerges. In passing,
we note that not only the magnetocrystalline anisotropy but
also other properties of the idealized free-electron Rashba
model are peculiar. A well-known example is the intrinsic
spin Hall conductivity [25,26]. For the idealized free-electron
Rashba model, it vanishes identically when both bands are
partially filled but for slightly modified Rashba models [58,59],
it is finite.

B. Tight-binding Rashba model

We consider the tight-binding Rashba model for a
square lattice. From Eq. (6), we use the discrete crys-
tal symmetry and the Bloch theorem. We define Ck,σ =
(1/

√
N )

∑
p,q exp(ikxpa + ikyqa)Cp,q,σ , where N is the total

number of sites and k = (kx,ky) is the crystal momentum
within the Brillouin zone in Fig. 2, which diagonalizes the
Hamiltonian. We define the reduced 2 × 2 Hamiltonian h(k)
by H = ∑

k,σ,σ ′ C
†
k,σ ′[h(k)]σ ′,σCk,σ , where [h(k)]σ ′,σ is the

matrix element of h(k) in the 2 × 2 spin space. Since h(k) is a
2 × 2 matrix, we compute the eigenvalues exactly:

E±(k) = − �
2

mea2
(cos kxa + cos kya) ±

[
J 2m2

z +
(

Jmx

+ αR

a
sin kya

)2

+
(

Jmy − αR

a
sin kxa

)2]1/2

. (10)

We plot Eq. (10) as a function of ky for kx = 0 in Fig. 5(a).
The formalism given in Eq. (5) provides a way to compute
the magnetocrystalline anisotropy. In this section, we present
the results for a two-dimensional square lattice only. The
result for a two-dimensional hexagonal lattice is presented
in Appendix A.

Figure 5(b) shows the relation between the magnetocrys-
talline anisotropy and the electron density (normalized to one
when both majority and minority bands are completely filled).
For low electron density (Ne � 0.25Nmax), the system acquires
in-plane magnetic anisotropy. This is understandable in that a
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m
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0

Tight-binding result
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2

FIG. 5. (a) Energy dispersion of the tight-binding Rashba model
[Eq. (10)]. Energies as a function of ky , for kx = 0, are given by the
red and blue curves for majority and minority bands, respectively.
An intentional vertical offset is introduced for clear presentation.
The asymmetry between −ky and ky originates from the Rashba
interaction which is taken to be αR = 0.02 eV nm in this figure.
Near the band minimum, the energy dispersion can be approximated
by a quadratic dispersion [Eq. (2)]. However, near the Brillouin zone
boundary, it differs significantly. The magnetization direction is taken
to be m = (1/2,0,

√
3/2). Depending on the Rashba parameter and

the direction of magnetization, the dispersion can be even more
complicated particularly when the two bands approach each other.
(b) The magnetocrystalline anisotropy (MCA) as a function of the
total electron density divided by the electron density for completely
filled bands Nmax = 2.2 × 1019 m−2. We use the Rashba parameters
αR = 0.02, 0.05, and 0.08 eV nm. The results show in-plane magnetic
anisotropy (IMA) for very low and very high electron occupation.
For a wide range of the intermediate electron density, it shows
perpendicular magneitc anisotropy (PMA). (c) The peak values
of the magnetocrystalline anisotropy as a function of the Rashba
parameter. The blue circles are the simulation results and the solid
line is a quadratic fitting result. J = 1 eV, me = 9.1 × 10−31 kg,
and a = 0.3 nm. The area of the two-dimensional system in this
simulation is L × L where L = 60 nm is the length of each direction.

parabolic approximation of the dispersion relation [Eq. (10)] is
equivalent to that of the free-electron Rashba model [Eq. (2)].
However, as the electron density increases, the parabolic
approximation breaks down, thus the system can acquire
perpendicular magnetic anisotropy from the point where the
effective mass becomes negative (Ne ≈ 0.25Nmax). After this
point, the perpendicular magnetic anisotropy persist widely,
until Ne ≈ 0.75Nmax, covering the whole regime where the
two spin bands overlap, which is in distinct contrast to the
prediction [Eq. (8)] of the idealized free-electron Rashba
model.

Our computation shows a similar behavior to a first-
principles calculation [10] on the band filling dependence of
the magnetocrystalline anisotropy. Although a simple Rashba
model cannot be exact, it provides much insight into the
system. Changing the electron density by means of substituting
atoms or an external voltage can change not only the magnitude
of the magnetocrystalline anisotropy but also its sign.

There are two key differences between the tight-binding
Rashba model and the free-electron Rashba model that give
rise to finite perpendicular magnetic anisotropy. The first
difference is the deviation of the dispersion from a quadratic.
It allows a nonzero magnetocrystalline anisotropy for a wide
range of band filling, due to breakdown of Eq. (9). Once the
relation between Ne and EF has a magnetization dependence,
a finite magnetocrystalline anisotropy can arise even if both
bands are occupied. The second difference is finiteness of band
width (or Brillouin zone). It plays a crucial role for the sign
of the magnetocrystalline anisotropy. Since the band width is
finite, there must be both maximum (band top) and minimum
(band bottom) energies. Near the band bottom (the � point in
Fig. 2), the dispersion is electronlike with a positive effective
mass. Thus the theory in Sec. III A is relevant, and the sign
of the magnetocrystalline anisotropy corresponds to in-plane
magnetic anisotropy for low electron density. On the other
hand, near the band top (the M point in Fig. 2), the dispersion
is holelike with a negative effective mass. Since the behavior is
opposite to the electronlike part, the sign of the magnetocrys-
talline anisotropy can correspond to perpendicular magnetic
anisotropy. As a result, the magnetocrystalline anisotropy near
the band top of the majority band corresponds to perpendicular
magnetic anisotropy [Fig. 5(b)]. We remark that our analysis is
similar to that in Ref. [11], which implies that most important
qualitative features of the anisotropy energy can be understood
by analyzing high symmetry points, where band maximum and
minimum are located.

Figure 5(c) indicates that the magnetocrystalline anisotropy
is proportional to α2

R in a reasonable range of αR . We
argue analytically in Sec. III A that the magnetocryatalline
anisotropy can be expanded in terms of α2

R . The same argument
applies to this tight-binding Rashba model. We discuss
below in Sec. III C the implication of the sign independence
on experimental observation of the correlation between the
magnetocrystalline anisotropy and other spin-orbit coupling
phenomena.

We now fix the Rashba parameter and compute the
magnetocrystalline anisotropy for various exchange strengths.
Figure 6 shows the result. The general behaviors discussed
above remain the same. The weaker J is, the wider the
range of the emergence of perpendicular magnetic anisotropy
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FIG. 6. The magnetocrystalline anisotropy (MCA) for various
the exchange energies J = 0.3, 0.6, and 0.9 eV with a fixed Rashba
parameter αR = 0.05 eV nm, me = 9.1 × 10−31 kg, and a = 0.3 nm
are used. The stronger the exchange energy is, the higher the
magnetocrystalline anisotropy is. On the other hand, the weaker the
exchange energy is, the wider the range of the electron density that
acquires perpendicular magnetic anisotropy.

is. This is because the band overlap between the majority
and minority bands increases as J decreases. On the other
hand, the stronger J is, the stronger the magnetocrystalline
anisotropy is. Therefore we conclude that materials with strong
J are advantageous to achieve a strong magnetocrystalline
anisotropy with high controllability under an external voltage.
On the other hand, materials with weak J are advantageous
for perpendicular magnetic anisotropies that stably exists over
a wide range of the electron density.

The mirror symmetry of the magnetocrystalline anisotropy
in Fig. 5(b) originates from the symmetry between electrons
at the � point and holes at the M point. From Eq. (10), the
total energy density for completely filled bands is Efilled =
(2π )−2

∫ π/a

−π/a

∫ π/a

−π/a
[E+(kx,ky) + E−(kx,ky)]d2k = 0, thus the

magnetocrystalline anisotropy at high electron density can be
computed by hole contributions near the M point. In other
words, �E(Nmax − Ne) is the same as the contribution from Ne

number of holes. Equation (10) shows the symmetry between
the electronlike � point and holelike M point, E±(kx,ky) =
−E∓(π/a − kx,π/a − ky), which implies �E(Nmax − Ne) =
�E(Ne). This is a model-specific property. For instance, in
Appendix A, we start from a two-dimensional hexagonal
lattice for which the dispersion does not have such symmetry
[Eq. (A3)] and shows that this mirror symmetry around
Ne = 0.5Nmax is not general.

There are four kinks in the magnetocrystalline anisotropy in
Fig. 5(b). We observe that the two kinks around Ne ≈ 0.3Nmax

and ≈0.7Nmax correspond to the bottom of the minority
band and the top of the majority band, respectively. Since
the minority band starts to be occupied from Ne ≈ 0.3Nmax,
the behaviors of the magnetocrystalline anisotropy below and
above this value are different. Similarly, the majority band
is no longer occupied above Ne ≈ 0.7Nmax. There are two
more kinks near Ne ≈ 0.25Nmax and Ne ≈ 0.75Nmax. We see

that these occur near the point where each band are half filled.
Near these points, electrons at the Fermi level is near inflection
points of the energy dispersion so the effective mass changes
its sign. The existence of kinks is quite general as presented in
Fig. 6 and Appendix A.

To summarize this section, we perform tight-binding
calculations for the magnetocrystalline anisotropy within a
discretized Rashba model. The deviation from a quadratic
dispersion allows a nonzero magnetocrystalline anisotropy
even when both bands are occupied. The finite bandwidth
allows emergence of perpendicular magnetic anisotropy over
a wide range of the total electron density. The resulting
magnetocrystalline anisotropy is proportional to α2

R for a
reasonable range of αR . Even though αR becomes larger
than that, the magnetocrystalline anisotropy is independent
of the sign of αR due to symmetry, and is constrained by
symmetry to be even powers of αR . The implications of the sign
independence and comparison with experiments are discussed
in the next section. We perform similar calculations for a
two-dimensional hexagonal lattice as well as a square lattice
discussed here. The results are present in Appendix A.

C. Remarks

The dependence of the magnetocrystalline anisotropy on
αR differs from the corresponding dependence of many other
phenomena of spin-orbit coupling origin. In the previous
sections, we show by symmetry that the magnetocrystalline
anisotropy is independent of the sign of αR . As a result, it is
quadratic in αR for a reasonable range of αR . On the other
hand, other phenomena of spin-orbit origin such as spin-orbit
torque and Dzyaloshinskii-Moriya interaction have a linear
contribution in αR .

This feature has clear experimental implications. When a
magnetic layer has two interfaces with opposite Rashba param-
eters, the total spin-orbit torques and the total Dzyaloshinskii-
Moriya interaction arising from the both interfaces are zero
since they are odd in αR and the contributions from the two
interfaces mutually cancel each other. However, such cancel-
lation does not occur for the magnetocrystalline anisotropy
and the contributions from the two interfaces add up since the
anisotropy is even in αR . A similar phenomenon persists even
when only one interface of a magnetic layer is subject to strong
inversion asymmetry, if there are multiple energy bands. It is
demonstrated [60] that multiple bands for a given interface may
experience different signs of the Rashba spin-orbit coupling.
In such a situation, it is possible that contributions of those
bands to the magnetocrystalline anisotropy can add up whereas
their contributions to the linear spin-orbit phenomena such
as spin-orbit torque and Dzyaloshinskii-Moriya interaction
tend to cancel out. This observation indicates that simple
proportionality analysis in experiments may fail to capture
the correlation between the magnetocrystalline anisotropy and
other phenomena of spin-orbit coupling origin.

In this sense, our observation can be consistent with a
recent experiment [48] reporting the opposite behaviors of the
Dzyaloshinskii-Moriya interaction and the perpendicular mag-
netic anisotropy in Ir/Co/AlOx multilayers for various thick-
ness of Co. According to the work, the Dzyaloshinskii-Moriya
interaction reduces as the thickness of Co increases, while the
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perpendicular magnetic anisotropy increases. This difference
may originate from multiple origins of the spin-orbit coupling
phenomena, such as multiple interfaces and multiple orbital
bands. As the thickness of Co increases, the contributions to
the Dzyaloshinskii-Moriya interaction may cancel out while
those to the magnetocrystalline anisotropy should add up. One
remark is in order. Although our theory demonstrate that the
positive correlation between the magnetocrystalline anisotropy
and other spin-orbit coupling phenomena may breakdown, it is
not necessarily the explanation of the breakdown observed in
Ref. [48] because there are other sources of magnetocrystalline
anisotropy.

We observe that the magnetocrystalline anisotropy depends
on the total electron density [Fig. 5(b)] and it can even
change its sign. The strong dependence of magnetocrystalline
anisotropy on the total electron density is another feature
that requires a well-controlled experiment to observe the
correlation. When one varies the experimental conditions to
obtain systems with various spin-orbit coupling parameters,
the total electron density at the interface may change, which
disturbs clear interpretation of the dependence of the magne-
tocrystalline anisotropy on the spin-orbit coupling parameter.

The density-dependent magnetocrystalline anisotropy
opens another route of the voltage-controlled magnetic
anisotropy [16,42–46]. The voltage-controlled magnetic
anisotropy received considerable attention due to its significant
potential to enhance the efficiency of spintronic devices.
There are previous theories [40,41] suggesting that modulating
the Rashba parameter by applying an external voltage is a
possible route of the voltage-controlled magnetic anisotropy.
However, it is unlikely to be a main mechanism in metallic
ferromagnetic films in which a nominal potential gradient is
not a main mechanism generating Rashba parameters [60].
An external electric field is shielded by electron screening in
the metal, thus it is difficult to change the Rashba parameter
significantly. On the other hand, density variations by doping
or an external voltage can change the electron density at
the interface, changing the interfacial contributions to the
magnetocrystalline anisotropy significantly. The conclusion
from the simple model is consistent with first-principle
studies [43,61].

IV. CONCLUSION

In conclusion, we compute the magnetoctrystalline
anisotropy for simple ferromagnetic Rashba models. The
properties dramatically change depending on the dispersion
relations. For a free electron (quadratic) dispersion, the
system does not acquire perpendicular magnetic anisotropy
at all. More interestingly, we analytically show that the
magnetocrystalline anisotropy is exactly zero regardless of the
Rashba coupling strength if both majority and minority bands
are partially occupied in the ground state. This result is not
consistent with experimental observations, implying that a free
electron dispersion is not suitable for studying perpendicular
magnetic anisotropy arising from the Rashba interaction.

We thus generalize the model to have a finite band width,
which necessarily generates deviation from the free electron
dispersion. We start from tight-binding Hamiltonians and
conclude that the system acquires perpendicular magnetic

anisotropy over wide range of parameters, consistent with
experimental observations. A finite band width is a crucial
feature of the tight-binding Hamiltonians that gives rise to
perpendicular magnetic anisotropy. We also observe that the
magnetocrystalline anisotropy depends on the band filling
and it can even change its sign. We argue that the interface
electron density modulation by voltage is a more important
cause of voltage-controlled magnetic anisotropy than the
voltage-controlled modulation of the Rashba parameter is.

Our results show the possibility of breakdown of positive
correlation between perpendicular magnetic anisotropy and
other spin-orbit coupling phenomena. In particular, if there
are multiple sources of spin-orbit coupling phenomena, such
as multiple interfaces and multiple orbital bands, experimental
observation of the correlation requires careful analysis.
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APPENDIX A: TIGHT-BINDING RASHBA MODEL FOR A
TWO-DIMENSIONAL HEXAGONAL LATTICE

The two-dimensional hexagonal lattice we use here is
presented in Fig. 7. We construct a tight-binding Hamiltonian

(p,q)

a

u2

u1 (p+1,q)

(p,q+1)

(p+1,q-1)
x

y

FIG. 7. The model for a two-dimensional hexagonal lattice. Here
a is the lattice constant, p and q are the position indices. There are
two principal directions û1 and û2. Then, the position vector of each
site is paû1 + qaû2. The labeled sites by (p,q + 1), (p + 1,q), and
(p + 1,q − 1) are the neighboring hopping sites. The other three sites
are captured by adding hermitian conjugates of these.

184402-8



PERPENDICULAR MAGNETIC ANISOTROPY OF TWO- . . . PHYSICAL REVIEW B 94, 184402 (2016)

by the same way illustrated in Sec. II. First, we define the
electron annihilation operator Cp,q,σ at the site (p,q) and spin
σ . The indices of a site are defined by assigning its position
to be paû1 + qaû2 where û = x̂ and û2 = (1/2)x̂ + (

√
3/2)ŷ.

Then, the Hamiltonian is

H = HK + HJ + HR, (A1a)

where

HK = −tk
∑
pqσ

(C†
p+1,q,σ Cp,q,σ + C

†
p,q+1,σ Cp,q,σ

+C
†
p+1,q−1,σ Cp,q,σ ) + H.c., (A1b)

HJ = J
∑

pqσσ ′
[C†

p,q,σ (σ )σ,σ ′Cp,q,σ ′ ] · m, (A1c)

HR = itR
∑

pqσσ ′
[C†

p+1,q,σ [(û1 × ẑ) · σ ]Cp,q,σ

+C
†
p,q+1,σ [(û2 × ẑ) · σ ]Cp,q,σ + C

†
p+1,q−1,σ

× [((û1 − û2) × ẑ) · σ ]Cp,q,σ ] + H.c., (A1d)

where tk and tR are hopping parameters to be determined.
By using Bloch theorem, the Hamiltonian can be written

by a 2 × 2 matrix, of which the eigenvalues are exactly given:

E±(k)=−2tk

(
cos kxa + 2 cos

kxa

2
cos

√
3kya

2

)
± J̃ , (A2)

J̃ 2 =J 2m2
z +

(
Jmx + 2

√
3tR cos

kxa

2
sin

√
3kya

2

)2

+
(

Jmy − 2tR sin
kxa

2
cos

√
3kya

2
− 2tR sin kxa

)2

.

(A3)

The next step is determining tk and tR . For a continuum
limit up to O(a2),

E± = −6tk + 3
2 tka

2k2

±
√

J 2 + 6J tRa(mxky − mykx) + 9t2
Ra2k2. (A4)

This should coincide with the continuum dispersion Eq. (2) (up
to a constant energy shift). Therefore we obtain tk = �

2/3mea
2

and tR = αR/3a.
We now compute the magnetocrystalline anisotropy by the

same way. The result is shown in Fig. 8. The features discussed
in the main text are valid, except the model-specific property
of a square lattice that the magnetocrystalline anisotropy is
mirror symmetric around Ne = 0.5Nmax.

APPENDIX B: DETAILS OF THE ANALYTIC THEORIES

1. Perturbation theory for a free-electron Rashba model

The aim of this section is to present the mathematical
derivations of Eqs. (7)–(9) from Eq. (2) up to O(α2

R).
Throughout this section, we discard all terms beyond O(α2

R).

M
C

A 
(m

J/
m

2 )

15

10

5

0

-5

-10
0.0 0.5 1.0

Normalized Electron Density

αR (eV·nm)

0.02
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0.08

FIG. 8. The magnetocrystalline anisotropy computed within a
tight-binding Rashba model for a two-dimensional hexagonal lattice
result (Fig. 5). The overall features are the same as a two-dimensional
square lattice, except the absence of the mirror symmetry around the
normalized electron density Ne = 0.5Nmax.

First we compute N±(E) from the energy dispersion.
Expanding Eq. (2) up to O(α2

R), the dispersion relation is
approximated by the following quadratic function:

E±(kx,ky) = �
2k2

x

2m̃x±
+ �

2
(
ky ± k0

y

)2

2m̃
y
±

± J − meα
2
R sin2 θ

2�2
,

(B1)
where θ is defined by m = (sin θ,0 cos θ ), the spin-dependent
band shift is given by k0

y = meαR sin θ/�
2, and the renormal-

ized masses are

1

m̃x±
= 1

me

± α2
R

J�2
,

1

m̃
y
±

= 1

me

± α2
R cos2 θ

J�2
. (B2)

Then, (2π )2N±(E) is given by the area of the contour of E =
E±(kx,ky) in k space (see Fig. 1). Since E = E±(kx,ky) forms
an ellipse, the area is analytically computable:

(2π )2N±(E) =
2π

√
m̃x±m̃

y
±

�2
(E − E±

min). (B3)

From Eq. (B1), we obtain the band bottom energies Emin
± by

substituting k = (0, ∓ k0
y).

E±
min = ±J − meα

2
R sin2 θ

2�2
. (B4)

We are now ready to compute Eq. (3).
Equation (7) is derived by putting EF < E+

min and η = 0.
Then Ne(E) = N−(E). Inverting the function, we obtain the
Fermi level as a function of the total electron density εF (Ne) =
(2π�

2/

√
m̃x−m̃

y
−)Ne + E−

min. Equation (3) (as a function of Ne)
is

Etot(εF (Ne)) =
∫ εF (Ne)

E−
min

E
dNe

dE
dE =

∫ Ne

0
εF (Ne)dNe

= π�
2√

m̃x−m̃
y
−

N2
e + E−

minNe. (B5)
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Here, at the first line, we change the variable from E to Ne

by Eq. (B3). Keeping in mind that the renormalized masses
and E−

min have angular dependence, we end up with the
magnetocrystalline anisotropy

�E(Ne) = Etot(εF (Ne))|θ=π/2 − Etot(εF (Ne))|θ=0

= −Nemeα
2
R

2�2

(
1 − Ne

N−(E+
min)

)
, (B6)

where N−(E+
min) = (Jme/π�

2) + O(α2
R) from Eqs. (B3)

and (B4). This is Eq. (7).
To derive Eq. (8), we start from taking derivative of Eq. (B3)

with respect to E,

dN±
dE

=
√

m̃x±m̃
y
±

2π�2
. (B7)

Therefore Eq. (5) for η = 1 is given by, after some algebra,

Etot(EF ) = 2πme

(
E2

F − J 2
)

�2
, (B8)

which is independent of m. We then combine Eq. (B3) with
Eq. (B4) to end up with

(2π )2[N+(EF ) + N−(EF )] = 4πme

(
meα

2
R + EF �

2
)

�4
, (B9)

which is nothing but Eq. (9). Inverting the function,

εF (Ne) = π�
2

2me

Ne − meα
2
R

�2
. (B10)

Combining Eqs. (B8) and (B10), Etot(ε(Ne)) has no angular
dependence. Thus Eq. (5) is

�E(Ne) = Etot(εF (Ne))|θ=π/2 − Etot(εF (Ne))|θ=0 = 0,

(B11)

when both bands are occupied. This is Eq. (8).

2. Exact theory for a free-electron Rashba model

The purpose of this section is to show that Eq. (8) holds
regardless of how large αR is. The flow of the proof is sketched
in Sec. III A. We first show that (i) Eq. (9) is exact above the
total electron density at which both bands are occupied. This
implies that the magnetocrystalline anisotropy is independent
of EF in this density range, which amounts to EF � J . Then
we show that (ii) limEF →∞ �E = 0. We prove this by showing
that �E goesO(E−1

F ) at most for large EF limit. Combining (i)
and (ii), we end up with the result that the magnetocrystalline
anisotropy is exactly zero [Eq. (8)].

a. Proof of Eq. (9) for large αR

We prove Eq. (9) by using the contour integral technique,
mainly, the Cauchy integral theorem. We do not assume that
αR is small. We assume that both bands are occupied for all
m. We first prove that this is equivalent to EF � J . To show
the forward part of this equivalence, we take m = ẑ. Then,
E+

min = J , thus EF should be greater than or equal to J for
the minority band to be occupied. To prove the backward part,
we assume EF � J . For k = 0, E±(kx,ky) = ±J � J � EF .

Therefore k = 0 state is occupied for both bands. One corollary
from the proof is that k = 0 is always occupied when EF � J .

We start from Eq. (2) with m = (sin θ,0, cos θ ) for 0 �
θ � π/2. We change the variables (kx,ky) to a single complex
variable z = i(kx + iky). In terms of z,

E±(z) = �
2z∗z
2me

±
√

J 2 cos2 θ + α2
R(z − w)(z∗ − w),

(B12)

where w = J sin θ/αR > 0.
For a given EF , N±(EF ) is given by the area enclosed by

E±(z) = EF (Fig. 1). By Green’s theorem, the area is given by

(2π )2N± =
∫

D±
dkxdky =

∫
C±

kxdky − kydkx

2

= 1

2i

∫
C±

z∗dz, (B13)

where D± = {z|E±(z) � EF } is the set of occupied states and
C± = {z|E±(z) = EF } is the boundary of D±, that is, the con-
tour of the Fermi level. To perform the integration, we express
z∗ as a function of z. By equating E±(z) = EF and solving z∗,

z∗
±or∓ = 2me

z2�4

[
meα

2
R(z − w) + EF �

2z ±
√

R(z)
]
, (B14)

R(z) = [
meα

2
R(z − w) + EF z�2]2

(B15)
− z2

�
4
(
E2

F − J 2 + α2
Rwz

)
.

Here, z∗
± are functions of z which satisfy z∗ = z∗

±(z) on C±.
We denote the subscript by ± or ∓ since it is ambiguous
which one corresponds to the majority band and the minority
band. However, it does not affect the final result. The total
electron density is then given by

(2π )2Ne(EF ) = 1

2i

∫
C+

z∗
+dz + 1

2i

∫
C−

z∗
−dz. (B16)

The Cauchy integral theorem implies that the complex
contour integrals in Eq. (B16) is equivalent to those around
nonanalytical points only. From Eq. (B14), there are two types
of nonanalytic points of z∗

±. The first one is the pole at z = 0.
We call this the trivial pole. We show at the beginning of this
section that (kx,ky) = 0 is occupied for both bands. That is,
the trivial pole z = 0 is always in D± (see Fig. 9). The second
type comes from the square root function. Since the square
root function is multivalued in the complex plane, there are
branch cuts which connect the branch points that are defined
by the zeros of R(z). The whole branch cuts are nonanalytic
points. Thus it is important to see the behavior of the zeros of
R(z). Since R(z) is a cubic polynomial, there are three zeros
of R(z). Below we present three properties of the three zeros
without proofs. The proofs are presented in Appendix C.

The first property is that (i) all three zeros of R(z) are
real and nonnegative if EF � J . We call the zeros r1, r2,
and r3, satisfying r1 � r2 � r3. Another important result is
that (ii) ri ∈ D− is equivalent to ri ∈ D+. Intuitively, we may
say that, if ri is inside the contour C−, it is also inside the
contour C+ [62]. Since D+ ⊂ D−, one direction of the proof
is obvious, but the other direction is not. The last property is
that iii) no or two zeros of R(z) are in D± (or inside C±). As a
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C+
D+

CrC0

C-

D-

Im[z]=kx

Re[z]=-ky

trivial pole

No branch cut in D--D+)
(No branch point in D--D+

Analytic in D--D+

branch cuts

r3  r1  r2  

FIG. 9. Complex contour integral for Ne. Here C± are the integral
contours for N±, and D± are the enclosed region (blue and red for +
an −), respectively. The white X is the trivial pole and the magenta Xs
are the branch points of the integrand. The trivial pole is at z = 0 and
the branch points are on the real axis and denoted by r1, r2, and r3. In
Appendix C, we show that ri ∈ D+ for no or two of ri and ri /∈ D− for
the others. It is also shown that 0 ∈ D+ if EF � J . Thus we define the
branch cuts (magenta lines) by connecting r1 and r2, and connecting
r3 and a complex infinity. Therefore the integrands in Eq. (B16) are
analytic in D− − D+. We now can shrink the integral contour C±
to C0 + Cr (yellow) by the Cauchy integral theorem, where C0 is a
contour surrounding the trivial pole, and Cr is a contour surrounding
the branch cut defined by r1 and r2. If even r1 and r2 are not in D+,
C0 is the only relevant contour and Cr is outside D±. Both cases give
the same mathematical results.

result, the situation is summarized in Fig. 9. We observe that
D− − D+ is analytic. Therefore, when we shrink the integral
contour by using the Cauchy integral theorem, we can end up
with the same contour C0 + Cr for both terms in Eq. (B16).

By using the Cauchy integral theorem, both terms in
Eq. (B16) share the same integral contour,

(2π )2Ne(EF ) = 1

2i

∫
C0+Cr

(z∗
+ + z∗

−)dz. (B17)

If no zeros of R(z) is in D±, C0 is the only relevant contour.
However, we below show that contributions from Cr are
canceled out when we add up z∗

+ and z∗
−. One remark is

in order. The situation becomes complicated if any of ri is
exactly on C±. For this case, defining C± bypassing ri with an
infinitesimally small radius does not change the result. Another
resolution is using continuity of Ne(EF ). Since one of ri can be
exactly on C± only at particular values of EF , we may exclude
the particular points in the proof and use the continuity to get
Ne(EF ) for the whole domain.

The result greatly simplifies the situation. The complicated√
R(z) terms in z∗

+ and z∗
− are canceled out when they are

added up,

(2π )2Ne(EF ) = 2me

i�4

∫
C0+Cr

α2
Rme(z − w) + EF �

2z

z2
dz

= 4πme

�2
Res
z=z0

α2
Rme(z − w) + EF �

2z

z2

= 4πme

(
α2

Rme + EF �
2
)

�4
, (B18)

which is exactly Eq. (9). At the second line, we use the
Cauchy’s residue theorem.

The importance of the assumption that both bands are
occupied in this proof is twofold. First, the condition is
equivalent to EF � J so that the zeros of R(z) satisfy the
properties proven in Appendix C. The properties guarantee
that the integrands in Eq. (B16) are analytic in D− − D+ so
that we can shrink the integral contours for both bands to the
same contour. Second and more importantly, the complicated
contributions from ±√

R(z) are canceled out when we add up
the contributions from both bands. Therefore we can use the
Cauchy’s residue theorem for the trivial pole z = 0 only.

b. Proof of limEF→∞ �E = 0

For extremely large EF , the contour of the Fermi level is
simple. Therefore we can define Fermi momenta for each band
as a function of the azimuthal angle of the momentum. We
write k = (k cos φ,k sin φ). Then, the Fermi momentum kF,±
is defined by E±(kF cos φ,kF sin φ) = EF . For simplicity of
equations, we assume αR > 0, but the flow of the proof is
the same for general αR . From Eq. (2) and by putting m =
(sin θ,0, cos θ ),

kF,± =
√

2meEF

�2
∓ meαR

�2
+

√
me

8EF

meα
2
R ∓ 2J�

2 sin θ sin φ

�3

∓ J 2

4αREF

(1 − sin2 θ sin2 φ) + O
(
E

−3/2
F

)
. (B19)

By using the polar coordinate, the total energy density below
the Fermi sea,

Etot(EF ) = 1

(2π )2

∫ 2π

0
dφ

(∫ kF,+

0
kE+dk +

∫ kF,−

0
kE−dk

)
,

(B20)

we can expand the integrand with respect to 1/k and integrate
term by term since kF,± is O(E−1/2

F ). After tedious algebra,
we end up with

Etot(EF ) = (θ -independent terms) + O
(
E−1

F

)
. (B21)

Therefore �E = O(E−1
F ) at most, which proves that

limEF →∞ �E = 0.

APPENDIX C: PROPERTIES OF ZEROS OF R(z)

In this section, we prove some important properties of zeros
of R(z) defined by Eq. (B15). Since R(z) is a cubic polynomial,
it has three zeros. We call these ri for i = 1,2,3. We below
show that all of ri are real. Therefore we can denote ri by the
order of its magnitude r1 � r2 � r3. This section consists of
three subsections each of which corresponds to each property
that we mention in the main text.

1. All of ri are real and nonnegative if EF � J

We write down R(z) = az3 + bz2 + cz + d. Then, the
coefficients are

a = −α2
R�

4w < 0, (C1a)

b = m2
eα

4
R + 2mEα2

REF �
2 + J 2

�
4 > 0, (C1b)
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c = −2meα
2
Rw

(
meα

2
R + EF �

2
)

< 0, (C1c)

d = m2
eα

2
Rw2 > 0. (C1d)

Zeros of a cubic polynomial az3 + bz2 + cz + d are all real if
and only if � = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2 is
nonnegative. After some algebra,

�̃ = 4
(
E2

F − J 2
)
(α2 + 2αEF + J 2)2 − 27α2J 4t2

+ 4αJ 2(α + EF )
[
(α + EF )2 − 9

(
E2

F − J 2
)]

t, (C2)

where �̃ = �/J 2
�

12m2
eα

2
Rt , α = meα

2
R/�

2, and t = cos2 θ .
We treat �̃ as a function of t . �̃(t) is quadratic and the domain
of t is 0 � t � 1. After some algebra,

�̃(0) = 4
(
E2

F − J 2
)
(α2 + 2EF α + J 2)2 � 0, (C3)

�̃(1) = (J 2 − 2αEF )2[(α + 2EF )2 − 4J 2] � 0, (C4)

�̃ext = 4
27

[
3E2

F − 3J 2 + (α + EF )2
]3

> 0, (C5)

if EF � J . Here, �̃ext is the extremum value of �̃(t) evaluated
at the value t satisfying �̃′(t) = 0. Since the boundary values
and the extremum value are all nonnegative, �̃ (thus �) is
nonnegative on 0 � t � 1, proving all of ri are real.

To show ri � 0 for all i, we see the signs of the coefficients
in Eq. (C1). It is easy to see that R(−z) > 0 for any real and
positive z. Therefore R(z) has no negative real zero.

2. ri ∈ D+ is equivalent to ri ∈ D−

This statement is equivalent to that any branch point of
z∗
± cannot be in D− − D+. It is one of the most important

properties that allows us to draw Fig. 9. Since D+ ⊂ D−,
r ∈ D+ ⇒ r ∈ D− is straightforward, but the other direction
is not.

To prove this, we use the definition of D± that ri ∈ D± is
equivalent to E±(ri) − EF � 0. We start from the following
identity:

[E+(z) − EF ][E−(z) − EF ] =
(

meα
2
R

�2

z − w

z
+ EF

−�
2z∗z
2me

)2

− R(z)

z2�4
. (C6)

Since R(ri) = 0, the second term in the right-hand side is zero
when z = ri . In addition, we show that ri should be real in the
previous section. Therefore the first term in the right-hand side
is nonnegative when z = ri ,

[E+(ri) − EF ][E−(ri) − EF ] � 0. (C7)

In the main text, we exclude the case where any ri is exactly
on C±. Thus we may assume E±(ri) − EF �= 0. Under this
assumption, Eq. (C7) implies that E+(ri) < EF is equivalent to
E−(ri) < EF . In other words, ri ∈ D+ is equivalent to ri ∈ D−
for any ri satisfying R(ri) = 0.

3. Only even number of ri are in D±

In the previous section, we show that the branch points
of the integral Eq. (B16) (ri) are not in D− − D+. What is
important is not only the branch points but also the branch

(a)
None of ri in D±

R(z)

(b)

+∞

-∞

kF,0 r1 r2 r3 z

r1 and r2 in D±
R(z)

+∞

-∞

r1 r2 r3 zkF,0

FIG. 10. Two possibilities of the number of ri in D± satisfying
Eq. (C9). Since R(kF,0) > 0, the only possible domains in which kF,0

can be present are (a) kF,0 < r1 and (b) r2 < kF,0 < r3. The number
of ri less than kF,0 is the number of ri in D±. Therefore either no or
two of ri are in D±, leading us to Fig. 9.

cuts. The branch cuts are defined by connecting a pair of
branch points (including the complex infinity if the number of
branch points are odd). To show that any branch cut does not
have an intersection with D− − D+, only even number of ri

should be in D± (see Fig. 9).
The following lemma is useful for the proof: ri ∈ D± is

equivalent to EF � �
2r2

i /2me. This lemma is a corollary of the
previous section. With this lemma, we do not need to compute
E±(ri) and compare to EF in order to check ri ∈ D±. Instead,
we only compare ri to

√
2meEF /� [63]. Therefore it provides

a useful criterion to check ri ∈ D±.
We first prove ri ∈ D± ⇒ EF � �

2r2
i /2me. Since ri ∈

D±, EF � E+(r) � �
2r2

i /2me, which is the desired result.
We next prove EF � �

2r2
i /2me ⇒ ri ∈ D±. Note that EF �

�
2r2/2me > E−(ri), thus ri ∈ D−. In the previous section,

we show that ri ∈ D− is equivalent to ri ∈ D+. Therefore
ri ∈ D±, which completes the proof.

As a result, the statement that we want to show is equivalent
to the statement that “only even number of ri satisfy ri � kF,0

where kF,0 = √
2meEF /�.” After some algebra,

R(kF,0) = 2meEF J 2
�

2 cos2 θ + meα
2
R(kf,0 − w)2

× (
meα

2
R + 2EF �

2
)
. (C8)

Therefore R(kF,0) is positive unless θ = π/2 and EF =
�

2w2/2me. The latter case is not our interest because of the
following argument. Note that R(w) = �

4w2J 2 cos2 θ , thus,
w is a zero of R(z) when θ = π/2. Since EF = �

2w2/2me,
w is exactly at the Fermi level (on C±). In the main text, we
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exclude this situation. As a result, we now have

lim
z→∓∞ R(z) = ±∞, R(kF,0) > 0. (C9)

Since R(z) has three real and nonnegative zeros, there are
only two possibilities as presented in Figs. 10(a) and 10(b),
respectively. Figure 10 shows that either no or two of ri satisfy
ri � kF,0, which is the desired result.

[1] P. F. Carcia, A. D. Meinhaldt, and A. Suna, Perpendicular
magnetic anisotropy in Pd/Co thin film layered structures, Appl.
Phys. Lett. 47, 178 (1985).

[2] H. J. G. Draaisma, W. J. M. de Jonge, and F. J. A. den Broeder,
Magnetic interface anisotropy in Pd/Co and Pd/Fe multilayers,
J. Magn. Magn. Mater. 66, 351 (1987).

[3] S. Monso, B. Rodmacq, S. Auffret, G. Casali, F. Fettar, B. Gilles,
B. Dieny, and P. Boyer, Crossover from in-plane to perpendicular
anisotropy in Pt/CoFe/AlOx sandwiches as a function of Al
oxidation: A very accurate control of the oxidation of tunnel
barriers, Appl. Phys. Lett. 80, 4157 (2002).

[4] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D.
Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and
H. Ohno, A perpendicular-anisotropy CoFeB–MgO magnetic
tunnel junction, Nat. Mater. 9, 721 (2010).

[5] S.-W. Jung, W. Kim, T.-D. Lee, K.-J. Lee, and H.-W. Lee,
Current-induced domain wall motion in a nanowire with
perpendicular magnetic anisotropy, Appl. Phys. Lett. 92, 202508
(2008).

[6] M. Nakayama, T. Kai, N. Shimomura, M. Amano,
E. Kitagawa, T. Nagase, M. Yoshikawa, T. Kishi, S.
Ikegawa, and H. Yoda, Spin transfer switching in Tb-
CoFe/CoFeB/MgO/CoFeB/TbCoFe magnetic tunnel junctions
with perpendicular magnetic anisotropy, J. Appl. Phys. 103,
07A710 (2008).

[7] O. G. Heinonen and D. V. Dimitrov, Switching-current reduc-
tion in perpendicular-anisotropy spin torque magnetic tunnel
junctions, J. Appl. Phys. 108, 014305 (2010).

[8] R. Sbiaa, S. Y. H. Lua, R. Law, H. Meng, R. Lye, and H. K. Tan,
Reduction of switching current by spin transfer torque effect in
perpendicular anisotropy magnetoresistive devices (invited), J.
Appl. Phys. 109, 07C707 (2011).

[9] D. C. Worledge, G. Hu, D. W. Abraham, J. Z. Sun, P. L.
Trouilloud, J. Nowak, S. Brown, M. C. Gaidis, E. J. O’Sullivan,
and R. P. Robertazzi, Spin torque switching of perpendicular
Ta|CoFeB|MgO-based magnetic tunnel junctions, Appl. Phys.
Lett. 98, 022501 (2011).

[10] G. H. O. Daalderop, P. J. Kelly, and F. J. A. den
Broeder, Prediction and Confrmation of Perpendicular Magnetic
Anisotropy in Co/Ni Multilayers, Phys. Rev. Lett. 68, 682
(1992).

[11] G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans,
Magnetic anisotropy of a free-standing Co monolayer and of
multilayers which contain Co monolayers, Phys. Rev. B 50,
9989 (1994).

[12] A. Sakuma, First principle calculation of the magnetocrystalline
anisotropy energy of FePt and CoPt ordered alloys, J. Phys. Soc.
Jpn. 63, 3053 (1994).

[13] H. X. Yang, M. Chshiev, B. Dieny, J. H. Lee, A. Manchon
and K. H. Shin, First-principles investigation of the very large
perpendicular magnetic anisotropy at Fe|MgO and Co|MgO
interfaces, Phys. Rev. B 84, 054401 (2011).

[14] K. H. Khoo, G. Wu, M. H. Jhon, M. Tran, F. Ernult, K. Eason,
H. J. Choi, and C. K. Gan, First-principles study of perpen-
dicular magnetic anisotropy in CoFe/MgO and CoFe/Mg3B2O6

interfaces, Phys. Rev. B 87, 174403 (2013).
[15] D. Odkhuu, S. H. Rhim, N. Park, and S. C. Hong, Extremely

large perpendicular magnetic anisotropy of an Fe(001) surface
capped by 5d transition metal monolayers: A density functional
study, Phys. Rev. B 88, 184405 (2013).

[16] K. Nakamura, T. Akiyama, T. Ito, M. Weinert and A. J. Freeman,
Role of an interfacial FeO layer in the electric-field-driven
switching of magnetocrystalline anisotropy at the Fe/MgO
interface, Phys. Rev. B 81, 220409 (2010).

[17] A. Hallal, H. X. Yang, B. Dieny, and M. Chshiev, Anatomy of
perpendicular magnetic anisotropy in Fe/MgO magnetic tunnel
junctions: First-principles insight, Phys. Rev. B 88, 184423
(2013).

[18] P. Bruno, Tight-binding approach to the orbital magnetic
moment and magnetocrystalline anisotropy of transition-metal
monolayers, Phys. Rev. B 39, 865 (1989).

[19] P. Bruno and J.-P. Renard, Magnetic surface anisotropy
of transition metal ultrathin films, Appl. Phys. A 49, 499
(1989).

[20] P. M. Oppeneer, Magneto-optical spectroscopy in the valence-
band energy regime: relationship to the magnetocrystalline
anisotropy, J. Magn. Magn. Mater. 188, 275 (1998).
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