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The magnetization dynamics induced by standing elastic waves excited in a thin ferromagnetic film is described
with the aid of micromagnetic simulations taking into account the magnetoelastic coupling between spins and
lattice strains. Our calculations are based on the numerical solution of the Landau-Lifshitz-Gilbert equation
comprising the damping term and the effective magnetic field with all relevant contributions. The simulations
have been performed for 2-nm-thick Feg; Ga,¢ film dynamically strained by longitudinal and transverse standing
waves with various frequencies, which span a wide range around the resonance frequency v, of coherent
magnetization precession in unstrained Feg; Ga,g film. It is found that standing elastic waves give rise to complex
local magnetization dynamics and spatially inhomogeneous dynamic patterns in the form of standing spin waves
with the same wavelength. Remarkably, the amplitude of magnetization precession does not go to zero at nodes
of these spin waves, which cannot be precisely described by simple analytical formulae. In the steady-state
regime, magnetization oscillates with the frequency of the elastic wave, except in the case of longitudinal waves
with frequencies well below v, where the magnetization precesses with variable frequency strongly exceeding
the wave frequency. The results obtained for the magnetization dynamics driven by elastic waves are used to
calculate the spin current pumped from the dynamically strained ferromagnet into adjacent paramagnetic metal.
Numerical calculations demonstrate that the transverse charge current in the paramagnetic layer, which is created

by the spin current via inverse spin Hall effect, is high enough to be measured experimentally.
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I. INTRODUCTION

The magnetization dynamics in ferromagnets is usually
excited and controlled by magnetic fields or spin-polarized
electric currents [1-4]. However, these excitation methods are
generally associated with high ohmic energy losses, which
make them unsuitable for applications in advanced spintronic
devices aimed at low power consumption. Therefore, intensive
research efforts are currently focused on the development of
alternative excitation techniques, such as exploitation of elastic
waves and strain pulses to induce magnetization precession and
switching in ferromagnets [5-8]. This “acoustic spintronics”
[6], a promising emerging direction in the modern physics
of ferromagnets, is based on the magnetoelastic coupling
between spins and lattice strains [9], which leads to a
variety of interesting physical phenomena. In particular, recent
experimental studies revealed dynamic modulations of the
magnetization direction by picosecond acoustic pulses [5],
spin pumping via injection of sound waves into a ferromagnetic
film [6], excitation of a ferromagnetic resonance by surface
acoustic waves in a ferromagnetic-ferroelectric hybrid [7], and
generation of spin currents at the acoustic resonance [8].

Although the magnetic dynamics driven by elastic waves
and strain pulses is inevitably spatially inhomogeneous, this
important feature was either ignored in the theoretical studies
[7,10,11] or described for special situations in the approxima-
tion of small deviations from the equilibrium magnetization
direction [12—-15]. In this paper, we employed micromagnetic
simulations taking into account both magnetoelastic coupling
and exchange interaction to describe the inhomogeneous
magnetization dynamics excited by standing elastic waves
generated in a thin ferromagnetic film. Our simulations not
only make it possible to model large-angle magnetization
precession but also allow for variations of the dipolar inter-
actions between oscillating spins, which were neglected in the
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previous papers [12—15]. Computations were carried out for
longitudinal and transverse waves in a galfenol film because
Fe-Ga alloys have very high magnetoelastic coefficients [16].
The results were used to calculate the time-dependent spin
current pumped from the dynamically strained ferromagnet
into adjacent paramagnetic metal. It should be noted that stand-
ing elastic waves can be created in a thin ferromagnetic film
by two counter-propagating surface acoustic waves launched
into a piezoelectric substrate using a pair of interdigitated
transducers [17]. Furthermore, such waves were generated in
plate-like magnetic crystals by femtosecond laser pulses and
were found to induce unusual magnetization dynamics [18].

II. MICROMAGNETIC SIMULATIONS OF
STRAIN-DRIVEN MAGNETIZATION DYNAMICS

Our approach is based on the numerical integration of
the Landau-Lifshitz-Gilbert (LLG) torque equation describing
the temporal evolution of the local magnetization M(t).
In the considered case of highly magnetostrictive materials,
magnetization dynamics driven by elastic waves can be
described by the conventional LLG equation [19], which may
be written as dM/dt = —yM X Hegr + (oo/ Ms)M x dM/dt,
where y is the gyromagnetic ratio, « is the dimensionless
Gilbert damping parameter, M, = |M]| is the saturation mag-
netization, and Hcg is the effective magnetic field acting on
M. Since at a fixed temperature much lower than the Curie
temperature the saturation magnetization may be regarded
as a constant quantity, the LLG equation can be reduced to
dm/dt = —y*m x Her — ay™m x (m x Hegr), where m =
M/M; and y* = y /(1 + a?).

The effective field Hg involved in the LLG equation is
the sum of the external magnetic field H, field Hgi, caused by
dipolar interactions between spins, and contributions resulting
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from the magnetocrystalline anisotropy (Hy,,), magnetoe-
lastic coupling (Hy,e1), and exchange interaction (Hex). The
calculation of Hgjp is computationally most time consuming
because it requires the summation of magnetic fields created
by all spins in the studied ensemble at each spin position.
To reduce the simulation time to a reasonable level, we
introduce nanoscale computational cells with dimensions
much larger than the unit cell size but smaller than the exchange
length. The second condition guarantees that the magnetization
orientation does not change significantly within an individual
cell. Therefore, introduced cells may be modeled by uniformly
magnetized rectangular prisms, and the dipolar field Hg, can
be calculated as a sum of magnetic fields created by such
prisms. Accordingly, Hy;p, may be written in a general form as

Hgip(r) = Y " N(r — r,)m(r,,), (1

where the summation is carried out over all computational
cells, r, denote the vectors defining the spatial positions of
their centers, m(r,) = m, is the magnetization direction in
the nth cell, and matrix N is described by analytical relations
[20,21]. For the numerical computation of the exchange field
H,,, it is convenient to use the relation

6

2A Z m(r,) — m(r,)

Hex(rn) = d; s (2)

M;

p=1
where A is the exchange stiffness coefficient [22], the
summation is carried out over the six nearest neighbors of
the nth cell, d, = |r, — r,|, and the differences between the
magnetization orientations in neighboring cells are assumed
to be smaller than 30° [23]. The remaining contributions
t0 Her = H + Hipca + Hpet + Hex + Hgip can be found by
differentiating the magnetic energy density F written as a
polynomial in terms of the magnetization direction cosines
m; in the Cartesian reference frame (x, y, z) [22]. For
ferromagnets with a cubic paramagnetic phase, the relation
Hes = —0F/0M gives (no summation over repeated indices

i=x,y,z,j #iand k #1i,j)

2
I_Iimca — _H[Kl(mi + m%) + Ky’n?l’l’l%]”h‘, 3

N

HM = _ML[ZBluiimi + Bo(uijmj + ujgmi)l,  (4)
s
where K; and K, are the magnetocrystalline anisotropy
constants of fourth and sixth order, B; and B, are the
magnetoelastic coupling constants, and u;; are the lattice
strains.

Since the magnetization precession modifies lattice strains,
the LL.G equation generally should be solved together with the
elastodynamic equation of motion [12,13,19]. However, these
modifications of lattice strains are very small (~1074—1075),
so we can neglect them when calculating H,; compared with
the strains u;; induced by elastic waves even at u;; ~ 1073,
Therefore, the distribution of lattice strains in the film was
assumed to be independent of the magnetic pattern. (This
approximation does not allow describing the absorption of
elastic waves caused by their coupling to the spin system,
but this effect is beyond the scope of the present paper.) In
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FIG. 1. Schematic representation of a ferromagnetic film grown
on a nonmagnetic substrate and covered by a thick layer of
paramagnetic metal. Since the magnetization oscillations driven by
an elastic wave create a spin current J; pumped from the film to the
adjacent paramagnetic layer, such a heterostructure may function as
an elastically driven spin injector.

our model simulations, two types of standing waves were
considered, namely, longitudinal and transverse waves
defined by the relations u,, = Umax SiN(2wx/A) cos(2mwvt)
and U, = U;y = Umax SIN(27Tx /1) cos(2mvt), respectively.
Strictly speaking, strain waves with such simple structure can
existonly in a film sandwiched between two elastic half-spaces
with the same elastic properties as the film. However, they
also represent a reasonable approximation for elastic waves
in a relevant material system having the form of a thin
ferromagnetic film grown on a nonmagnetic substrate and
covered by a thick layer of paramagnetic metal (see Fig. 1).

The simulations were performed using home-made soft-
ware which operates with a finite ensemble of N computational
cells characterized by their spatial positions r, and time-
dependent unit vectors m,(¢) (n =1, 2, ...,N). First, the
effective fields Heg(m,,) acting on vectors m,(f) at moment ¢
are calculated with the aid of Egs. (1)—(4). Using the computed
fields and known set of m,,(¢), we integrate the LL.G equation
numerically and determine the magnetization orientations m,,
at all cells at the moment ¢ + ¢, starting from the equilibrium
state of unstrained ferromagnetic film subjected to an elastic
wave at t = 0. This procedure is repeated until a steady
periodic solution for the strain-induced dynamic magnetic
pattern is obtained. Since in our case strain distribution has a
form of a standing wave, periodic boundary conditions along
the x axis may be introduced for a ferromagnetic film parallel
to the xy plane, which enables us to consider only cells situated
within one wavelength A (Fig. 2). As a result, the number N
of computational cells requiring independent determination of
the magnetization orientation m, reduces to values ranging
from 40 to 1820 depending on the wavelength.

The developed computational scheme employs the LLG
equation written in Cartesian coordinates. As the LLG equa-
tion is known to be “stiff,” a numerical integration is performed
using a projective Euler scheme with a fixed integration step
8t = 5fs, where the condition |m| = 1 is satisfied automat-
ically. To reduce the computation time, dipolar field Hg;p is
calculated with the aid of fast Fourier transforms and the
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FIG. 2. Schematic of a ferromagnetic film divided into nanoscale
computational cells for simulations of the magnetization dynamics
induced by standing elastic waves. The axes of the rectangular
coordinate system (x, y, z) are parallel to the crystallographic axes
of the ferromagnet, the unit vector m shows the initial orientation of
the magnetization, and A is the wavelength of the standing wave. The
ferromagnetic film lies in the xy plane.

convolution theorem. In addition, magnetic fields of uniformly
magnetized prisms are replaced by the fields of point magnetic
dipoles at distances exceeding the cell sizes by more than
a factor of 50. Based on the symmetry of the problem, the
orientation of all vectors m,(¢) in each chain of cells parallel
to the in-plane y axis is taken to be the same at each moment
t. To test the accuracy of our software, we used it to solve the
NIST Standard Problem no. 4 [24] and found good agreement
with the reference.

The simulations were performed for 2-nm-thick Feg;Gajg
film using the following values of involved material parame-
ters: M, = 1321 emucm™3 [25], @ = 0.017 [26], A = 1.8 x
10-° erg em~ ! [27], K; = 1.75 x 10° erg cm3, K, = 0[28],
B = —0.9 x 10%ergecm™, and B, = —0.8 x 103 ergcm™3
[16]. To stabilize the single-domain initial state in the ferro-
magnetic film, an external magnetic field with the components
H, = H, = 500 Oe was introduced. Since the exchange length
lex = /A/(2m M2)[29] of Feg; Gayg is about 4 nm, one compu-
tational cell is sufficient in the film thickness direction parallel
to the z axis. Therefore, we employed cells with dimensions
2 x 2 x 2nm? and considered standing elastic waves with
wavelengths A equal to even numbers of the 2-nm cell size
only. The frequencies of these waves were determined from
the dispersion relation v = ¢; /A, where the phase velocities
¢ = +/c11/p and ¢, = /ca4/ p of longitudinal and transverse
waves have been calculated using the elastic stiffnesses
c11 = 1.62 x 102 dynecm™2, ¢4y = 1.26 x 10'?> dynecm™2,
and density p = 7.8 gcm ™ of Feg; Gao [30]. For both waves,
the strain amplitude u,x was set equal to 5 X 1073, which
is similar to maximal lattice strains arising in picosecond
acoustic pulses generated in ferromagnets under femtosecond
laser excitation [10].
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III. MAGNETIZATION DYNAMICS IN ELASTIC WAVES

The magnetization dynamics caused by the magnetoelastic
coupling should depend on the frequency of elastic wave.
Therefore, we carried out simulations for standing waves
with various wavelengths, which provide a wide frequency
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FIG. 3. Magnetization dynamics at the antinode of the transverse
standing wave with frequency v = 50 GHz, which is much higher than
the resonance frequency v,s = 9.89 GHz of unstrained Feg; Gao film.
Panel (a) shows the temporal evolution of the magnetization direction
cosines m, and m; in the whole simulation including the transient
regime. Panels (b) and (c) present the enlarged view of the regime
of steady-state magnetization precession (m = 0.9995 is the initial
value of the direction cosine m, ). Phase shifts between the periodic
variations of the direction cosines m, and m and shear strains in the
wave amount to 77 /2 and 7, respectively.
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range spanning frequencies below and above the resonance
frequency v.s of coherent magnetization precession in un-
strained Feg; Gajg. This resonance frequency was determined
by studying the relaxation of the magnetization vector to the
equilibrium orientation and found to be about 9.89 GHz at
H, = H, = 500 Oe. It should be emphasized that the external
magnetic field was applied along the [101] direction in order
to induce nonzero magnetization component m,, which is
needed to make possible the excitation of magnetic dynamics
by the longitudinal elastic waves creating the effective field
H™ = —2(By/My)u,m,.

All simulations started at the equilibrium magnetic state
of unstrained ferromagnetic film, where the uniform magne-
tization is directed in the xz plane at an angle of 1.65° with
respect to the film surfaces. This initial state transforms into a
nonhomogeneous magnetic pattern just upon the introduction
of a strain wave at t+ = 0. After a transition period on the
order of 1 ns (~10° simulation steps), the magnetic dynamics
acquires the form of a steady-state magnetization precession.
The angular deviations from the initial magnetization direction
are maximal at the antinodes of standing elastic waves, where
the driving force of magnetoelastic origin has the largest
value. Remarkably, the magnetization precession does not
vanish at the nodes, where the driving force goes to zero,
due to cooperative effects caused by exchange and dipolar
interactions between spins.

Figure 3 shows the temporal evolution of the magnetization
orientation at the antinode (x = A/4) of the transverse (shear)
standing wave with the frequency v = 50 GHz well above
the resonance frequency vgs. It can be seen that the steady
magnetization precession, which sets in after a transient
regime comprising about 60 oscillations [Fig. 3(a)], occurs
with the frequency of elastic wave [Figs. 3(b) and 3(c)].
This feature is due to the fact that the main contribution to
the magnetoelastic components H™! = —(B,/M;)u,.m, and
HZrlnel = —(By/M)u,.m, of the effective field oscillates with
the wave frequency owing to the presence of nonzero mean
values of the direction cosines m, and m,. The appearance of
two maxima of m, during one period of elastic wave [Fig. 3(b)]

1.0-0.8

FIG. 4. Typical trajectory of the end of the magnetization vector
at the antinodes of transverse standing waves. The three-dimensional
plot presents the full trajectory of the unit vector m = M/M; at
wave frequency v = 9.88 GHz. The arrow shows the equilibrium
magnetization direction.
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FIG. 5. Temporal evolution of the magnetization orientation at
the antinode of the transverse standing wave with frequency v =
9.85 GHz. Panel (a) shows variations of the magnetization direction
cosines m; in the whole simulation including the transient regime,
while panel (b) presents the enlarged view of the regime of steady
magnetization precession.

results from the specific spatial trajectory of the end of the
magnetization vector, which does not have the form of a planar
curve (see Fig. 4).

When the frequency of the elastic wave is reduced down
to Vs, the magnetization oscillations increase drastically
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FIG. 6. Frequency dependences of the solid angle of steady-
state magnetization precession induced in the Feg;Ga,o film at the
antinodes of transverse and longitudinal standing waves.
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FIG. 7. Magnetization dynamics at the antinode of the transverse
standing wave with frequency v = 1.25 GHz. Panel (a) shows the
temporal evolution of the magnetization direction cosines m, and
m, in the whole simulation including the transient regime, while
panels (b) and (c) present the enlarged view of the regime of steady
magnetization precession.

(Fig. 5). Interestingly, the amplitude of steady magnetization
precession reaches a maximum at frequency vy.x = 9.38 GHz
slightly lower than the resonance frequency of unstrained
ferromagnetic film (Fig. 6). At v = v, the solid angle of
magnetization precession exceeds 0.5, but it decreases rapidly
at smaller frequencies, falling down to 0.1 already at v =
9.15 GHz.

Figure 7 illustrates the magnetization dynamics induced by
the transverse standing wave with frequency v = 1.25 GHz,
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FIG. 8. Magnetization trajectories at the antinodes of transverse
standing waves projected on the yz plane orthogonal to their wave
vectors. Panels (a), (b), and (c) show the projections of the end of
the unit vector m = M/ M, calculated at the wave frequencies of 50,
9.85, and 1.25 GHz, respectively.

which is well below the resonance frequency v.s. A novel
feature here is the presence of double dynamics in the transient
regime [see Fig. 7(a)]. In contrast to the case of v 3> vy, the
magnetization precesses with the frequency v = 10GHz =
Vres, Which is much higher than the wave frequency. This fast
dynamics is accompanied by slow variations of the precession
trajectory following the evolution of elastic wave. In the
steady-state regime, the frequency of magnetization precession
drops down to the wave frequency [Fig. 7(b)], which is
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FIG. 9. Magnetization dynamics at the antinode of the lon-
gitudinal standing wave with frequency v = 50GHz excited in
the Feg;Gajg film. Panel (a) shows the temporal evolution of the
magnetization direction cosines m, and m, in the whole simulation
including the transient regime, while panels (b) and (c) present the
enlarged view of the regime of steady-state magnetization precession.

accompanied by a drastic change in the precession trajectory
(see Fig. 8).

The magnetization oscillations excited by longitudinal
standing waves with three representative frequencies are
shown in Figs. 9—11. At high frequency v = 50 GHz (Fig. 9),
the magnetic dynamics is qualitatively similar to that discussed
above for the transverse wave with the same frequency. How-
ever, angular deviations from the equilibrium magnetization
direction are much smaller in the longitudinal wave because
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oty
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FIG. 10. Temporal evolution of the magnetization orientation at
the antinode of the longitudinal standing wave with frequency v =
9.89 GHz. Panel (a) shows variations of the magnetization direction
cosines m; in the whole simulation including the transient regime,
while panel (b) presents the enlarged view of the regime of steady

magnetization precession.

this direction only slightly deviates from the x axis in our
case. Interestingly, the simulations neglecting variations in the
dipolar interactions between spins, which result from spatial
inhomogeneity of their oscillations, strongly underestimate the
out-of-plane amplitude of magnetization precession, predict-
ing five times smaller changes in the direction cosine m . This
finding demonstrates that such inhomogeneous variations of
the dipolar interactions may strongly influence the elastically
driven magnetization dynamics.

At frequencies close to the resonance frequency vys of
unstrained film, the amplitude of magnetization precession
strongly increases (Fig. 10). This is accompanied by significant
distortions of the time dependences of direction cosines
m;, which remain periodic (v = 9.89 GHz) but cannot be
described by simple sine or cosine functions in the steady-
state regime. The solid angle of magnetization precession
induced by longitudinal waves reaches maximum at the
frequency vpax = 9.61 GHz, which is slightly higher than
the most efficient frequency v, of transverse waves (see
Fig. 6). The most remarkable feature of the resonance curves
shown in Fig. 6 is their non-Lorentzian shape. The analysis
shows that this strongly asymmetric shape originates from the
nonlinear effects, which become important even at moderate
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FIG. 11. Magnetization dynamics at the antinode of the longitu-
dinal standing wave with frequency v = 1.25 GHz. Panel (a) shows
the temporal evolution of the magnetization direction cosines m,
and m in the whole simulation including the transient regime, while
panels (b) and (c) present the enlarged view of the regime of steady
magnetization precession.

strain amplitudes umax ~ 1073, Indeed, the resonance curve
assumes almost Lorentzian shape in the case of weak elastic
excitations creating very small angular deviations of the
magnetization from the equilibrium direction even at the
wave frequency v = vp,,. We also found that the simulations
based on the linearized LLG equation, where the right-hand
side is approximated by a linear function of the direction
cosine variations ém; near their equilibrium values, give
unphysical results for the elastic waves with . = 5 x 1073
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FIG. 12. Magnetization trajectories at the antinodes of longitu-
dinal standing waves projected on the yz plane orthogonal to their
wave vectors. Panels (a), (b), and (c) show the projections of the end
of the unit vector m = M/M; calculated at the wave frequencies of
50, 9.89, and 1.25 GHz, respectively.

and frequencies close to V.5, erroneously predicting the
strain-driven magnetization reorientation against the applied
magnetic field (m, < 0 at H, > 0).

When the frequency of the longitudinal wave is reduced
below v, the magnetic dynamics changes dramatically
(Fig. 11). Most importantly, the magnetization precesses with
a variable frequency strongly exceeding the wave frequency.
This feature may be attributed to the dependence of the
resonance frequency v, of coherent precession on lattice
strains [31]. Indeed, analytical calculation shows that the
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change of u,, from —0.005 to +0.005 gives v ranging from
3.44 to 14.45 GHz, which agrees with the frequency range
4.3—15 GHz obtained from the micromagnetic simulations.
These frequency variations are accompanied by periodic
changes of the precession trajectory following the evolution of
the elastic wave. In contrast to the case of transverse waves,
this double dynamics does not disappear in the steady-state
regime (see Fig. 11). The magnetization trajectories at three
representative frequencies of longitudinal waves are compared
in Fig. 12.

In conclusion of this section, we consider spatial distri-
butions of the magnetization oscillations in standing elastic
waves. Figures S1 and S2 in the Supplemental Material [32]
demonstrate that such elastic excitations generate standing
spin waves with the same wavelength. Remarkably, the
amplitude of magnetization precession does not go to zero
at the nodes of these spin waves. Of course, the precession
amplitude is always much larger at antinodes than at nodes,
but the ratio of the amplitude at an antinode to that at a node
decreases strongly when the frequency of the elastic wave
increases from v < Vies tOV > V5. The movies of Figs. S1
and S2 [32] further show that the elastically generated standing
spin waves may have very complex structure, especially when
excited by a longitudinal elastic wave. In all cases, these spin
waves cannot be precisely described by simple relations of
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the form m; (x,t) = m? + 8m; sin(2wx /A) cos(2m vt). To gain
additional information on their structure, we performed the
Fourier analysis of the spatial distributions of m; formed at the
moment when the strain at the antinodes of the elastic wave
reaches its maximum value. The calculations showed that, in
the case of spin wave induced by the transverse elastic wave
with the frequency v < v, a term proportional to sin(2w x /A)
is sufficient to describe the direction cosines m,(x) and m_(x)
with good accuracy. This term also provides the main contribu-
tion to m(x) and m,(x) in spin waves generated by transverse
and longitudinal elastic waves with frequencies v > v, but
here a significant additional contribution (up to 30% of the
leading term) is caused by a term proportional to sin(6rx /1).
At the same time, in the spin wave excited by the longitu-
dinal elastic wave with v < v, the distribution of m(x)
may be approximated by the sum of terms proportional to
sin(4mrx/)) and sin(20rx /)), while an approximate descrip-
tion of m,(x) requires terms proportional to sin(27x/A) and
sin(8mwx /X).

Consider, finally, the possible influence of the spin-wave
dispersion relation on the elastically driven magnetization
dynamics. The analysis shows that, in our case, the dependence
of the spin-wave frequency vy, on the wavenumber kg, may
be approximated by the formula

~

Vsw
2w

M, M

which is a modified version of the dispersion relation [33]
taking into account both the exchange coupling and dipolar
interactions between oscillating spins (d is the film thickness).
Since our simulations showed that the wavelength of the spin
wave always coincides with that of the driving elastic wave,
the wavenumber kg, can be calculated as kg, =2mv/c, ;.
Using this relation together with Eq. (5), we evaluated the
spin-wave frequencies corresponding to different frequencies
v of the standing elastic waves. It was found that the
difference between vy, and the resonance frequency vie
of coherent precession remains small (~0.5 GHz), even at
V ~ V. Therefore, the influence of the dispersion relation
on the elastically driven magnetization dynamics is hardly
detectable at v < v,,. However, the difference vgy — Vres
becomes rather large (7—8 GHz) at the high frequency v =
50 GHz, which should manifest itself in the transient regime
of magnetization dynamics at such elastic-wave frequency.
To check this expectation, we performed the Fourier analysis
of the transient regime in the time domain and found that
the Fourier spectrum contains a weak component oscillating
with a frequency well below 50 GHz, which shows up in
slight beatings of the precession amplitude. The frequency
of this component is about 18 GHz in the case of transverse
elastic wave and about 17 GHz for the longitudinal one. These
values are in good agreement with the spin-wave frequencies
given by Eq. (5), which confirms the expected influence of
the dispersion relation. It should be noted that the dipolar
interactions considerably reduce the difference vy — Vpes Via

2K, 24 1 2K, 24
He+ Ho+ L+ 2002, panMy (1= —ked ) [ He + 52 + 2242, ), (5)
. 2 M, " M,

(

the term —2m Mk,d, whereas the magnetoelastic coupling
is expected to have a negligible effect on the spin-wave
frequencies in our case according to the numerical estimates
based on the dispersion relation reported in Ref. [15].

IV. SPIN PUMPING DRIVEN BY ELASTIC WAVES

When a ferromagnet is in contact with a paramagnetic
metal, magnetization precession in the former leads to a spin
pumping into the latter [34]. The spin current density I at the
interface can be calculated from the relation [34-36]

I, =is

h , ; dm , , .dm
= in Re[g}, — &3, Im x ar +Imlg}, — g4 I— |
(6)

where s is the unit vector of spin-current polarization, and
g? n ng | are the complex reflection and transmission spin
mixing conductances per unit contact area [37,38]. According
to Eq. (6), the magnetization precession induced by elastic
waves should create a spin current comprising dc and ac
components. The results of our micromagnetic simulations
enable us to calculate both dc and ac spin currents generated by
standing elastic waves. Since the first-principles studies of spin
mixing conductances [38] show that g} | and the imaginary part
of g%, should be negligible for the 2-nm-thick ferromagnetic
film considered in this paper, in our calculations we used the
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approximate relation

L= T Reler dm 7
SZE e[gN]me. @)

Figure 13(a) shows the time dependence of the spin
current created at the antinode of the transverse standing
wave with a frequency close to vis. It can be seen that, in the
steady-state regime, all three components s; of the spin-current
polarization s oscillate with the wave frequency. Interestingly,
the oscillations of the spin-current component /:(t) have
much larger amplitudes than the oscillations of 7;(¢) and
I’(t). However, only the projection of the spin current on
the x axis has a significant mean value. To determine mean
values I} of all three spin-current components, we averaged
I7(t) during the time period comprising several oscillations
[see Fig. 13(b)]. It was found that in the steady-state regime

~ (2h/m)Relgh Ins™!, I} ~ (0.05h/m)Re[g} Ins™",
while I_;' is negligible. These results can be explained by
the fact that, according to Eq. (7), the dc component of the
spin current should be parallel to the axis of magnetization
precession. In the considered case, the latter is close to the
equilibrium magnetization in the unstrained film, which is
almost parallel to the x axis, having an additional small
projection on the z axis only.

Since the quantity relevant to experimental measurements
is the spin current produced by a macroscopic section of the
film, we calculated the average current density (/) pumped
from the film region corresponding to one wavelength A.
Figure 13(c) demonstrates that this averaging strongly reduces
the y and z components of the spin current and doubles the
frequency of spin-current oscillations. The frequency doubling
happens because the spin-current components averaged over
the first and second halves of the standing elastic wave
oscillate in the opposite phase and have nonsinusoidal time
dependences. The filtering of high-frequency oscillations [see
Fig. 13(d)] further shows that the x component retains a signif-
icant mean value (I}) ~ 0.8(h/m)Relg}, Ins~", which is only
about two times smaller than ¢ at the antinode of the transverse
standing wave. This feature is due to magnetization precession
happening in a counterclockwise direction everywhere despite
opposite signs of the driving field Hy, in two halves of the
standing wave. It should be noted that, according to our prelim-
inary simulations of the elastically driven magnetization dy-
namics at finite temperatures, which were realized by adding a
fluctuating thermal field [23] to the effective field H.¢ involved
in the LLG equation, the mean spin-current density (I%) is ex-
pected to have similar magnitude at room temperature as well.

The results obtained for spin currents driven by the
longitudinal elastic wave with the frequency close to v are
shown in Fig. 14. It can be seen that they are essentially
similar to the results discussed above, but with two interesting
distinctions. First, the mean values I} and (I3) of the y
component are not negligible in the steady-state regime, being
close to those of the z component of the spin current [see Figs.
15(b) and 15(d)]. This feature is caused by the fact that the
axis of magnetization precession driven by the longitudinal
wave has a nonzero projection on the y axis. Second, in
contrast to the case of the transverse wave, the averaging
of the pumped spin current over the wavelength A leaves
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FIG. 13. Time dependence of the spin current generated by
the Feg;Gajg film subjected to the transverse elastic wave with
frequency 9.38 GHz. The components /;' of the spin-current density
are normalized by the quantity (h/47t)Re[g$ e Panels (a) and (b)
show I at the antinode of the standing wave, while panels (c) and
(d) present the current density averaged over one wavelength of this
elastic wave. The direct results of calculations are given in panels
(a) and (c), whereas panels (b) and (d) show mean current densities
obtained after filtering out high-frequency oscillations.
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FIG. 14. Time dependence of the spin current generated by
the Feg;Gajg film subjected to the longitudinal elastic wave with
frequency 9.61 GHz. The components ;' of the spin-current density
are normalized by the quantity (h/47t)Re[g; e Panels (a) and (b)
show I at the antinode of the standing wave, while panels (c) and
(d) present the current density averaged over one wavelength of this
elastic wave. The direct results of calculations are given in panels
(a) and (c), whereas panels (b) and (d) show mean current densities
obtained after filtering out high-frequency oscillations.
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the amplitude of the (/) oscillations larger than the (/3)
component [compare Figs. 13(c) and 14(c)]. Nevertheless,
the mean value (I7) ~ 0.6(h/m)Re[g} 1ns~" of the averaged
x component remains much larger than the mean value
(I}) ~0.025(h/m)Relg} Ins™" of the z component.

Using the theoretical result (e?/ h)Re[g} ]~ 4.66 x

10" Q~'m~2 obtained for the reflection spin mixing conduc-
tance of the Fe/Au interface by first-principles calculations
[38], we estimated numerical values of the spin currents
pumped from the dynamically strained Feg;Ga9 film into
adjacent Au layer. In particular, calculations give (I*) /h &~
3.4 x 10?7 s~'m~2 for the mean current density generated by
the transverse elastic wave with the frequency v = 9.38 GHz
and (I¥) /h~24 x 10" s~'m~2 for the longitudinal wave
with v = 9.61 GHz. These estimates render it possible to
evaluate the dc charge current created in the Au layer by
the pumped spin current due to the inverse spin Hall effect.
The density I, of the charge current is given by the relation
I. = asy(2e/h)(e; x L), where agy is the spin Hall angle, e
denotes the elementary positive charge, and e, is the unit vector
in the spin current direction [36]. Hence, the charge current is
orthogonal to the spin current and almost parallel to the y axis
in our case. Taking asy = 0.0035 for Au [39], we find the
current density (I_VC )z=0 generated at the interface by the trans-

verse and longitudinal waves to be about 3.9 x 10%and 2.7 x
10° A m~2, respectively. Since the injected spin current decays
inside normal metal due to spin relaxation and diffusion, the
density of charge current falls with distance from the interface
[40]. The total charge current in the normal metal layer of
width wy and thickness ¢y can be found from the relation

= . cosh[ty /€] — 1
() = () oSy sinh[ty /£al ®
where &y is the spin diffusion length. Taking £y = 35nm
for Au [40] and assuming wy = 10 wm, we obtain the total
charge current generated in the Au layer with ty > 5&4 by
the considered standing elastic waves to be about 1 1A, which
can be readily measured experimentally.

V. CONCLUDING REMARKS

In this paper, we carried out micromagnetic simulations
of the inhomogeneous magnetization dynamics induced in a
ferromagnetic material by elastic waves. In contrast to the
preceding analytical treatments of the problem [12—-15], our
calculations do not involve the assumption of small deviations
from the equilibrium magnetization direction. By solving
the LLG equation numerically, we simulated the magnetic
dynamics induced by transverse and longitudinal standing
waves generated in the 2-nm-thick Feg;Ga9 film sandwiched
between two elastic half-spaces. Both the transient and steady-
state regimes of magnetization oscillations are described in
detail.

The simulations showed that elastic waves induce strongly
inhomogeneous magnetization precession, which acquires
maximal amplitude at the antinodes of standing waves (near the
antinodes in the case of transverse waves with frequencies v >
Vres)- This amplitude increases drastically near the resonance
frequency Vs of the unstrained ferromagnetic film (Fig. 6),
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reaching a maximum at v = Vyyy < Vpes. Surprisingly, the
resonance curve has a strongly asymmetric, non-Lorentzian
shape, which is due to the nonlinear effects. Therefore, the
solid angle of steady-state magnetization precession decreases
rather slowly with increasing wave frequency at v > V.
This feature provides effective elastic excitation of the magne-
tization dynamics in a finite range of wave frequencies Vyax <
v < Vmax + 8v with a considerable width v ~ 1 GHz.

In the steady-state regime, the frequency of magnetization
oscillations equals that of the driving elastic wave, except in the
case of longitudinal waves with frequencies well below vy,
where the magnetization precesses with a variable frequency
strongly exceeding the wave frequency [Fig. 11(c)]. The spatial
distributions of magnetization oscillations in the considered
elastic waves have the form of standing spin waves with
the same wavelength A (see Supplemental Material [32]).
Importantly, the simulations demonstrate that the structure of
an elastically generated spin wave may be very different from
that of the driving elastic wave. Our qualitative predictions
should be valid for all ferromagnetic materials with strong
magnetoelastic coupling, such as FeCo alloys and nickel.

PHYSICAL REVIEW B 94, 184401 (2016)

Using the results obtained for the magnetic dynamics
induced by elastic waves, we also calculated the spin currents
that can be pumped from the dynamically strained Feg;Gajg
film into the adjacent layer of paramagnetic metal. It was
found that both transverse and longitudinal standing waves
with a frequency close to Vg create spin currents comprising
significant dc and ac components. Interestingly, the spin
polarization of the dc component is not exactly parallel to the
equilibrium magnetization direction in the steady-state regime.
The calculations of the transverse charge current, which is
created by the spin current via the inverse spin Hall effect,
showed that the charge current has high density at the interface
and can be easily measured experimentally.
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