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Temperature fluctuations in canonical systems: Insights from molecular dynamics simulations
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Molecular dynamics simulations of a quasiharmonic solid are conducted to elucidate the meaning of
temperature fluctuations in canonical systems and validate a well-known but frequently contested equation
predicting the mean square of such fluctuations. The simulations implement two virtual and one physical (natural)
thermostat and examine the kinetic, potential, and total energy correlation functions in the time and frequency
domains. The results clearly demonstrate the existence of quasiequilibrium states in which the system can be
characterized by a well-defined temperature that follows the mentioned fluctuation equation. The emergence of
such states is due to the wide separation of time scales between thermal relaxation by phonon scattering and slow
energy exchanges with the thermostat. The quasiequilibrium states exist between these two time scales when the
system behaves as virtually isolated and equilibrium.
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I. INTRODUCTION

Fluctuations of thermodynamic properties play an impor-
tant role in phase transformations and many other physical
phenomena and diverse applications. While fluctuations of
energy E, volume V , number of particles N , and other
extensive parameters are well understood, controversies re-
main regarding the nature, or even existence [1–3], of
fluctuations of intensive parameters such as temperature,
pressure, and chemical potentials. In particular, the question
of temperature fluctuations in canonical systems has been
the subject of discussions for over a century (see, e.g., van
Hemmen and Longtin [4] for a historical overview of the
subject).

A number of different views on temperature fluctuations
can be found in the literature, including the following:

(i) Temperature fluctuations in canonical systems is a real
physical phenomenon and can be measured experimentally
[5]. If the volume and number of particles in the system are
fixed, then [6–8]

〈(�T )2〉 = kT 2
0

Nc0
v

, (1)

where �T = T − T0 is the deviation of the system tem-
perature T from the thermostat temperature T0, c0

v is the
constant-volume specific heat (per particle) at the temperature
T0, and k is Boltzmann’s constant. The angular brackets 〈. . .〉
indicate the canonical ensemble average. Assuming ergodicity,
〈. . .〉 can be computed by averaging over a long trajectory in
the phase space of the system.1 Spontaneous energy exchanges
between the system and the thermostat bring the system to
quasiequilibrium states in which the temperature is slightly
higher or slightly lower than T0. It is also possible to quantify
the cross correlation between the fluctuating temperature and
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1By contrast, the temperature T appearing in Eq. (1) is defined by

averaging over much shorter segments of the trajectory as discussed
later in the paper.

the system’s total energy by the equation [6–8]

〈�E�T 〉 = kT 2
0 , (2)

where �E = E − E0 and E0 is the equilibrium energy.
(ii) Temperature of a canonical system is defined as the

temperature of the thermostat. Thus T ≡ T0 by definition and
the very notion of temperature fluctuations is meaningless
[1–3].

(iii) While fluctuations of the system energy E are well
defined, nonequilibrium temperature T is ill defined [3,4]. One
can formally define T as T ≡ T0 + (E − E0)/(Nc0

v), which
makes T just a nominal parameter identical to energy [4].
From this point of view, Eq. (1) contains no new physics
in comparison with the well-established energy fluctuation
relation [6–8]

〈(�E)2〉 = NkT 2
0 c0

v. (3)

(iv) Even for an equilibrium isolated system, temperature
is not a well-defined parameter. It can be evaluated by
measuring the system energy and trying to estimate the
temperature of the thermostat with which the system was in
equilibrium before being disconnected [9,10]. This reduces the
temperature definition to a statistical problem addressed in the
framework of the estimation theory. The statistical uncertainty
associated with the temperature estimate can be interpreted as
its “fluctuation.”

Recently, thermodynamics-based arguments for the view-
point (i) have been put forward as part of a more general
thermodynamic fluctuation theory [8]. The goal of the present
paper is to provide additional insights into the nature of
temperature fluctuations by conducting molecular dynamics
(MD) simulations of a quasiharmonic crystalline solid. As
an operational definition, the nonequilibrium temperature is
identified with kinetic energy of the particles averaged on an
appropriate time scale. In Sec. II we set the stage by reviewing
the thermodynamic arguments [6–8] and introducing three
time scales of the problem that permit a clear definition of
nonequilibrium temperature. After presenting the simulation
methodology in Sec. III, we report on MD results for
the kinetic, potential, and total energy fluctuations and the
respective correlation functions for the solid (Sec. IV). Using
this data, we are able to extract the temperature fluctuations and
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verify Eqs. (1) and (2) independently of Eq. (3). In Sec. V we
summarize the results of this work and formulate conclusions.

II. THEORY

If a thermodynamic system is disconnected from its
environment and becomes isolated, it reaches thermodynamic
equilibrium after a characteristic relaxation time τr . For a
simple system, the equilibrium state is fully defined by its
energy E, volume V , and number of particles N . The entropy
S of an equilibrium isolated system is a function of E, V ,
and N . This function can be established by equilibrating the
isolated system with different values of E, V , and N and
measuring or computing S for each set of these parameters. The
function S = S(E,V,N ) is called the fundamental equation
[7,8,11] and incapsulates all thermodynamic properties of the
substance. The temperature, pressure, and chemical potential
are defined by the fundamental equation as the derivatives
T = 1/(∂S/∂E), p = T (∂S/∂V ), and μ = −T (∂S/∂N ), re-
spectively.

Suppose the isolated system is still in the process of
relaxation. While E, V , and N are fixed, other thermodynamic
properties can vary. If we mentally partition the system into
relatively small subsystems, their parameters E, V , and N can
vary during the relaxation. It is important to recognize that the
relaxation time tr of a small subsystem is much shorter than τr

of the entire system, at least for short-range interatomic forces.
Thus there is a certain time scale tq such that

tr � tq � τr , (4)

on which the small subsystems remain infinitely close to
equilibrium, even though the entire system is not in full
equilibrium. The subsystems weakly interact with each other
across their interfaces, causing a slow drift of the entire system
towards equilibrium. Such virtually equilibrium subsystems
are called quasiequilibrium [8] and the entire isolated system is
said to be in a quasiequilibrium state.2 On the quasiequilibrium
time scale tq , the isolated system can be thought of as
equilibrated in the presence of isolating walls separating
its small subsystems. Accordingly, each quasiequilibrium
subsystem α can be described by a fundamental equation Sα =
Sα(Eα,Vα,Nα), from which the local temperature, pressure,
and chemical potential can be found by Tα = 1/(∂Sα/∂Eα),
pα = Tα(∂Sα/∂Vα), and μα = −Tα(∂Sα/∂Nα), respectively.
If the number of subsystems is large enough, we can talk
about spatially continuous temperature, pressure, and chemical
potential fields. Such fields appear in the standard treatments of
irreversible thermodynamics [12] and are only defined on the
quasiequilibrium time scale. They evolve during the relaxation
process and eventually become uniform when the entire system
reaches equilibrium.

Following the fluctuation-dissipation concepts [6,13–18],
one can expect that similar quasiequilibrium states arise during
equilibrium fluctuations in an isolated system. Accordingly,
the fluctuated states can be described by well-defined local

2Landau and Lifshitz [6] call the quasiequilibrium states “quasista-
tionary,” which may cause some confusion since the term “stationary”
is often used to describe steady-state flows in driven systems.

values of the intensive parameters, including temperature.
Again, such local intensive parameters are only defined on
the quasiequilibrium time scale tq .

Turning to canonical fluctuations, consider a small sub-
system of an equilibrium isolated system. Let us call this
subsystem a system and the rest of the isolated system a
reservoir. Consider a time scale tq such that tr � tq � τr ,
where tr is the relaxation time of the system and τr is the global
relaxation time of the system plus reservoir. On this time scale,
the system can be considered as quasiequilibrium and thus
virtually isolated. As such, it possesses all intensive properties
mentioned above. Fluctuations generally occur on all time
scales. However, if we monitor the system properties averaged
over the time scale tq , then we can talk about fluctuations
of its intensive parameters. In particular, quasiequilibrium
fluctuations that preserve the system volume and number of
particles (canonical ensemble) include well-defined temper-
ature fluctuations. As long as the temperature is properly
defined on the quasiequilibrium time scale, it will satisfy the
fluctuation relation (1).

We next apply these concepts to a crystalline solid
comprising a fixed number of atoms N � 1. The local
relaxation time scale tr can be identified with a typical phonon
lifetime. Suppose the solid is isolated and in equilibrium. Its
instantaneous potential energy U and kinetic energy of the
centers of mass of the particles K fluctuate, whereas the total
energy E = K + U is strictly fixed. The time scale tK of the
kinetic (as well as potential) energy fluctuations is the inverse
of a typical phonon frequency f̄ : tK ∼ 1/f̄ . Assuming that the
solid is nearly harmonic, this time scale is much shorter than
tr . The temperature of the solid is fixed at T = E/3k and can
be evaluated from the equipartition relation 〈K〉 = 3NkT/2
by monitoring the kinetic energy over a long time t � tr .

If the same solid is now connected to a thermostat, two
types of fluctuation occur. First, the same fluctuations as in
the isolated system, including the energy exchanges between
the phonon modes on the tr time scale. Second, there will
be fluctuations in the total energy of the solid due to energy
exchanges between the solid and the thermostat. The two types
of fluctuation are governed by physically different relaxation
processes: phonon scattering inside the solid in the first case
and heat flow between the solid and the thermostat in the
second. The respective relaxation times, tr and τr , are signif-
icantly different. Usually τr � tr , i.e., the energy exchanges
with the thermostat occur on a much longer time scale that
depends on the system size, the system/thermostat interface,
and other factors. Thus there is a time scale tq in between,
tr � tq � τr , on which the solid remains quasiequilibrium
and can be assigned a well-defined temperature. We can
use the equipartition relation to find this quasiequilibrium
temperature,

T = 2〈K〉q
3Nk

, (5)

where the subscript q indicates that the time average must be
taken on the quasiequilibrium time scale tq .3

3The reader is reminded that 〈. . .〉 is the time average over a very
long trajectory of the system in the phase space. By default, the time
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If the kinetic energy is averaged over the thermodynamic
time scale t � τr , then the equipartition relation trivially gives
the thermostat temperature

T0 = 2〈K〉
3Nk

. (6)

By contrast, the quasiequilibrium temperature defined by
Eq. (5) fluctuates around T0 and is predicted to satisfy the
fluctuation formula (1). We emphasize that Eq. (5) defines T

independently of the instantaneous or average values of the
total energy and makes no reference to the specific heat of
the substance.4 Instead, the temperature fluctuations can be
used to extract the specific heat c0

v . For a classical harmonic
solid composed of atoms (not a molecular crystal), c0

v = 3k

and Eq. (1) becomes

〈(�T )2〉 = T 2
0

3N
. (7)

The key point of this treatment is that the kinetic energy
of the centers of mass of the particles must be averaged
over the appropriate time scale. We caution against using
the “instantaneous temperature” defined by the instantaneous
value of the kinetic energy as T̂ = 2K/3Nk, as is often
done in the MD community. The “temperature” T̂ so defined
essentially represents the kinetic energy K/N itself up to
units. Although this unit conversion can sometimes make
the MD results look more intuitive, it fails to predict the
correct temperature fluctuations. Using the standard canonical
distribution, it is easy to show that for any classical system
[19]

〈(�K)2〉 = 3N (kT0)2

2
, (8)

from which

〈(�T̂ )2〉 = 2
T 2

0

3N
. (9)

For an atomic solid, this equation is off by a factor of 2.
Consequently, the specific heat of the solid extracted from
Eq. (1) using the instantaneous temperature T̂ is 3k/2 instead
of the correct 3k.

In spite of the failure of the instantaneous temperature
T̂ to describe the mean-square fluctuation of temperature,
it does satisfy some other fluctuation relations, including
Eq. (2) which then becomes 〈�E�T̂ 〉 = kT 2

0 . Like the energy
variance 〈(�E)2〉, the covariance 〈�E�T 〉 remains the same
for both instantaneous and quasiequilibrium fluctuations.

averaging is performed in the canonical ensemble (NV T ); otherwise
the ensemble is indicated as a subscript. For example, in Sec. IV A we
discuss the time average 〈. . .〉NV E computed in the microcanonical
(NV E) ensemble. Some observables are averaged over many time
intervals of the same finite length (say, θ ). This is indicated in the
subscript, e.g., 〈. . .〉θ . 〈. . .〉q denotes the time average over a finite
time interval on the quasiequilibrium time scale tq .

4For example, for a molecular solid the rotational and vibrational
degrees of freedom contribute to c0

v but do not appear in Eq. (5),
which only includes the kinetic energy of the centers of mass.

In the following sections, Eqs. (1), (2), and (3) will be
verified by MD simulations with different choices of the
thermostat.

III. METHODOLOGY OF SIMULATIONS

A. Molecular dynamics simulations

As a model system we chose face-centered cubic copper
with atomic interactions described by an embedded-atom po-
tential [20]. The potential accurately reproduces many physical
properties of Cu, including phonon dispersion relations. The
MD simulations were performed with the LAMMPS code
[21] with the time integration step of dt = 0.001 ps. Except
for the system in a “natural thermostat” discussed later, all
simulations were conducted in a cubic simulation block with
periodic boundary conditions. The block edge was 7.23 nm
and the total number of atoms was N = 32000. The block
edges were aligned with 〈100〉 directions of the crystal lattice.
The simulation temperature was chosen to be T0 = 100 K and
the lattice parameter was adjusted to ensure that the solid was
stress-free at this temperature.

Prior to studying thermal fluctuations, two types of addi-
tional simulations were performed to generate data needed
for a comparison with fluctuation results. First, the phonon
density of states g(f ) at 100 K was computed by the method
developed by Kong [22] and implemented in LAMMPS. This
method was chosen because it does not rely on fluctuations
and provides independent results for comparison. Secondly, to
test the accuracy of the simulation methodology, the specific
heat of the solid was computed by a direct (nonfluctuation)
method. This was accomplished by running canonical (NV T )
MD simulations at the temperatures of 50, 100, and 150 K
and calculating the time average energies 〈E〉. The volume
was fixed at the value corresponding to 100 K. The energy
was found to follow a linear temperature dependence in this
temperature interval, from which the derivative (∂〈E〉/∂T )N,V

was evaluated by a linear fit. The specific heat at 100 K was
then found from the equation c0

v = (∂〈E〉/∂T )N,V /N . The
number obtained was 24.89 J/(mol K), which is close to the
equipartition theorem prediction 3k = 24.94 J/(mol K).

The subsequent MD simulations utilized two ensembles:
the microcanonical NV E (isolated system) and canonical
NV T (system in a thermostat). The NV E system was
prepared so that the temperature evaluated from the relation
〈K〉NV E = 3NkT/2 was very close to 100 K. In the NV E

ensemble, the MD simulation simply integrates the classical
equations of motion with a Hamiltonian dictated by the
interatomic potential. The NV T simulations utilized the
Langevin thermostat built into LAMMPS [21]. The Langevin
algorithm [23] mimics a thermostat by treating the atoms as if
they were embedded in an artificial viscous medium composed
of much smaller particles. This medium exerts a drag force as
well as a stochastic noise force R that constantly perturbs the
atoms. The total force on atom i is

Fi = −∂U (r1 . . . rN )

∂ r i

− miγ vi + Ri . (10)

Here, U (r1 . . . rN ) is the potential energy due to atomic
interactions, and mi , r i , and vi are, respectively, the mass,
position, and velocity of atoms i. The drag term depends
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on the damping constant γ , the inverse of which controls
the time scale τr of the energy exchanges between the solid
and the thermostat. During the simulation, the noise Ri is
randomly sampled from a normal or uniform distribution at
time intervals much shorter than τr = 1/γ . The variance of the
noise defines the thermostat temperature T0 via the standard
fluctuation-dissipation relation [23]. To evaluate the role of
the thermostat, additional simulations were conducted with a
Nose-Hoover thermostat as will be discussed later.

B. Postprocessing procedures

We next describe the statistical analysis of the MD results at
the postprocessing stage. Consider a long MD simulation run
implemented for a time ttot. Suppose two fluctuating properties,
X and Y , are saved at every integration step of the simulation.
These can be the kinetic, potential, or total energy of the solid.
We trivially compute the time average values 〈X〉 and 〈Y 〉, as
well as the variances 〈(�X)2〉 and 〈(�Y )2〉 and the covariance
〈�X�Y 〉, where �X = X − 〈X〉 and �Y = Y − 〈Y 〉.

For a spectral analysis, we break the long stochastic
processes X(t) and Y (t) into a large number of shorter
processes, x(t) and y(t), by dividing the total time ttot into
smaller intervals of the same duration θ � ttot. The time
θ was chosen to be longer than the correlation times of
both variables, so that the intervals represent statistically
independent samples with different initial conditions. For
each time interval 0 � t � θ we perform a discrete Fourier
transformation of x(t) and y(t) to obtain a set of Fourier
amplitudes, x̂j and ŷj , corresponding to the frequencies
fj = j/θ , where j = 0,±1,±2, . . .. These amplitudes are
complex numbers satisfying the symmetry relations x̂−j = x̂∗

j

and ŷ−j = ŷ∗
j (the asterisk denotes complex conjugation). The

functions

ĈXX(fj ) = x̂j x̂
∗
j

f1
, ĈYY (fj ) = ŷj ŷ

∗
j

f1
,

where the bar denotes averaging over all time intervals,
represent the ensemble-averaged power spectra of X and Y .
Likewise,

ĈXY (fj ) = x̂j ŷ
∗
j

f1

represents the spectral power of X − Y correlations.
Following the Wiener-Khinchin theorem [6,24], the

functions ĈXX(fj ), ĈYY (fj ), and ĈXY (fj ) were then sub-
ject to inverse Fourier transformations to obtain the au-
tocorrelation functions (ACF) CXX(t) = 〈X(0)X(t)〉 and
CYY (t) = 〈Y (0)Y (t)〉 and the cross-correlation function (CCF)
CXY (t) = 〈X(0)Y (t)〉. In this work, we are interested in
correlations between properties relative to their average
values, namely, C�X�X(t) = 〈�X(0)�X(t)〉, C�Y�Y (t) =
〈�Y (0)�Y (t)〉, and C�X�Y (t) = 〈�X(0)�Y (t)〉. These were
readily obtained by removing the point f0 from the spectra
prior to the Fourier inversion.

All correlation functions in the frequency domain shown in
the figures below have been normalized by 〈(�X)2(�Y )2〉1/2.
For ACFs, the area under the normalized plots against the
frequency is therefore unity.
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FIG. 1. Results of NV E MD simulations. (a) Normalized power
spectrum Ĉ�K�K (f ) of kinetic energy fluctuations (filled circles),
velocity ACF Ĉvv(f/2) (open circles), and phonon density of states
g(f/2) (solid line). (b) The kinetic energy ACF C�K�K (t).

To evaluate the effect of the averaging time scale on the
fluctuation relations more directly, the spectral analysis was
supplemented by a simple coarse-graining procedure in the
time domain. For this procedure, we lifted the requirement
that the time interval θ be longer than the correlation time. For
every time interval l, we computed the time average energy
values 〈X〉l , 〈Y 〉l , etc. A formal temperature Tl was defined
by the equipartition relation Tl = 2〈K〉l/3Nk. These coarse-
grained values were then treated as a new data set, for which
we computed the fluctuation properties such as 〈(�E)2〉θ ,
〈(�T )2〉θ , and 〈�E�T 〉θ . These fluctuation properties were
examined as functions of the time interval θ . For θ = dt ,
this procedure reduces to computing the fluctuations of
instantaneous properties. By increasing θ , we can scan various
time scales, including tr , τr , and the quasiequilibrium time
scale in between.

IV. SIMULATION RESULTS AND DISCUSSION

A. NV E simulations

The goal of the NV E simulations was to evaluate the
phonon relaxation time at the chosen temperature and make
consistency checks of the methodology. Figure 1 shows
the kinetic energy ACF in the frequency and time domains.
The results were obtained from a ttot = 2 ns MD run by
averaging over θ = 3 ps time intervals. For comparison, the
plot of Ĉ�K�K (f ) [Fig. 1(a)] includes the phonon density of
states g(f/2) computed by the nonfluctuation method [22] and
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plotted against the frequency f followed by normalization
to unit area. The close similarity between the plots is not
surprising: in a perfectly harmonic solid, the kinetic energy
ACF is identical to the phonon density of states except for
the doubling of the frequency scale [25–27]. This doubling is
due to the fact that kinetic energy goes through zero twice per
vibration period. In the present simulations, the vibrations were
not perfectly harmonic. The anharmonicity slightly washed
out the shape of the spectrum and produced a high-frequency
tail. Since the total energy is strictly conserved, the potential
energy ACF has an identical shape (not shown here). As
another test, the velocity ACF Ĉvv(f ) was computed from
the same simulation run. As expected, it was found to be very
similar to Ĉ�K�K (f ) except for the frequency doubling effect:
Ĉvv(f/2) ≈ g(f/2) ≈ Ĉ�K�K (f ).

The time-dependent ACF C�K�K (t) shown in Fig. 1(b)
indicates that the relaxation time due to phonon scattering
is about 0.5 ps. Strictly speaking, this time depends on the
phonon frequency and polarization, but we are only interested
in a crude estimate. For comparison, the period tK of kinetic
energy fluctuations can be estimated using a typical frequency
of f̄ = 10 THz [Fig. 1(a)], which gives about tK ≈ 0.1 ps. The
factor of 5 difference between the two time scales is a measure
of anharmonicity of this solid at 100 K.

In the NV E ensemble, the variance of the kinetic energy
of the centers of mass of the particles is [19]

〈(�K)2〉NV E = 3N (kT0)2

2

(
1 − 3k

2c0
v

)
. (11)

Using 〈(�K)2〉NV E obtained by the simulation, this equation
was inverted to solve for c0

v . The number obtained was
25.06 J/(mol K), which is in good agreement with 24.94
J/(mol K) predicted by the equipartition theorem.

We emphasize that equilibrium temperature fluctuations
in the NV E ensemble are undefined since quasiequilibrium
states are only sampled by small subsystems of the system
but not the system as a whole. As already mentioned, one can
always formally define an instantaneous temperature T̂ and its
fluctuations, but this temperature is identical (up to units) to
the instantaneous kinetic energy per atom and does not provide
new physical insights.

B. NV T simulations

The NV T MD simulations were conducted with two time
constants of the Langevin thermostat: τr = 10 and 100 ps.
The simulations times were ttot = 1000τr (10 and 100 ns,
respectively). The kinetic and total energy fluctuations are
illustrated in Fig. 2. To facilitate the comparison, the energies
were shifted relative to their time average values and normal-
ized by standard deviations. The plots clearly demonstrate
the existence of two different fluctuation processes: fast
fluctuations of kinetic energy and much slower fluctuations
of total energy. The fast fluctuations occur on the time scale
of phonon frequencies, whereas the slow fluctuations occur on
the thermostat time scale τr . The large disparity between the
two time scales is demonstrated in the insets, where the kinetic
energy fluctuations are superimposed on nearly constant total
energy. This two-scale behavior is especially manifest for the
slower thermostat (τr = 100 ps) and is a clear signature of

(a)

-4

-2

0

2

4

6

8

10

12

  0 250 500

K
in

et
ic

 a
nd

 to
ta

l e
ne

rg
y

Time (ps)

K
E

-2

0

2

0.5 1.0 1.5

(b)

-4

-2

0

2

4

6

8

10

12

  0 250 500
K

in
et

ic
 a

nd
 to

ta
l e

ne
rg

y

Time (ps)

K
E

-2

0

2

0.5 1.0 1.5

FIG. 2. Representative fluctuations of the kinetic (blue) and total
(orange) energy in the NV T ensemble with the thermostat time
constants (a) τr = 10 ps and (b) τr = 100 ps. To enable comparison,
the energies were shifted relative to the average values and normalized
by the standard deviations. The insets zoom into shorter time intervals
to demonstrate the existence of two different time scales of the
fluctuations (fast and slow).

quasiequilibrium states, in which the system behaves as if it
were isolated and thus maintained a constant energy.

Figures 3(a) and 3(b) show the results of the timescale
analysis discussed in Sec. III B, in which the energies were
averaged over different time intervals θ before computing
their fluctuations [Fig. 3(c) will be discussed later]. The
variances/covariances 〈(�T )2〉θ , 〈�E�T 〉θ and 〈(�E)2〉θ are
compared with the right-hand sides of Eqs. (1), (2), and
(3), respectively. The deviation is normalized by the value
of the right-hand side and plotted against θ . Recall that the
minimum value of θ is the integration step dt , corresponding
to instantaneous values of the energies. Observe that the
instantaneous temperature fluctuation 〈(�T̂ )2〉 has a 50%
error. This number is consistent with the theoretical prediction
in Sec. II that an estimate of temperature fluctuations from T̂

will be off by a factor of 2. As the averaging time θ increases,
the error diminishes. When θ exceeds the phonon relaxation
time tr (about 0.5 ps), the error reduces to ± a few percent and
remains on this low level until θ approaches the thermostat time
τr . At that point the error increases again since the averaging
begins to smooth the temperature fluctuations. In the limit of
θ → ∞, all fluctuations are totally suppressed and the error
goes to 100%. This behavior clearly demonstrates the existence
of a time scale on which the temperature defined by the average
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FIG. 3. Normalized difference between the right- and left-hand
sides of fluctuation relations as functions of the averaging time
interval θ : Eq. (1) (black solid line), Eq. (2) (red dashed line),
and Eq. (3) (blue dotted line). (a) Langevin thermostat with tr =
10 ps, (b) Langevin thermostat with tr = 100 ps, and (c) natural
thermostat.

kinetic energy satisfies the fluctuation relation (1). As predicted
in Sec. II, this time scale lies between tr and τr , where the
system samples quasiequilibrium states. Comparing Figs. 3(a)
and 3(b), we observe that the range of validity of Eq. (1)
widens as the thermostat time τr increases at a fixed tr , which is
again consistent with the definition of quasiequilibrium states.
By contrast, the errors in 〈�E�T 〉θ and 〈(�E)2〉θ remain
negligible on all time scales until θ approaches τr and the
averaging begins to suppress the fluctuations. This is also fully
consistent with the theory. As discussed in Sec. II, Eqs. (2) and
(3) remain valid for both instantaneous and quasiequilibrium
values of the fluctuating properties, which is consistent with
Figs. 3(a) and 3(b).

0.0

0.1

0.2

0.3

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

K
in

et
ic

 a
nd

 to
ta

l e
ne

rg
y 

sp
ec

tr
a

log10[ f (THz)]

100 ps

10 ps

FIG. 4. Normalized power spectra of kinetic and total energy
fluctuations in the NV T ensemble with a Langevin thermostat
for two different time constants (10 and 100 ps). Square and
triangle symbols—kinetic energy; circle and nabla symbols—total
energy.

Turning to the spectral analysis of the fluctuations, Fig. 4
presents the power spectra of the kinetic and total energies
for the two Langevin thermostats. For the total energy, the
spectrum shows a monotonic decay with frequency and dies
off at frequencies larger than 1/τr , which supports the notion
that the total energy fluctuations are primarily caused by slow
exchanges with the thermostat. By contrast, the kinetic energy
spectrum consists of two parts separated by a frequency gap.
The low-frequency part is very similar to that for the total
energy, suggesting a strong correlation. The high-frequency
part has a shape of the phonon spectrum (plotted as a function
of 2f ) and is virtually identical to the spectrum computed in the
NV E ensemble (cf. Fig. 1). Note also that the high-frequency
part of the spectrum is the same regardless of the thermostat
time constant. This part of the spectrum is dominated by the
phonon processes and is independent of how and whether the
system interacts with environment. The gap between the low
and high-frequency parts of the spectrum is where the system is
found in quasiequilibrium states. As expected, this gap widens
as τr increases.

The kinetic-potential and kinetic-total CCFs in the fre-
quency domain are plotted in Fig. 5. The respective ACFs
are also shown for comparison. Note that, at high frequencies,
the kinetic-potential energy CCF Ĉ�K�U (f ) is a mirror image
of the kinetic energy ACF Ĉ�K�K (f ) [Fig. 5(a)]. This reflects
the nearly perfect anticorrelation between the two energies
on the phonon time scale where the energy exchanges with the
thermostat are negligible and the solid behaves as if it were
isolated. In the low-frequency range below the gap, Ĉ�K�U (f )
and Ĉ�K�K (f ) practically coincide. This is also expected
since the energy exchanges with the thermostat increase or
decrease the kinetic and potential energies (averaged over the
phonon time scale) simultaneously. Although these correlation
functions are only shown for τr = 10 ps, the results for
τr = 100 ps look very similar except for a wider frequency gap.
On the other hand, the Ĉ�K�E(f ) and Ĉ�E�E(f ) correlation
functions are similar for all frequencies [Fig. 5(b)]. In the
low-frequency range, this is consistent with the correlated
behavior of all components of energy during the thermostat
exchanges. At high frequencies, the fast fluctuations of kinetic
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FIG. 5. Results of NV T MD simulations with a Langevin
thermostat (τr = 10 ps). (a) Comparison of the kinetic energy ACF
and kinetic-potential energy CCF in the frequency domain. Note that
both spectra have the same shape but opposite sign at high frequencies
and coincide at low frequencies. (b) Comparison of the total energy
ACF and kinetic-total energy CCF in the frequency domain. Both
functions show a similar monotonic decrease with frequency and die
off above 1/τr .

energy and nearly constant total energy produce a zero CCF.
Since both correlation functions are strongly dominated by
low frequencies, 〈(�E)2〉, 〈�E�K〉, and 〈�E�T 〉 remain
the same on both the instantaneous and quasiequilibrium time
scales.

Figure 6 shows the correlation functions in the time domain.
Again, only the functions for τr = 10 ps are shown; the result
for τr = 100 ps leads to similar conclusions. Two of the
functions accurately follow the exponential relations

C�E�E(t) = 〈(�E)2〉e−t/τr (12)

and

C�E�K (t) = 〈�K�E〉e−t/τr (13)

expected for a system interacting with a Langevin thermostat.
By contrast, the kinetic energy ACF C�K�K (t) only follows
the exponential relation

C�K�K (t) = 〈(�K)2〉qe−t/τr , t � tr , (14)

on the time scale t � tr . Here, 〈(�K)2〉q = 1.786 eV2 is the
value obtained by extrapolation to t → 0. For shorter times,
C�K�K (t) is a superposition of Eq. (14) and fast-decaying
oscillations representing phonon processes. This short-range
part is illustrated in the inset and is the same for τr = 100 ps
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FIG. 6. Energy correlation functions in the time domain obtained
by NV T MD simulations with a Langevin thermostat (τr = 10 ps).
The inset is a zoom into the short-range part of the kinetic energy
ACF.

(not shown). Furthermore, this part is identical to C�K�K (t)
obtained in the NV E ensemble (cf. Fig. 1). This is illustrated
in Fig. 7 by superimposing the NV T and NV E ACFs, which
show accurate agreement.

It follows that the entire function C�K�K (t) computed in
the NV T ensemble can be presented in the form

C�K�K (t) = [C�K�K (t)]NV E + 〈(�K)2〉qe−t/τr , (15)

where the first term represents the short-range correlations.
Equation (15) shows the same time scale decomposition as
already observed in the spectral form. 〈(�K)2〉q represents
the quasiequilibrium time scale and can be used to calculate
the temperature fluctuations. Taking Eq. (15) to the limit of
t → 0, we obtain

〈(�K)2〉 = 〈(�K)2〉NV E + 〈(�K)2〉q . (16)

Inserting 〈(�K)2〉 and 〈(�K)2〉NV E from Eqs. (8) and (11),
respectively, we arrive at

〈(�K)2〉q = 9Nk3T 2
0

4c0
v

. (17)
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FIG. 7. NV T kinetic energy ACF for a Langevin thermostat with
τr = 10 ps (red curve) superimposed on the NV E kinetic energy ACF
(blue points). The inset shows a zoom into the short-time region.
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The temperature is defined by Eq. (5), from which

〈(�T )2〉 = 4〈(�K)2〉q
9N2k2

. (18)

Inserting 〈(�K)2〉q from Eq. (17) we exactly recover the
fluctuation relation (1).

As an additional numerical test, c0
v was extracted from

Eq. (17) to obtain c0
v = 24.89 J/(mol K) in good agreement

with the independent calculation in Sec. III A.

C. Additional tests

To demonstrate that the results reported in the previous
sections are not artifacts of the Langevin thermostat, selected
simulations were repeated using the Nose-Hover thermostat
implemented in LAMMPS [21]. The results (not shown here
for brevity) were found to be in full agreement with the
simulations employing the Langevin thermostat, including the
timescale separation and validation of the fluctuation relation
(1) with temperature computed in quasiequilibrium states.

Both the Langevin and Nose-Hover algorithms implement
virtual thermostats that correctly sample the canonical distri-
bution but still differ from a physical thermostat. The latter
is commonly associated with a large volume of some inert
substance possessing a large heat capacity and separated from
the system by a physical interface. The energy exchange
with the thermostat is then controlled by heat conduction
across the interface, which is different from random per-
turbations of atoms uniformly across the system as in the
virtual thermostats. To eliminate any possibility that the virtual
thermostats could affect our conclusions, efforts were taken to
model a “natural” thermostat and show that the conclusions
remain valid. By a “natural” thermostat we mean a simulation
block much larger than our system and separated from the
latter by a physical interface.

As the first step, the NV E MD simulations were executed
as above (Sec. IV A), but this time, atoms within a relatively
small cubic block selected at the center of the system
were treated as the system itself, whereas the rest of the
simulation cell was considered a thermostat. Accordingly,
the energy correlation functions were only computed for the
small subsystem. Repeating the same statistical analyses as
above, it was confirmed that the phonon relaxation time and
the thermostat exchange time were significantly different,
creating a large time interval (accordingly, a frequency gap
in the spectrum of kinetic energy) in which the system existed
in quasiequilibrium states. The temperature defined on this
quasiequilibrium time scale was found to satisfy the fluctuation
relation (1).

But even this test was not found completely satisfactory.
The volume of the inner lattice block selected as our system
was not strictly fixed but rather fluctuated during the simu-
lations. Strictly speaking, the ensemble implemented on the
system was NPT (with zero pressure) rather than NV T .
Although the fluctuation relations (1) and (2) remain valid
in the NPT ensemble as well [8], the simulations with the
virtual thermostats were conducted in a different (NV T )
ensemble.

To make sure that the comparison is made for the same
ensemble, the natural thermostat was redesigned as shown

Thermostat

Thermostat

Fixed
shell

System

(a)

(b)

(c)z

x y
x

y

FIG. 8. Anatomy of the “natural” thermostat implemented in this
work. (a) Vertical cross section of the simulation block revealing the
cubic system under study at the center, the thermostat regions above
and below the system, and a fixed shell enclosing both the system
and the thermostat. The entire assembly is much longer in the vertical
(z) direction than shown. Figures (b) and (c) show horizontal (x − y)
cross sections at the levels indicated by the arrows.

in Fig. 8. A cubic lattice block with an edge of about 2 nm
(about 1400 atoms) was embedded at the center of a larger
periodic block with the dimensions 3.6 × 3.6 × 72 nm (80 000
atoms). This relatively small inner lattice block was the
system to be studied. Atoms within a 0.8 nm shell parallel
to the long (z) direction were fixed in their positions. The
remaining atoms above and below the cubic block represented
the thermostat and were subject to the following constraint:
they could only vibrate in the x and y directions while their z

coordinates were fixed. As a result, the cubic system was fully
surrounded by atoms incapable of motion in the directions
normal to the faces of the cube. The volume of the system
was thereby fixed, imitating rigid walls of a calorimeter. At
the same time, the thermostat atoms above and below the
cube could exchange energy with it by heat conduction across
the interfaces mediated by transverse phonons (polarized in
the x − y plane). This heat exchange controlled the system
temperature. The entire assembly was brought to thermal
equilibrium at the temperature of 100 K.5 As usual, the lattice
parameter was chosen to ensure zero mechanical stress in the
system. Once equilibrium was reached, a 20 ns long NV E MD
simulation was performed to compute statistical properties of
fluctuations as described above.

Figure 3(c) shows the normalized differences between the
variances/covariances 〈(�T )2〉θ , 〈�E�T 〉θ , and 〈(�E)2〉θ
computed with the natural thermostat and the right-hand
sides of Eqs. (1), (2), and (3), respectively. The results
are qualitatively the same as obtained with the Langevin
thermostat [Figs. 3(a) and 3(b)]. The deviation from the
temperature fluctuation relation (1) is again about 50% when
the instantaneous temperature is used (θ = dt) and reduces

5Since the partially constrained atoms forming the thermostat were
thermally active only in the x and y directions, their temperature was
computed as 〈K〉/Nk. In the system itself, the temperature was as
usual 2〈K〉/3Nk.
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FIG. 9. Power spectra of kinetic energy from NV T MD simula-
tions of systems connected to a natural thermostat and two Langevin
thermostats with the time constants of 10 and 100 ps.

to approximately ±10% when the temperature is defined by
the kinetic averaged over the time intervals θ � 0.1 ps. When
θ reaches a few ps or higher, the error increases again due
to the smoothing of fluctuations by averaging over time scales
comparable with the thermostat time. We can conclude that the
latter must be on the order of 10 ps. Thus the quasiequilibrium
time scale for this thermostat is between ∼0.1 and ∼10 ps.
In this time interval, the temperature fluctuation relation (1)
is approximately followed, although not as accurately as with
the Langevin thermostat. This is understandable given that the
system in the natural thermostat was a factor of 20 smaller and
subject to a size effect.6 Upscaling of both the system and the
thermostat would likely reduce the error but was not pursued
in this work.

Spectral analysis of energy fluctuations has shown that the
system closely follows the same trends as for the Langevin and
Nose-Hoover thermostats. As one example, Fig. 9 compares
the power spectra of kinetic energy for the natural and
Langevin thermostats. The high-frequency parts of the spectra
coincide almost perfectly. The low-frequency parts controlled
by energy exchanges with the thermostat also have similar
shapes. In fact, for the natural thermostat, this part of the
spectrum is very close to that for the Langevin thermostat
with τr = 10 ps. This confirms the above estimate of the time
constant of the natural thermostat. This also shows that the
time constants of the Langevin thermostat chosen for this
study were quite realistic. Overall, we can conclude that the
association of the temperature fluctuation relation (1) with the
quasiequilibrium time scale has a generic validity and does not
reflect some specific features of thermostats.

V. CONCLUSIONS

We have addressed the long-standing controversy regarding
the meaning, or even existence, of temperature fluctuations
in canonical systems. Over the past decades, the temperature
fluctuation relation (1) appearing in many textbooks and papers
[5–8,27] has received different interpretations, including the
assertion that this equation is meaningless [1–3] or at best a

6The phonon mean free path at this temperature is estimated to be
about 1.3 nm, which is comparable to the system size.

mere formality [4,9,10]. We have demonstrated that Eq. (1) is
a physically meaningful relation that remains valid as long as
the temperature is defined on an appropriate time scale. This
interpretation of temperature fluctuations has been supported
by MD simulations of a quasiharmonic solid connected to a
thermostat.

The simulations have confirmed the existence of two
different fluctuation time scales in canonical systems. The
shorter time scale is associated with the time required for a
small isolated system to reach thermodynamic equilibrium.
For an atomic solid studied here, this time tr is controlled
by phonon scattering. In this work, this time was about
0.5 ps at the temperature of 100 K. The longer time scale
arises due to slow energy exchanges between the system
and the thermostat. Such exchanges may occur by a variety
of physically different mechanisms, such as heat transfer
across the system/thermostat interface. For the natural and
virtual thermostats studied here, the energy exchange time
τr was on the order of 10 to 100 ps. Thus τr is orders of
magnitude longer than tr . At the intermediate time scale tq
(tr � tq � τr ) the system remains in internal thermodynamic
equilibrium and can be treated as if it were disconnected from
the thermostat. In such quasiequilibrium states, it has well-
defined intensive properties such as temperature, pressure, and
chemical potential.

In particular, temperature can be defined through the
equipartition relation using the kinetic energy averaged on
the quasiequilibrium time scale tq . It has been shown that
fluctuations of the temperature so defined do follow Eq. (1).
Attempts to define temperature through kinetic energy av-
eraged over shorter (<tr ) or longer (>τr ) time intervals
result in significant deviations from Eq. (1). In particular,
the “temperature” obtained by averaging the kinetic energy
over a long time t � τr does not fluctuate and approaches the
thermostat temperature T0.

The time scale separation is also reflected in the shape of
the kinetic energy ACF in the frequency domain, showing
two peaks separated by a frequency gap. The peak at f = 0
arises from energy exchanges with the thermostat, whereas
the second peak is associated with phonon processes and has
the shape of the phonon density of states (plotted against 2f ).
The frequency gap represents the quasiequilibrium states. The
potential energy ACF has a similar structure and can also be
used for the identification of quasiequilibrium states. Thus
measured or computed energy spectra of a canonical system
carry all information about the time scale on which temperature
fluctuations are well-defined and follow Eq. (1).

The conclusions of this work were tested by MD sim-
ulations with two virtual thermostats (Langevin and Nose-
Hoover) and a natural thermostat consisting of large crystalline
regions surrounding the system. In the future, a similar study
could evaluate the validity of pressure fluctuation relations for
canonical systems [6,8,28].
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