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Coherent lattice dynamics in opaque crystals: Testing the adequacy of two-tensor model
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We report the ultrafast pump-probe study of Bi2Te3, Sb, Bi, and Te aimed to check the two-tensor model
predictions for the creation of lattice coherence. The dependence of coherent ultrafast response on phonon
frequency was measured for topological insulator Bi2Te3, the spectrum of which possesses two fully symmetric
phonons. The effect of the pump pulse duration and power on the magnitude of coherent amplitude was evaluated
in the model opaque crystals, such as two semimetals, bismuth and antimony, and semiconducting tellurium. In
our analysis of the pump-probe data, we separated the transient total reflectivity into the sum of two contributions:
one due to the photogenerated carriers and the second due to the coherent phonons. All fully symmetric phonons
exhibit a cosinelike dependence and grow linearly with increasing average pump power provided the pulse
duration remains unchanged. Varying the pump pulse duration, we observed a monotonic decrease of coherent
amplitude for longer pulses, whereas the electronic contribution was almost unchanged. This lack of the correlation
between the carriers and the coherent amplitude was further supported by coherent control experiments on Te.
Based on the comparison of theoretical predictions with experimental observations, we conjecture that the lattice
coherence creation in opaque crystals can be linked to a Raman-like process.
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I. INTRODUCTION

A femtosecond laser pulse is shorter in duration than the
time required for elementary atomic motion in condensed
matter. This feature leads to a variety of the novel effects which
occur unavoidably when such a pulse propagates through or
reflects off almost any material. For example, it has become
possible to monitor the atomic motion by creating coherent
phonons and conducting observations on time scales that are
shorter than the phonon period. Coherence is a unique property
of quantum mechanics that allows electrons to move without
dissipation and elementary excitations to be in two states at
once. The coherence of crystal lattice, the inevitable result
of ultrafast excitation, can be created either via a Raman
mechanism that requires a broad enough pulse spectrum or,
alternatively, via fast radiationless transitions of an optically
pumped electronic state, which need a steep temporal profile
for the pump pulse.

Ultrashort laser pulses have been extensively used in the
past decades to study and manipulate the coherent lattice
dynamics in a variety of materials [1–4]. The high degree
of temporal and spatial coherence created in the lattice by an
ultrashort pulse is convincingly confirmed by optical control
experiments in which the second pump pulse either enhances
or annihilates one of the superposition components [4]. How-
ever, virtually all ultrafast experiments so far have been limited
to a particular pulse duration which is shorter than inverse
phonon frequency while the effect of pulse width on coherent
phonon generation remains essentially unexplored. The visible
and near-infrared light does not couple with crystal lattice in
a direct way due to a huge energy mismatch between photons
and phonons. Therefore, lattice coherence in an ultrafast
experiment is always created via an electron-phonon coupling,
and to identify the coherent phonon generation mechanism one
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has to establish the correct form of the coupling. There are two
excitation schemes most commonly used for coherent phonon
generation: impulsive stimulated Raman scattering (ISRS)
which can occur with off-resonant or resonant excitation
wavelengths [1,4] and impulsive absorption which takes place
on resonance and has been labeled displacive excitation of
coherent phonons (DECP) [5]. Light coherence is transferred
to the lattice for the former but not for the latter, in which the
lattice coherence is an emerging property. While it is well es-
tablished that ISRS serves as the driving force for the coherent
phonons in the spectral region where materials are transparent,
there is still a dispute about the underlying mechanisms in the
opaque regime. One point of view is that DECP is a unique
excitation mechanism unrelated to Raman scattering [5,6].
Another point of view is that DECP can be reduced to a
resonant Raman mechanism [2]. Indeed, it was suggested some
time ago ISRS should be controlled not by single but by two
different tensors [2,7,8]. One is the standard Raman tensor, the
same one that is responsible for spontaneous Raman scattering
intensity, and a second tensor associated with the driving force
of coherent phonon amplitude [7,8]. The real parts of these
two tensors are the same and, as a result, there is a single
tensor for transparent materials in which the light-induced
driving force is proportional to standard Raman polarizability
and behaves impulsively for pulses shorter than the phonon
period. Alternatively, in absorbing regions, the second tensor
is the one that takes part in the coherent phonon generation.
As the imaginary parts of both tensors in the absorbing region
differ considerably, by using the proper tensor, it is possible
to reproduce the impulsive behavior in the transparent and the
displacive behavior in the opaque regime [8].

The paper is aimed at clarifying the validity of the two-
tensor model through the comparison of its predictions with
those of DECP and experimental data. Its goal is to compare
two coherent phonons in Bi2Te3 crystal, which have the same
full symmetry but are different in frequency, and, additionally,
to study fully symmetric phonons in two model semimetals
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and a semiconductor as a function of the pump pulse duration
and power. Such study should clarify the applicability of the
two-tensor model for explaining the coherent lattice dynamics
in the opaque regime. We attempt to investigate the link
between the electronic excitations and the fully symmetric
coherent phonons as well as their dependence on pulse
duration in the materials where DECP is identified as the
generating mechanism. Such comparison can help identify
whether the DECP and two-tensor models are identical. The
paper is outlined as follows. In Sec. II, we briefly consider a
number of testable predictions of DECP and two-tensor model,
while in Sec. III we address the technical aspects regarding
the samples and the setups for pump-probe technique and
Raman spectroscopy. In Sec. IV, we show and discuss our
experimental results. Finally, Sec. V contains the conclusions
of the work.

II. BASIC CONCEPTS

Before proceeding into a detailed discussion of our experi-
ments, it is perhaps useful to make use of a general description
that provides a physical explanation for the theories required
to understand the processes of interest. First, consider the
basics of coherent phonon excitation. The different generation
mechanisms all have in common that an ultrashort laser
pulse either almost instantaneously creates a new carrier
distribution that the lattice atoms have to adjust to (displacive
mechanism, kinematic excitation), or that it causes a short and
intensive force on the atoms (impulsive mechanism, dynamic
excitation) [1,2,4]. In both cases, the electronic system changes
on a very short time scale, and after that does not contribute
to the generation process anymore. Both ISRS and DECP
mechanisms are based on the same general equation of
motion, describing the time dependence of the phonon normal
coordinate Q by the means of a kicked harmonic oscillator
with unit mass

d2Q

dt2
+ 2γ

dQ

dt
+ �2Q = F (t), (1)

where � is the phonon frequency, γ is the phonon damping
constant, and F (t) denotes the driving force. Equation (1)
can be integrated formally, using either Green’s functions or
Laplace transforms with the initial condition that both Q and
∂Q/∂t are zero before the force is applied, to give

Q(t) =
∫ t

0

F (τ )e−γ (t−τ ) sin[
√

�2 − γ 2(t − τ )]√
�2 − γ 2

dτ. (2)

As the phenomenological oscillator model captures the
essential physics, let us consider two limiting kinds of driving
force. The first is a displacive force F (t) = Dϑ(t) and the
second, an impulsive one F (t) = Iδ(t), where ϑ(t) and δ(t) are
the Heaviside step and the Dirac delta function both centered
on t = 0 while D and I scale the force. For the displacive
excitation, after integrating Eq. (2) we have

Q(t) = Dθ (t)

�2

{
1 − e−γ t

[
cos(t

√
�2 − γ 2)

+ γ√
�2 − γ 2

sin(t
√

�2 − γ 2)

]}
. (3)

The solution (3) shows the response consists of two con-
tributions: a constant and an oscillatory part. In the following,
we refer to the oscillatory part as the coherent contribution
and the nonoscillatory part as the incoherent contribution. The
incoherent, zero-frequency part can be attributed to the change
of equilibrium position, while the oscillatory part is associated
with a damped coherent oscillation. As far as coherent phonons
are concerned, the DECP theory assumes that the pump pulse
with duration shorter than inverse phonon frequency gets
absorbed by the opaque material and alters the band and
temperature distribution of the electrons [5]. The photoexcited
electrons in the number proportional to the absorbed energy
introduce a displacement of the equilibrium position of the
atoms. This displacement preserves the unit cell symmetry
and sets the atoms oscillating around the new equilibrium
position. Other Raman modes lower the symmetry of the unit
cell and thus are not the favorable displacement upon electronic
excitation. It is the equilibrium coordinate that gets shifted by
the electronic excitations and the “pushing force” that starts the
oscillations and is governed by the excitation and relaxation of
charge carriers. Since no momentum is imparting to atoms by
the driving force action, the excitation has a kinematic charac-
ter. Perhaps, it is appropriate to mention here that even though
the generation of lattice coherence in the DECP model is not
directly related to a Raman process, the detection of coherent
phonons always requires a strong Raman scattering at phonon
frequency [5]. Assuming a Gaussian pulse shape, the driving
force—being a convolution of the pump pulse with the Heav-
iside function—for the displacive excitation takes the form

FD(t) ∝ Im(ε)Einterfc

(
− t

τp

)
, (4)

where Im(ε) is the imaginary part of the dielectric function ε,
Eint is the integrated pulse energy, and

erfc

(
− t

τp

)
= 2√

π

∫ ∞

t
/
τp

exp(−x2)dx (5)

is the complementary error function representing the rising
edge of the driving force. The lower bound of this exponential
integral function is determined by the laser pulse duration τp

that must be smaller than inverse phonon frequency, �τp < 1.
For the impulsive force, which provides a dynamical

character of the excitation, after integrating Eq. (2), we get

Q(t) = I√
�2 − γ 2

e−γ t sin(t
√

�2 − γ 2)θ (t). (6)

From Eq. (6) follows that the impulsive force starts
oscillations about the unchanged equilibrium position. For a
Raman mechanism, in which the driving force occurs through
mixing among frequency components of the electromagnetic
field contained within the bandwidth of a transform-limited
Gaussian pump pulse [1], the force has the form

FR(τ ) ∝ χI0e
− �2τ2

p

4 , (7)

where χ is the Raman tensor, I0 is the pulse integrated intensity,
and the exponential term reflects the requirement that the laser
pulse width τp for efficient coherent excitation should be short
compared to a single phonon period. The last requirement
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can also be understood from the perspective of the frequency
domain: the bandwidth of an ultrashort laser pulse needs to be
wide enough to satisfy energy conservation with respect to the
generated phonon frequency. In principle, Raman scattering
can be thought of as a wave mixing process where one of
the participating waves is given by the phonon. The nonlinear
polarization, which depends quadratically on the electric field
of laser light, has frequency components at the sum and
difference between the phonon mode and the laser light
frequency (the so-called anti-Stokes and Stokes frequencies,
respectively). Note that any induced lattice motion is sensitive
only to the laser intensity and not to the electric field directly.
The response can be easily calculated using a Green’s function
analysis for any driving pulse shape [9]. It confirms that the
coherence strength is proportional to the power spectral density
of the pulse intensity envelope at the phonon frequency.

In contrast to DECP, in the off-resonant Raman case,
the atoms (not the potential on which they reside) re-
ceive a “kick” imparting a certain momentum. Assuming
that the pulse appears at the moment t = 0 and is nonzero
within the time interval of the pulse duration τp, one finds
that after the interaction, that is, for t > τp, the coordinate
exhibits freely damping oscillations. The displacement of
the atom during the laser pulse action is much smaller, by
a factor τpγ � 1, than the amplitude of subsequent free
oscillations because the atom acquires some initial velocity,
but its coordinate has no time to change [10]. The difference
between the impulsive and displacive force is easily seen from
the illustrative example of a driven mechanical oscillator (a
mass m on the spring of stiffness k). Here one can relate the
force magnitude F to the displacement |A|:

G(ω) = |A|
F

= 1√
(−mω2 + k)2 + (γω)2

. (8)

At zero excitation frequency, we have G(0) = 1/k. This
means that applying a constant force, we expect to stretch the
spring by a constant amount and, since nothing is changing in
time, both mass and drag are irrelevant. The proportionality
between force and displacement is the stiffness, which appears
here as 1/k because we ask how much displacement one gets
for a fixed force, rather than the other way around. At very high
frequencies, the mω2 term is bigger than all the others, and so
we find G(ω → ∞) = 1/mω2, which means that pushing the
oscillator at very high frequencies one hardly feels the stiffness
or damping at all. What is felt instead is the inertia provided
by the mass, and the applied force goes into accelerating this
mass. This means that the high frequencies are responsible
for a dynamic excitation, while the low frequencies result in
a kinematic regime. Using a bit more sophisticated model,
in the framework of an electronic circuit model [11], the
distinct difference between DECP (kinematic) and Raman-like
(dynamic) excitations was described as follows: the excitation
takes place due to a low-frequency component of the pulse
envelope for the former, whereas the system excitation is a
kind of homo/heterodyning process due to mixing the carrier
frequencies for the latter.

The Raman tensor χ , which controls the force magnitude,
can be expressed as the partial derivative of the dielectric tensor
ε with respect to the phonon normal coordinate χ (ω,ω ± �) ∝

∂ε/∂Q where ω denotes the light angular frequency. While in
the transparent regions, the tensor has its standard form

χ
R

kl(ω,ω ± �) ∝
{

∂Re[ε(ω)]

∂ω
+ i

∂Im[ε(ω)]

∂ω

}
, (9)

in the absorbing media, where Im(ε) � Re(ε), the tensor
responsible for coherent phonon generation is changed to

χ
Q

kl(ω,ω ± �) ∝
{

∂Re[ε(ω)]

∂ω
∓ i

2Im[ε(ω)]

�

}
(10)

due to a different pole structure for the generation and
scattering process [7,8]. Another important feature of the
two-tensor model lies in the specific temporal profile of driving
force. For transparent materials, ∂Re[ε(ω)]/∂ω dominates, and
the driving force follows the temporal shape of the pump
pulse, a characteristic of impulsive excitation. For opaque
materials, 2Im[ε(ω)]/� controls the generation, therefore, the
driving force has an error-function temporal profile, indicative
of displacive excitation. Thus, a transiently stimulated Raman
scattering mechanism can be extended from transparent to
opaque materials since both the virtual and real electronic
excitations are incorporated into the complex Raman tensor
in the two-tensor model [7,8]. Further improvement of this
unified model was made after the inclusion of lifetime effects
for the driving force [12]. It was shown that when the force
decay rate  is small, the force looks like a step function with
its rising edge broadened by the pulse duration and lasting
as long as 1/ � 1/�. On the other hand, when the decay
rate increases, the force gradually transforms to a bell-like
shape with its amplitude inversely related to the decay rate
magnitude [13].

Let us summarize the relations between the magnitude of
coherent amplitude Q0, which we define as the amplitude of
free damped oscillations after the interaction is over, and the
experimentally controlled parameters for the different gener-
ation scenarios. From Eqs. (2), (4), and (7) it follows that the
coherent amplitude is linearly proportional to the force magni-
tude. The latter is proportional to the excitation light intensity
and differential Raman polarizability for the mode being driven
in the case of a Raman-like excitation, and to the pulse energy
and the absorption coefficient for DECP. The coherent ampli-
tude depends quadratically on inverse phonon frequency for
both DECP and two-tensor models, whereas the dependence
is linear for ISRS theory [10,13]. An exponential term in the
DECP mechanism, hidden in the erfc function of Eq. (4), is
explicitly independent of phonon frequency, while the similar
term in both Raman models is controlled by the phonon fre-
quency � [13]. The latter property is the only sizable difference
between the DECP and two-tensor models. However, since the
complementary error function does depend implicitly on the
phonon frequency � through a lower bound of the definite inte-
gral, its contribution might be reduced to exp(−�2τ 2

p/4) [14].
This feature makes the coherent amplitude dependence on
pulse duration and phonon frequency identical for both DECP
and two-tensor models. The arguments here are not rigorous,
but hopefully, give the sense that the coherent amplitude relies
on phonon frequency also in the displacive case. Nevertheless,
in contrast to an impulsive force, in the displacive limit
� controls the displacement due to restoring force, which
balances the driving force during the interaction time.
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III. EXPERIMENT

The crystals studied in our work belong to the class
of layered materials. Because the layered crystals cleave
easily between the layers, single crystals with the exposed
basal (xy) plane are readily obtained. Therefore, the optical
measurements were carried out on Bi2Te3, Bi, and Sb single
crystals cleaved perpendicular to the trigonal axis. No cleavage
was necessary for Te single crystal as it possesses naturally
exposed trigonal faces with optical quality surfaces. The
crystals were glued with silver paste on the cold finger of
an optical cryostat. The measurements on semimetals were
carried out at T = 90 K, which is lower than the Debye
temperature of any of the crystals. Bi2Te3 and Te crystals
were studied at room temperature.

The pump-probe setup includes a mode-locked Ti:sapphire
laser system with the pulse duration of 45 fs, a repetition
rate of 80 MHz, and a center wavelength of 800 nm. Part
of the laser beam was used as the pump pulse, while the
remaining part served as the probe pulse. Small transient
reflectivity changes of the probe beam were detected by
using a photodiode and a lock-in amplifier (pump beam was
modulated at 2 kHz with an optical chopper) [15]. The pump
pulse can be tailored with a pulse shaper [16]. It involves a
spatial Fourier transformation of the incident pulse to disperse
the frequencies in space and modify the chosen frequency
components selectively, while a final recombination of all
the frequencies into a single, collimated beam results in the
desired pulse duration. We employed the isotropic detection
scheme in which the differential reflectance of the probe light,
�R/R0 = (R − R0)/R0 was defined as the relative change
caused by the pump pulse with R0 being the reflectance at
negative time delays. This isotropic detection allows coupling
exclusively to the diagonal elements of the phonon Raman
tensor. A linear motor stage was used to vary the delay time
between the pump and probe pulses, and the polarizations
of pump and probe beams were orthogonal to each other;
meanwhile, both were perpendicular to the trigonal axis of the
single crystal under study. Typically, the crystal was excited
with 50 mW average pump power focused to a spot with a
diameter of ≈70 μm (the estimated pump fluence was around
40 μJ/cm2), while the probe power does not exceed 5 mW
focused into a smaller spot.

Raman spectra were recorded on a micro-Raman spec-
trometer (Microdil-28) in a backscattering configuration. The
spectra were excited with a visible laser light (λ = 632.8 nm)
at low power levels measured with the power meter at
the sample position. The low power levels were essential
to avoid local laser heating and damage. All the spectra
were collected through a 50× objective and recorded with
1800 lines/mm grating and slit widths providing a spectral
resolution better than 1 cm−1. The spectra were recorded with
the multichannel, nitrogen-cooled CCD detector positioned
after the spectrograph.

IV. RESULTS AND DISCUSSION

Having established how coherent amplitudes depend on
experimentally controlled parameters, let us compare the
theory predictions to what is observed in the time domain.

Thus, our strategy for testing the adequacy of the two-
tensor model is to check the coherent amplitude dependence
on phonon frequency, pulse width, and pulse power. First,
consider the topological insulator Bi2Te3 in which the phonon
spectrum includes two fully symmetric modes [13,17,18].
Such set of phonons allows the comparison of coherent
phonons of the same symmetry, both presumably driven by
the same, displacive mechanism. Indeed, bismuth telluride
crystallizes in rhombohedral D5

3d structure and has six Raman-
active phonons: a pair of fully symmetric A1g and a pair
of doubly degenerate Eg phonons whose frequencies follow
in a descending order:A(II)

1g , E(II )
g A

(I)
1g , and E(I)

g [17]. In the
high-symmetry modes, the atoms move along the trigonal axis.
The difference between the two fully symmetric phonons is
that the top two layers vibrate in phase in A

(I)
1g and out of phase

in A
(II )
1g . Figure 1 shows the transient reflectance of Bi2Te3

crystal at room temperature after the excitation with a 45 fs
laser pulse. The reflectivity signal consists of a nonoscillatory
background, the initial drop and a slower recovery, related
to electron excitation and lattice heating via electron-lattice
coupling, and oscillatory components appearing right after
laser excitation. The maximum of the nonoscillatory response
is shifted in time with respect to the zero delay determined by
the pump-probe cross correlation. This shift is caused by the
specifics of electronic structure [11]. Parameters of the ultrafast
response were determined by fitting the time-domain data to
a set of damped harmonic oscillators and a nonoscillating
component

�R

R0
= Ael

[
exp

(
− t

τrise

)
− exp

(
− t

τrel

)]

+
∑

i

Ai exp

(
− t

τi

)
sin(2π�it + φi), (11)

where Ael is the amplitude from photoexcited carriers; τrel

and τrise are the relaxation and rising time, respectively; Ai

is the coherent amplitude; �i is the frequency; τi is the
dephasing time; and ϕi is the initial phase of the particular
coherent phonon. Such decomposition allows comparison of
the phonon Ai and electronic Ael parts needed to test the theory
predictions. Having made the separation of the experimental
signal into the sum of an electronic term and a phonon term,
we then proceed to study each contribution.

The phonon (coherent) Ai and electronic (incoherent) Ael

contributions are comparable to each other. The amplitude
Fourier transform of a coherent component, performed after
subtracting the nonoscillating transient and shown in Fig. 1(b),
reveals slow and fast fully symmetric oscillations at 1.85
and 3.96 THz due to A

(I)
1g and A

(II )
1g phonons. Both fully

symmetric phonons of Bi2Te3 exhibit cosine dependence
which physically implies that at the moment of excitation
the atoms are maximally displaced from their equilibriums.
According to the earlier studies [17–19], the cosinelike initial
phase of the fully symmetric modes suggests the kinematic
type of excitation.

The fully symmetric A
(I)
1g and A

(II)
1g Raman polarizabilities,

obtained from the Raman spectrum shown in Fig. 1(c) and
estimated via the integrated intensity, are related to each
other as 3 to 4, which is also consistent with previous
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Residual

FIG. 1. (a) A typical differential change of the reflectance in Bi2Te3 and its decomposition into coherent oscillations and electronic
contribution. The data were taken at room temperature and detected with isotropic detection scheme. The curves are shifted vertically
for clarity. (b) The decomposition of coherent oscillations into the symmetry components and the residual shifted vertically for clarity.
(c) Normalized fast Fourier transform (FT) spectrum of coherent oscillations. (d) Raman unpolarized spectra excited with He-Ne laser in
backscattering geometry. The open symbols are experimental points; the solid line is a cumulative fit to four Lorentzian profiles.

studies [17,19]. The coherent amplitude ratio obtained in this
experiment Q0(AII

g )/Q0(AI
g) ≈ 2 almost coincides with the

ISRS prediction Q0(AI
g)/Q0(AII

g ) = �AII
g
/�AI

g
≈ 2.1 provided

we assume the instantaneous excitation with infinitely short
pulses. On the other hand, as the efficiency to generate
coherent phonons is higher for lower frequency mode, the
amplitude ratio Q0(AI

g)/Q0(AII
g ) = �2

AII
g
/�2

AI
g

is expected to

be 4.5 for the DECP model (here we assume that e-ph
coupling is the same for both modes), and Q0(AI

g)/Q0(AII
g ) =

(�2
AII

g
/�2

AI
g
)(χR

AI
g
/χR

AII
g
) ≈ 3.4 for the two-tensor model. Given

the uncertainty (at the level of 50%) in values of the
ratios, better agreement between theoretical estimates and
experiment would not be expected. Note that increasing the
pulse duration seems to result in an increase of the coherent
amplitude ratio. Indeed, analyzing the literature data and
comparing them to the ratios obtained in nondegenerate
ultrafast pump-probe experiment [17–19], we see that with
τp = 70 fs Q0(AI

g)/Q0(AII
g ) ≈ 3.3 [18], whereas with the pulse

duration of 100 fs the ratio is larger than ten [19]. From the
comparison, we infer the low-frequency and high-frequency
modes grow at a different speed for decreasing pulse duration.
Nevertheless, many other experimental conditions such as
laser wavelength, pump intensity, spot size, temperature, etc.,
were different in [18,19], therefore, to confirm the coherent
amplitude dependence on pulse duration in the topological
insulator, the experiment should be carried out under identical

conditions. Such experiments will be described below for two
semimetals and a semiconductor.

We now briefly address low-symmetry phonons in Bi2Te3

that can only be driven by a Raman mechanism. For λ =
800nm excitation, the doubly degenerate phonons are absent
in the isotropic detection scheme, but can be detected in the
anisotropic detection [13,17]. In any case, their coherent am-
plitudes are one order of magnitude smaller than those of fully
symmetric phonons. For a near-infrared excitation, the E(I)

g and
E(II)

g amplitudes in the time domain are almost equal [19]. At
the same time, their Raman E(II)

g and E(I)
g polarizabilities are

related to each other as E(I)
g : E(II)

g ≈ 7 : 1, signaling that the
polarizability of high-frequency mode significantly exceeds
that of low-frequency mode. The coherent amplitude ratio for
these modes can be only attained by the two-tensor model
for which Q0(EI

g)/Q0(EII
g ) = (�2

EII
g
/�2

EI
g
)(χR

EI
g
/χR

EII
g
) ≈ 0.9. A

significant difference between the fully symmetric and low-
symmetry coherent amplitudes is naturally explained within
the framework of the two-tensor model by including the driv-
ing force lifetime. Indeed, assuming that the displacive force
due to a Gaussian pump pulse exponentially decays with time

F (t) ∝ erfc

(
τp

2
− t

τp

)
e[(

2τ2
p

4 )−t], (12)

we can see that when  exceeds the pulse duration τp, the
force is immensely suppressed [13]. As the Eg phonons in the
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FIG. 2. (a) A typical differential change of the reflectance in Sb taken at 90 K with isotropic detection scheme and its decomposition into
coherent oscillations and electronic contribution. The average pump power is –20 mW; the pulse duration is −45 fs. The curves are shifted
vertically for clarity. (b) The decomposition of coherent oscillations into the symmetry components and the residual shifted vertically for
clarity. (c) Normalized fast FT spectrum of coherent oscillations. (d) Raman unpolarized spectra excited with He-Ne laser at T = 90 K in
backscattering geometry with an electric field parallel to the bisectrix axis.

opaque crystals couple to low-symmetry components of the
charge density, which usually decay on a time scale shorter
than the oscillation period, their amplitudes are significantly
smaller than those for fully symmetric phonons. For example,
the anisotropic charge-density component in Bi2Te3 decays
within a time less than 10 fs [13,19], which is significantly
shorter than the lifetime for isotropic charge density. Similarly,
a much shorter lifetime (less than 10 fs) has been observed
for Eg phonons in both semimetals, Sb and Bi [13,20], in
which the isotropic charge-density component exists for the
time around a few picoseconds. It has been suggested the
Eg driving force decays so fast that the force fails to build
up, rendering a weaker coherent phonon signal [13,20]. Note,
however, that such short lifetime, encompassing only two to
three optical cycles, appears to be incompatible with resonant
excitation character. Nevertheless, the results of recent first-
principle calculations of the polarization-dependent atomic
forces [21] are in excellent agreement with those derived from
measurements of the Eg amplitude and the anisotropic decay
time of several femtoseconds [13,20].

To conclude, coherent lattice dynamics in Bi2Te3 for both
fully symmetric and doubly degenerate phonons is satisfac-
torily explained by the two-tensor model. Fully symmetric
coherent lattice dynamics is also consistent with the DECP
model, the predictions of which coincide with those of the
two-tensor model.

Having considered multiple modes of the same symmetry,
we then carried out degenerate femtosecond pump-probe

measurements in semimetals Sb and Bi and a semiconductor
Te. This study substantiates our conjecture of a Raman-
like generation of lattice coherence in the opaque crystals.
We intentionally selected three exemplary materials whose
coherent lattice dynamics laid a basis for the development of
the DECP model to check the predictions of both DECP and
two-tensor models. For this purpose, we will concentrate on
the changes introduced by the variation of pump pulse duration
at constant average pump power. We will then compare them
to the changes when the pump duration is fixed and the average
pump power is varied.

As already mentioned, the semimetals, bismuth and anti-
mony, are the model objects for the study of coherent lattice
dynamics in the opaque crystals [2,4,22–31]. Their coherent
phonons [27,28] initiated the development of the DECP
model [5] and, a little later, were used to justify the two-tensor
model [7,8,20]. Both of the semimetals crystallize in the A7
structure with two atoms in the primitive rhombohedral unit
cell. Of their six phonons, the optic A1g and Eg phonons
are Raman active. The fully symmetric A1g phonons of
rhombohedral semimetals are formed by out-of-phase dis-
placements of atoms along the trigonal axis, which modulate
the internal (Peierls) shift. In a parent cubic lattice, these
displacements coincide with those of longitudinal acoustic
mode at the R corner of the Brillouin zone. The low-symmetry
A7 structure of these semimetals is primarily due to Peierls
distortion, and the generation of fully symmetric coherent
phonons can be considered as an inverse Peierls effect [5,29].
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Figure 2(a) demonstrates the typical optical response of Sb
to femtosecond excitation obtained in the isotropic detection
scheme at T = 90 K. Making fit to Eq. (9), we separate
oscillating and nonoscillating parts and further decompose
the coherent signal into two symmetry components as shown
in Fig. 2(b). In Fig. 2(d), we present a Raman spectrum
that shows two phonons of different symmetry, of which
the fully symmetric one is dominant. From the time-domain
data, we can see that the excited electrons, with a rise time
of a few hundred femtoseconds, relax to the equilibrium
state in a time of the order of a few picoseconds. On this
electronic relaxation are superimposed oscillations generated
by coherent optic phonons. From the ratio between the electron
and coherent amplitudes, it follows that the electron and
phonon contributions are comparable, although the former
slightly dominates. Fourier analysis of coherent oscillations
shown in Fig. 2(c) reveals that the main contribution comes
from a fully symmetric A1g phonon with the frequency of
4.63 THz. Note that its initial phase is close to −π /2 as shown
in Fig. 3(b), while that of lower symmetry phonon is almost
zero, both consistent with the previous studies [4,26,31].
Such initial phases are qualitatively well accounted for by
the two-tensor model (the A1g phase is also consistent with
DECP).

To further test the relationship between DECP and two-
tensor models, we studied the dependence of ultrafast response
on pump pulse width. To this end, the photoinduced transient
reflectance was measured at various pump pulse durations
(ranging from 45 fs up to 250 fs) for the same average pump
power. To change the pump pulse duration, we used an ultrafast
pulse shaper, while the probe pulse was always transform
limited with the duration of 45 fs. Already from experimentally
obtained transient reflectance, whose typical representatives
are presented in Fig. 3(a), it is clear that the increase in
pulse duration leads to the decrease in coherent oscillation
amplitude. These three curves in Fig. 3(a) are drawn to give a
feeling of the sensitivity of coherent amplitudes with respect
to the pulse width. From the results obtained from the fit to
Eq. (12) and shown in Fig. 3(c), follow that the coherent A1g

amplitude decays exponentially with increasing pump pulse
duration. The decay is exponential e−t/τ with the characteristic
time τ roughly equal to a quarter of phonon period (T =
226 fs,τ = 60 fs). On the other hand, the electron contribution
to the fully symmetric signal remains virtually unchanged for
all varying pulse durations [see Fig. 3(c)]. Indeed, within the
experimental errors, we did not detect a change in the position
and magnitude of the electronic part Ael . Thus, contrary to
the common belief that coherent amplitude is proportional to
photoexcited carrier density, our results highlight situations
in which they are uncorrelated. Interestingly, the lack of
correlation between the fully symmetric electronic and lattice
contributions can be also seen in the data reported in a
temperature-dependent pump-probe study on Sb [30], but the
authors did not discuss the origin of the observed effect.
These observations might have refuted the DECP model in
which the driving force for isotropic coherent lattice dynamics
proportional to carrier density is due to a non-Raman process.
Yet the carrier density in DECP is proportional to the pulse
energy that remains almost constant in these experiments.
What remains unclear is the lack of any correlation between

the phonon and electron contributions which according to
Eq. (3) should be equal. However, in fact Eq. (3) describes
only the lattice part [its counterpart is Eq. (5) in Ref. [5]].
The full original Eq. (21) in [5] is given by the sum of two
terms

�R

R0
= A

∫ ∞

0
g(t − τ )dτ + B

∫ ∞

0
g(t − τ )

{
e−τ

− e−γ τ

[
cos(�̃τ ) −  − γ

�̃
sin(�̃τ )

]}
dτ, (13)

where �̃ =
√

�2 − γ 2 is the renormalized phonon frequency
and g(t) is the laser pulse autocorrelation function. Relating
Ael and Ai in Eq. (11) to the first and second terms of
Eq. (13), respectively, one can see that the first term is the
source driving the second. It is independent of pulse duration
provided the pulse energy is conserved. The second term is the
sum of the dc offset and oscillating parts in which the offset
is independent of, whereas the oscillating part is dependent
on pulse duration (because the longer pulses suppress the
oscillations). Intuitively, the electron contribution formed by
a transient absorption remains constant for the pulse durations
satisfying the inequality 1/ > τp > 0, while the coherent
amplitude should depend on the shape of the pump pulse.
The coherent amplitude contribution attains its maximum
value when the pulse envelope can be considered as a δ

function, that is, in the limit �τp → 0. By increasing the pulse
duration toward the adiabatic limit �τp → ∞, the coherent
amplitude is expected to approach monotonically zero. One
of the ways to understand such a behavior is to conjecture the
atoms move on the excited potential surface during the pulse
duration. Therefore, for longer interaction times controlled by
the pulse width, the atoms can move closer to the newly created
potential minimum resulting in smaller coherent amplitude for
the same shift of the potential. This idea has been advanced
in the ultrafast study of A1g coherent phonons in TiO2 [32]
to explain a shift in the initial phase with respect to the
instantaneous displacive excitation, �τp → 0. Unfortunately,
the experimental accuracy of 10%–15% in the determination
of zero delay time does not allow us to detect the initial phase
shift as well as a change of the rise time for longer pump
pulses.

To check further the theory predictions, the coherent
amplitude dependence on pump intensity, in which we varied
the average pump power keeping the pulse duration intact, was
also measured. As shown in Fig. 3(d), both the electron and
lattice contributions grow linearly without any threshold for
increasing average power. This threshold absence is evidenced
by a linear approximation extrapolated to the zero pump power
and shown by a dashed line in Fig. 3(d). Such behavior can be
explained by both theories. In the case of a Raman-like model,
the threshold absence happens because the seed photons,
produced in the continuous-wave stimulated Raman by a
spontaneous process, for impulsive Raman excitation are
originally present in the pump pulse. On the other hand, the
linear increase of coherent amplitude with higher excitation
might be a direct consequence of the DECP mechanism that
launches the phonons. Indeed, impulsive absorption (both
single- and two-photon), on which the DECP model resides,
has only an energy threshold, but it is also linear with the
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FIG. 3. (a) Typical differential change of the reflectance in Sb taken in a degenerate pump-probe experiment at 90 K with isotropic detection
scheme for different pump pulse durations. (b) Coherent amplitude (open symbols) and electronic contribution (closed triangles) as a function
of pump pulse duration. The dashed line is an exponential fit to coherent amplitude data. (c) Typical differential change of the reflectance in Sb
taken with different average pump pulse powers (from the bottom to the top: 20, 40, and 80 mW, respectively). (d) Pump-power dependence
for coherent (open symbols) and incoherent (closed triangles) parts. The dashed line is a linear fit to coherent amplitude data.

excitation intensity. Interestingly, in contrast to the pulse
duration dependence, for the pump-power dependence we
observed a decrease in the electronic rise time for larger
pump powers. This feature is consistent with the previous
pump-probe experiments on Sb in which the position and
magnitude of electronic parts depend on both pump power
and temperature [11]. In particular, the peak position Ael at
low temperature shifts toward smaller delays with increasing
pump intensity [11].

As a consistency check, the ultrafast measurements were
repeated for bismuth. In Bi, the similar behavior for both
lattice and electron contributions was observed. The Bi results
obtained at the same temperature are summarily presented
in Fig. 4. From Figs. 4(a) and 4(c) we can see that fully
symmetric A1g phonons with the frequency of 3.01 THz
demonstrate the increase in coherent amplitude and indepen-
dence of electronic contribution for shorter pulse durations.
The coherent amplitude in Bi obeys the similar as in Sb
dependence on pulse duration decaying exponentially with
the characteristic time equal to a quarter of A1g phonon
period (T = 332 fs, τ = 80 fs). Also for fixed pulse duration,
both coherent and electronic contributions grow linearly with
average pump power without any threshold [see Fig. 4(d)].
Finally, we should note that the results obtained in the
pump power and pulse duration dependence for bismuth also
manifest independence of A1g phonon frequency, decay rate,
and initial phase on the varied variable. This independence
signals that we are in a linear regime [15].

To finish, a similar set of pump-probe experiments was
carried out for α-Te in which we observed the same behavior
as in the semimetals for both the lattice and electron contri-
butions. Tellurium crystallizes with three atoms per unit cell
in which twofold-coordinated Te atoms form infinite helical
chains parallel to the c axis of the trigonal D4

3 structure [16,33].
Each helix is surrounded by six equidistant helices and each
atom has four second-nearest neighbors in these adjacent
helices. The single atomic position free parameter is equal to
the ratio of the radius of each helix to the interhelical distance.
Since the parameter value is not determined by symmetry,
the equilibrium value is, therefore, sensitive to the precise
details of electronic structure. The α-Te crystal structure may
be viewed as a Peierls distortion [33] of the γ -Te rhombohedral
structure (D5

3d with one atom per unit cell), the same way as
the semimetals rhombohedral structures can be considered
as a Peierls distortion of the cubic structure. This feature
allows for a coherent excitation of the A1 phonons via the
DECP mechanism since any change in the electronic state
occupation alters the free parameter value [5,33]. Among six
optic phonons of α-Te, the A1 phonon with the frequency
of ≈3.6 THz corresponds to the symmetric intrachain dilation
and compression normal to the chain axis. This Peierls-like A1

mode is the dominant contribution in the ultrafast pump-probe
experiment, the results of which are summarily shown in
Fig. 5. The A1 phonons display a cosine dependence. As is
evident from Fig. 5(b), they exhibit the exponential increase
in coherent amplitude, with the temporal constant equal to
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FIG. 4. (a) Typical differential change of the reflectance in Bi taken in a degenerate pump-probe experiment at 90 K with isotropic detection
scheme for different pump pulse durations. (b) Coherent amplitude (open symbols) and electronic contribution (closed triangles) as a function
of pump pulse duration. The dashed line is an exponential fit to coherent amplitude data. (c) Typical differential change of the reflectance n

in Bi taken with different pump pulse powers (from the bottom to the top: 20, 40, and 80 mW, respectively). (d) Pump-power dependence for
coherent (open symbols) and incoherent (closed triangles) parts. The dashed line is a linear fit to coherent amplitude data.

a quarter of inverse phonon period, and independence of
electronic contribution for shorter pulse duration. For fixed
pulse duration, both the coherent and electronic contributions
grow linearly with average pump power without any threshold
as shown in Fig. 5(c).

Finally, we split the 50 fs transform-limited pump pulse into
two identical Gaussian pulses with the same energy to carry out
coherent control experiment. Figure 5(a) shows the transient
reflectance of α-Te excited with such two-pulse sequence with
the interpulse separation α of 140 and 280 fs together with
that excited by the single pump pulse. One can see that if the
total electronic contribution is always the sum of the signals
resulting from each pump pulse independently, the oscillatory
component exhibits interferences resulting in a cancellation of
the coherent amplitude for α = 140 fs as compared to single-
pulse excitation. Thus, the data show that the particular double-
pulse combination leads to cancellation or enhancement of the
coherent phonons, whereas the electronic contribution remains
essentially unchanged. This observation suggests that splitting
the excitation energy (or the number of photons) between
multiple pulses can provide selectivity, but not increase in
the resulting coherent amplitude, suggesting that the lattice
excitation is proportional to the total energy (or intensity) of the
pump pulse. Unpretentiously, assuming a kinematic excitation,
the coherent control process can be thought of as follows: The
first pump pulse establishes a new potential surface on which
the atoms move and the lattice, initially displaced from the

newly established equilibrium, achieves this configuration in
approximately one-quarter of a phonon period, but the atoms
have momentum at that point. When the atoms reach the
classical turning point of their motion, a second pump pulse
can excite the exact density of carriers to shift the equilibrium
position to the current position of the atoms, thus removing the
restoring force and stopping the oscillatory motion. Because
ultrafast pulse can only shift the equilibrium position in one
direction, the oscillations can only be stopped for time delays
equal to an odd number of phonon semiperiods between pump
pulses. For time delays equal to an even number of semiperiods
the oscillations are enhanced. In the linear regime under weak
excitation, this criterion has been verified experimentally in
Bi [4,34,35].

It should be emphasized that all the results on semimetals
and a semiconductor were obtained in a low fluence regime.
The various effects in narrow-band materials like nonlinearity,
anharmonicity, damping, etc., can become comparable in
importance to the effects present in the linear regime and result
in frequency chirp, nonlinear amplitudes, and modified decay
of coherent phonons [4,13,16,36–38]. It may be interesting
to sort out the influence of these effects in a future study.
Furthermore, as suggested previously [38], to reduce DECP to
the resonance Raman scattering is only possible by merging the
hot luminescence and resonant Raman scattering into a single
mechanism. However, if in the Raman case the phonon creation
can occur both before and after absorption of a photon, in the
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FIG. 5. (a) Coherent control in Te. The signal of a single-pulse
excitation is compared with a two-pulse sequence of the same
total energy. The interpulse separations α are 140 and 280 fs.
(b) Coherent amplitude (open symbols) and electronic contribution
(closed triangles) as a function of pump pulse duration for A1 phonons
in Te. The dashed line is an exponential fit to coherent amplitude
data. (c) Pump-power dependence for coherent (open symbols) and
incoherent (closed triangles) fully symmetric parts. The dashed line
is a linear fit to coherent amplitude data.

hot luminescence, the phonon creation takes place only after
the photon absorption. This reduces the number of possible
ways of ordering the Feynman diagram vertices, leading to
significant differences in the probability of the elementary
scattering act. Raman scattering is a two-photon direct process,
while hot luminescence, and its analog in the time domain—
DECP, is a two-step process that essentially depends on
the photoexcited carrier relaxation [38]. The main difference
between Raman scattering and hot luminescence is that the
former is determined by the transverse relaxation, while the
latter is controlled by the longitudinal relaxation generating the
lattice coherence due to a rapid nonradiative process [38,39].
Nevertheless, the treatment of hot luminescence as a Raman
process in which the phonon creation occurs only after the
photon absorption allows the two-tensor model to be a unified
model for the description of coherent phonon generation in
both opaque and transparent regimes. The usage of a complex
Raman tensor in the two-tensor model can be put side by side
with the Raman measurements carried out with polarization
vectors of the incident and scattered light not parallel to
the principal axes of the second rank tensor. In contrast to

measuring the phonon Raman intensity with the polarization
vectors along the crystal principal axes, which corresponds
to the determination of the absolute tensor component value
only with the phase information escaped from the measuring
process, when the polarizations are not parallel to the crystal
axes, the relative phase difference between Raman tensor
elements affects the scattering strength [40]. Similarly, in
the case of Fano interference between the phonon and the
electronic continuum, the sign of phonon tensor component,
which can be related to its phase, regulates the position of
antiresonance in the spontaneous Raman spectrum [41] and
controls the initial phase of coherent phonons in the time
domain [42,43].

In passing, let us also comment on the coherent amplitude
dependence on pulse duration. Recall that it has long been
suspected that there might be optimal pulse duration for
coherent phonon generation [14,44–47]. The appearance of
such optimal duration is easily explained by a toy model.
Assume the pendulum has a period of T and initially is in its
equilibrium position. The key is that the driving force can
excite it most effectively in the first quarter of its period,
i.e., T /4. If the force duration is longer or shorter than
T /4, this pendulum will not achieve the maximal amplitude.
Consequently, the theoretical ratio of the pendulum period
T to the driving force duration τ is expected to be four.
More sophisticated theoretical models [14,44–47] suggest
larger optimal pulse duration. For example, in Ref. [15] it
was found that the optimum value of τp was about 0.42T ,
whereas in Ref. [45] τp � 0.4T . However, the theoretical
results seem to be inconsistent with the existing experiments
on opaque crystals [4,31,48,49] as well as with our study that
rules out the existence of a maximum at least for the pulse
durations larger than 0.15–0.2 T. Here it is appropriate to
mention that according to theoretical model [14], the optimal
pulse duration exists only for a Raman-like excitation and
is absent for DECP. Nevertheless, the recent experimental
study [31] fails to observe the optimal pump pulse duration
for coherent phonons excited either via DECP, or ISRS (in
both cases, the coherent amplitude decreases monotonically
with respect to pulse duration, without any maximum). A way
to quantitatively characterize how strongly the phonons are
excited in different theories [14,45–47], via an estimate of the
potential or kinetic energy, does not seem to be important,
as in a low fluence excitation regime used in our study, the
potential surface anharmonicity can be neglected [45]. On
the other hand, the universal dependence τ = T /4, observed
in all opaque crystals for the varying pulse widths, can be
an indication that the atoms start their movement with zero
velocity and the restoring force is controlled by the potential
steepness proportional to the phonon frequency—the steeper
the potential, the faster the amplitude decays.

Based on the experimental results obtained, it can be
claimed that the two-tensor model correctly describes the
generation of lattice coherence for any Raman-active phonon
in opaque materials. The experimental results allow conjec-
turing that this lattice coherence is due to the transfer of
coherence between light and lattice. DECP, on the other
hand, is able to explain the generation of fully symmetric
coherent phonons for which the DECP predictions coincide
with experiment and predictions of the two-tensor model.
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Thus, the two-tensor model does provide a unifying approach
for describing the coherent motion of atoms of both impulsive
and displacive character. The comparison shows that DECP
and two-tensor theories are very similar, differing mainly in
the coherent amplitude dependence on pump pulse structure,
which seems to be a single significant distinction. While
DECP relies exclusively on the temporal pulse envelope,
the two-tensor model, in addition, depends explicitly on the
pulse spectrum. Including the hot luminescence, which is
controlled by the pulse envelope and generates the lattice
coherence due to rapid nonradiative processes, into a Raman
framework makes the two-tensor model identical to DECP. We
also would like to stress that in this work we concentrate on
the generation mechanism for fully symmetric phonons in the
opaque materials and do not consider the detection mechanism
that is always a Raman-like process [1,5,50–52].

V. CONCLUSION

To summarize, the ultrafast pump-probe experiments in
Bi2Te3, Sb, Bi, and Te all show similar features that support
the validity of the two-tensor model. The latter three materials,
where DECP was previously identified as the generating
mechanism, were intentionally chosen to compare their co-
herent lattice dynamics with the two-tensor model predic-
tions. All fully symmetric coherent phonons exhibit a cosine

dependence indicative of displacive (kinematic) excitation
which is consistent with both DECP and two-tensor models.
Their coherent amplitudes grow linearly with increasing pump
intensity provided the pulse duration remains unchanged, the
feature also predicted by both models. Varying the pump pulse
duration, we observed the monotonic decrease of coherent
amplitude for longer pulses in Sb, Bi, and Te, whereas the
electronic contribution was barely changed. This lack of the
correlation between the carriers and the coherent amplitude
was further supported by coherent control experiments on
Te. To explain why the electron and phonon contributions,
if the former drives the latter, react differently to pulse
duration, we conjecture that this feature can be explained
by the movement of atoms during the interaction time. The
electronic contribution does determine the maximal coherent
phonon amplitude attained with infinitely short pulses at the
instantaneous displacive excitation, �τp → 0. However, the
correlation between the electron and phonon contributions
disappears for longer pulses because the former is independent
of, while the latter is dependent on pump pulse duration.
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